Artificial Intelligence and Robotics at Oregon State University

Tom Dietterich, Distinguished Professor

24 Faculty + 3 Pending

Artificial Intelligence

- Machine Learning
- Planning and Control
- Signal Processing
- Computer Vision
- Natural Language Processing
- Human/AI Collaboration
- Genomics and Medicine
- Ecology
- Power Grid Management

Robotics

- Locomotion
 - Walking
 - Running
 - Snakes
 - Spiders
- Underwater
- Aerial
- Ground
- Prosthetics
- Human/Robot Collaboration

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

Machine Learning and Data Mining

- Anomaly Detection
- Robust Machine Learning
- Causal Models for Science

Tom Dietterich

Alan Fern

Rebecca Hutchinson

Weng-Keen Arash Wong

Termehchy

Anomaly Detection

- Given: a data set of tuples $x_1, ..., x_N$
 - most of the x_i are "normal"
 - small fraction (e.g., 0.01 → 0.0001) are anomalies
- Find: the anomalies
- Applications
 - Cybersecurity
 - Data cleaning
 - Robust machine learning

Benchmarking Study

Tom Dietterich Andrew Emmott

- 24,800 benchmark data sets
 - constructed by manipulating existing supervised learning data sets to control
 - fraction of anomalies
 - difficulty of each point
 - clusteredness of the anomalies
 - number of irrelevant features

Anomaly Detection Algorithms

- Density Estimation
 - Ensemble of Gaussian Mixture Models (EGMM)
 - Robust Kernel Density Estimation (RKDE)
- •Quantile Methods
 - One-class Support Vector Machines (OCSVM)
 - Support Vector Data Description (SVDD)
- Distance/Isolation Methods
 - Isolation Forest (IFOR, SCIF)
 - Local Outlier Factor (LOF)

AUC Results:

Effect of algorithm while controlling for all other factors

Anomaly Detection Summary

- Isolation Forest (Liu, Ting, Zhou, 2007, 2012) works very well
 - Accurate
 - Fast
 - Scalable

Next Steps:

- Rerunning this study to include more algorithms
 - Angle-Based Outlier Detector (ABOD)
 - Lightweight Online Detector of Anomalies (LODA)
- PAC Theory of Anomaly Detection
 - Siddiqui, Fern, & Dietterich (UAI 2016)
- Explanations of Anomalies
 - Siddiqui, Fern, Dietterich, Das (ODD 2015)

Applications of Anomaly Detection

- Cybersecurity
 - Detecting cyber attacks
 - Detecting insider threats
- Data Cleaning
- Robust Machine Learning

Data Cleaning for the TAHMO Project

- Africa is very poorly sensed
 - Only a few dozen weather stations reliably report data to WMO (blue points in map)
 - Goal: Make Africa the best-sensed continent
- Project TAHMO (tahmo.org)
 - TU-DELFT & Oregon State University
 - Design low-cost weather station
 - Deploy 20,000 such stations across Africa
 - Create data products (e.g., drought assessments, inundation estimates)

Data Quality Control

An ideal method should produce two things given raw data:

Data Quality Control

- An ideal method should produce two things given raw data:
 - A label that marks anomalies

Data Quality Control

- An ideal method should produce two things given raw data:
 - A label that marks anomalies
 - An imputationof the true value(with someconfidence measure)

Dereszynski &, Dietterich, ACM TOS 2011.

SENSOR-DX Architecture

- General architecture for Internet of Things QC
- Find the most likely explanation of the observed anomaly scores

A Very Simple Example

Weather station with two thermometers

Example Result

Using $P(A_1|s_1)$ and $P(D_{12}|s_1,s_2)$

Robust Machine Learning

- Open Category Learning
 - test data contain data points belonging to "new" classes
- Non-Stationary Learning
 - test data contain data from a very different distribution

Fern, Dietterich, Juozapaitis, unpublished

Causal Models for Science

- Modeling Bird Migration
 - Input data: "Citizen Science" observations
 - Output model: predicts when and where birds will fly

Sheldon, Sun, Liu, Dietterich, Cornell Lab of Ornithology

Hidden Markov Model

 $P(x_1)$: Initial State Distribution $P(x_t|x_{t-1})$: State transition function

- Individual Model
 - Model of a single bird's location over time
- Population Model
 - Model of the spatial distribution of a population of birds over time

Fitting the model The data we wish we had:

- Tracks of individual birds over time
- Weather at every location

macworld.com

www.azoresbioportal.angra.uac.pt

This would give us points $(x_{t,t+1}(i), x_t(i), x_{t+1}(j))$ to which we could fit our model

Challenge: Aggregate anonymous counts

- We do not observe the behavior of individual birds: $x_t(i)$
- We only obtain information about aggregated counts of birds: $n_t(i)$

Solution: Collective Graphical Models

Individual model: Markov chain on grid cells

Population model:

M iid copies of individual

model

Derive aggregate counts

Solution: Collective Graphical Models (2)

Derive aggregate counts

Attach Noisy Observations

Solution: Collective Graphical Models (3)

Attach Noisy Observations

Marginalize out individuals: chain-structured model on sufficient statistics

MAP Inference in the Collective Graphical Model

- Generic Message Passing
- Non-linear belief propagation
 - NLBP-NAÏVE
 - same message-passing schedule as in standard BP
 - NLBP-FEAS
 - special schedule
 - dampened updates
 - guarantees feasibility at each step

Eastern Wood Peewee

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

Planning and Control

- Experiment Planning for Microbial Fuel Cells
- Preventing or Reducing Blackouts in the Power Grid
- Managing Endangered **Species**

- Given: a simulator of the system
- Find: find near-optimal ways to control the system

Alan Fern

Xiaoli Fern

Tom

Prasad Dietterich Tadepalli

- Methods:
 - Monte Carlo Tree Search
 - Reinforcement Learning
 - Bayesian Optimization

Parallel Bayesian Optimization

Xiaoli Fern

How many to run in parallel?
When to start new experiments?
Which experiments to start?

Simulation-Based Electric Grid Stabilization

Alan Fern

Northeast Blackout, 2003

Credit: Air Force Weather Agency (AFWA)

How can AI help?

N-1 security

■ What about *N-2* ?

Getting hot...

- Avoid Cascading failure
- Prevent or minimize damage by taking appropriate remedial action schemes
 - Load shedding
 - Islanding
- Island or Load Shed?
 - Where?
 - When?

Rich Meier, Eduardo Cotilla-Sanchez, and Alan Fern.

(2014). A Policy Switching Approach to

Consolidating Load Shedding and Islanding

Protection Schemes. Power Systems Computation

Conference

<Bus#>

Conservation Planning

Alan Fern

Red area: current location of the Red-Cockaded Woodpecker

Goal: purchase and conserve land parcels to maximize population spread of target species

Red-Cockaded Woodpecker

Conservation Planning

Year 1 Year 5 Year 10

The Big Picture

Rational Decision Making

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

Computer Vision and Acoustics

- Video Action Recognition (Sinisa)
- Object Recognition and Segmentation (Fuxin, Sinisa)
- Video Object Tracking (Fuxin, Sinisa, Alan)
- Bird Song Recognition (Xiaoli, Raviv)

Sinisa Todorovic

Fuxin Li

Alan Fern

Xiaoli Fern

Raviv Raich

Action Recognition in the Wild

- No priors on camera viewpoint
- Large number of action classes
- Different motion patterns
- Background Clutter and Occlusion

Behrooz Mahasseni Sinisa Todorovic CVPR 2016

Running

Wind Surfing

State of the art

- Deep Learning Approaches
 - DCNN + (Time Pooling / LSTM / Graphical Models)
- Current Trend
 - Deeper Networks + More training data → Higher accuracy
- Our Idea
 - Augment with complementary data <u>ONLY in TRAINING</u>
 - Dynamics of the motion pattern
 - 3D human skeleton sequences

Result

Dataset: Sport1M

Method	Hit@1	Hit@5
Single Frame	59.3	77.7
LSTM	71.3	89.9
[1]	60.9	80.2
[2]	72.1	90.6
[3]	61.1	85.2
R-LSTM	75.9	91.7

- [1] Karpathy et al. Large-scale video classification with convolutional neural networks. In CVPR, 2014
- [2] Ng et al. Beyond short snippets: Deep networks for video classification, arXiv2015
- [3] Tran et al. C3D: generic features for video analysis. CoRR 2014

Result

Dataset: UCF101, HMDB-51

Method	UCF101	HMDB- 51
[1]	65.4	-
[2]	75.8	44.1
[3]	71.12	-
[4]	72.8	40.5
[5]	79.34	-
[6]	85.2	-
R-LSTM	86.9	55.3

- [1] Karpathy et al. Large-scale video classification with convolutional neural networks. CVPR, 2014
- [2] Srivastava et al. Unsupervised learning of video representations using lstms, arXiv2015
- [3] Donahue et al. Long-term recurrent convolutional networks for visual recognition and description, arXiv 2014
- [4] Simonyan et al. Two-stream convolutional networks for action recognition in videos NIPS 2014
- [5] Zha et al. Exploiting image-trained cnn architectures for unconstrained video classification, arXiv 2015
- [6] Tran et al. C3D: generic features for video analysis, CoRR, 2014

Semantic Segmentation

Fuxin Li, et al.

- Given an image, identify the category and spatial extent of all relevant objects
- Focus on detailed object interactions

Image

Proposals

Object Label

Category Label

Goal:

Semantic Segmentation

Predict % overlap of categories, not objects

X: Shape/Color/Texture feature of segments

Y: Class-specific overlap

1 regressor per category

Horse 0.85

Bus 0.3

Dog 0.5, Cat 0.5

Person 0.95

Plant 0.9

Bike 0.4

Li, Carreira and Sminchisescu. CVPR 10, IJCV 12

Dissecting Segments

Image

Segment #1: Segment #2: Chair 0.53 Chair 0.23 Person 0.29 Person 0.36

Atomic regions:

Venn diagram

Segment #3: Chair 0.34 Person 0.54 Segment #4: Chair 0.19 Person 0.43

Find Most Consistent Configuration

Seg #1: Chair 0.53 Person 0.29

Seg #2: Chair 0.23 Person 0.36

Configuration #1
Person Chair

Seg #3: Chair 0.34 Person 0.54

Seg #4: Chair 0.19 Person 0.43

Configuration #2

Person

Chair

Results: Winners of PASCAL VOC 2009-12

Segmentation Results: VOC2012 BETA

Competition "comp5" (train on VOC2012 data)

Average Precision (AP %)

| Mean | aero | bicycle | bird | boat | bottle | bus | car | cat |

Optnbnn-crf [?]

5.3

OSU Digital Scout

- Goal: Understand American football
 - Determine the start of each play
 - Track each player
 - Understand what choices each player made
 - Understand what mistakes each player made
 - Improve the play
 - Plan how to defeat this play
- Industrial collaboration with HUDL, Inc.
 - Video analytics for US high school football teams

Birdsong Recognition

Xiaoli Fern Raviv Raich

- At each site, a microphone records birds singing
- Goal: Determine what species are present at each site each day
- Problem: Labeling data is very time consuming
- Solution: Just label 10s segments
- Superset Label Problem

Segmented Spectrogram

Machine Learning Approaches

- Method 1:
 - Formulate as "Multiple Instance Multiple Label" problem (MIML)
 - Each example is a "bag" of instances and is assigned multiple labels
- Method 2:
 - Formulate as "Superset Label Problem"
 - Each example is a single instance but has been assigned multiple labels

Results on Superset Labeling/MIML Problems

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

Natural Language Processing

- Parsing
- Event and Event Argument Coreference

Liang Huang

Prasad Tadepalli

Xiaoli Fern

Linear Time Dynamic Programming Parsing

Liang Huang

- Very fast linear time dynamic programming parser
- explores exponentially many trees and outputs a forest
- state-of-the-art parsing accuracy in English and Chinese

Joint Entity and Event Coreference

П

58

- Two sentences:
 - "Hugh Jackman plays a furry comic-book hero."
 - "The Australian actor is playing a superhero."

Xiaoli Fern Prasad Tadepalli

Coreferences:

Document 1

"Hugh Jackman"

"plays"

"a furry comic-book hero"

Document 2

"The Australian actor"

"is playing"

"a superhero"

Joint Inference using Learned Scoring Functions

Learning performed using the "Easy First" framework

Small but consistent improvement by using better learning

method

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

Robotics

- Robotics PhD Program ranked #4 in US
- Home of ROS: Robot Operating System

Robot Locomotion: Legs

Jonathan Hurst

More Locomotion

- Ross Hatton
 - Snake robots and full-body locomotion
 - Casting manipulation (free cables and whip-like objects)
 - Spiders and spider webs
 - Vibration
- Belinda Batten
 - Micro-air vehicles
- Geoff Hollinger
 - Underwater Vehicles
 - Wheeled Vehicles

Prosthetics and Human Control

- Robotic Control and Dynamics
- Human neuro-biomechanics
- Biomedical Implants
- Robot Hands

Ravi Balasubramanian

John Mathews

Biologically-Inspired and Soft Robotics

- Soft sensors and actuators
- Gecko-inspired adhesion
- Wearable soft robotics

Yiğit Mengüç

Robot Teams and Autonomy

- Coordination of autonomous cars
- Air Traffic flow optimization
- UAV traffic management

Kagan Tumer

Personal Robots, Autonomy, ROS

- Human-robot interaction
- Long-term robot autonomy
- Shared-autonomy human-robot systems
- Open-source software architectures for robotics
- Robots in the theatre
- Machine learning for the control of physical systems
- Advanced user interfaces for robot assistants

Bill Smart

67

CARIS Center for Autonomy, Robotics, and Intelligent Systems

- Kagan Tumer, Director
- Alan Fern, Associate Director
- Artificial Intelligence
- Robotics
- Autonomy
- Human-AI and Human-Robot Interaction and Collaboration

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

Questions?

Outline

- Machine Learning and Data Mining
 - Anomaly Detection
 - Data Cleaning
 - Robust ML
 - Bird Migration Modeling
- Planning and Control
 - Bayesian Optimization
 - Power Grid Control
 - Conservation Planning
- Computer Vision and Acoustics
 - Activity Recognition
 - Semantic Segmentation
 - Understanding Sports
 - Birdsong Classification

- Natural Language Processing
 - Parsing
 - Entity and Event Coreference
- Robotics
 - Locomotion: Legs
 - Snakes
 - Micro Air Vehicles
 - Underwater Vehicles
 - Hand Prosthetics
 - Wearables
 - Robot Teams
 - Personal Robots
 - Autonomy

