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Threats to the Biosphere

Pollution including Greenhouse Gases
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Lack of Scientific Knowledge

¢ Our understanding of ecosystem structure and
function is poor
s Extremely complex interactions
s Operate at many temporal and spatial scales
= Hard to do controlled experiments
= Impossible to observe critical past events

+ Long record of policy failures: “Ecological
Surprises’

= Doak et al. Ecology 39(4), 2008.
= "Surprises are common and extreme”
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A Limiting Factor:
Ecological Data

* Many ecological simulation models are
based on little or no data

+ Historical time series only extend back 100
years

+ For almost all species, their location,
population size, and interactions are
unobserved
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Transforming Ecosystem Science

Hypothesis Data
Driven :> Driven

+ Past approaches
= Naturalists: museum collections
= Artificial ecosystems (test tubes; barrels
= Isotope tagging of fluxes
+ Emerging approaches
In-situ sensor networks

Radio/RFID tagging and tracking of
organisms

Radar ornithology
Remote sensing
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Optimal Sensor Placement for
Environmental Data Collection

Leskovec et al, KDD2007

* Objectives

ACML 2009

maximize detection
probability

Improve model
accuracy

improve causal
understanding

improve policy

effectiveness
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Sampling Bias: ebird.org

+ Citizen science Cardinals
collected by amateur LR D -
bird watchers

¢ Strong bias toward
where people live

+ Explicit models of
sampling bias

Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier: Sample
Selection Bias and Presence-only Distribution models: implications for
background and pseudo-absence data. Ecological Applications, 19(1),
181-197. 20009.
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Detectabillity

* Birds may be present but not detected by
observer

+ Coupled models of detectability and presence
can be fit simultaneously

Royle, Dorazio (2008). Hierarchical Modeling and Inference In

Ecology: The Analysis of Data from Populations, Metapopulations
and Communities.
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The BuglD Project:
Rapid Throughput Arthropod Counting

+ Arthropods are a powerful data
source
= Found in virtually all environments

e sStreams, lakes, oceans, soils, birds,
mammals

= Easy to collect
= Provide valuable information on
ecosystem function

e Consume the primary producers:
bacteria, fungi, plants

e Are consumed by more charismatic
organisms: birds, mammals, fish
Problem: Identification is time-
consuming and requires scarce
expertise

Solution: Combine robotics,
computer vision, and machine
learning to automate classification

and population counting
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Multi-Sensor Anomaly Detection

[Dereszynski & Dietterich, submitted]

10

10-10 0

10-10 0

A ' r“‘{"ir_]j_:lk\d_-"‘vr -I_I_‘--"I_\_II’\‘

Wi -1 Il TE) B

-
Wi

T . ¥, e J,‘-h-. [ I

10-10 0

Py e e
— e [ NN
1“'“( f\“\am’m"‘ﬁrﬁw""wﬁ \“Mfrw g R

A,
™ I ‘,_::""“ ‘ﬁ"\f\_ﬁm_._)v s Ve
w\“wf\w’\kf‘wi AN e N N

A 7\
Mi\“wfﬂ\xmﬂ%ry%hhjkﬂmf AN Hﬂ‘“’f\“m

10-10 0

ol m""\

10-10 0

—_
w)
=
L]
©
O
w
@
©
S
o
©
]
=
@
S
2
®©
S
©
o
E
@
'_
=
<<

10-10 0

A

10-10 0

'JLJJ}‘L} IJJF(\WMJW#MJ AP ANIANGPS :'\N\ -

10-10 0

SN N I~ x.ﬂm

-10 0

T T T T T
21 22 23 24 25 26 27 28 29 31 32 33 34
Day Index (From Start of Deployment)




Data
Pipeline

Coupling Multiple

Problems

11/7/2009

e N
Sensor
Placement

. 2

Data
Collection

. 2

Feature
Extraction

v

Data

Cleaning
\ Y,

4 )

Model Fitting

g J
~ R
Policy

Optimization

\_ J

ACML 2009

Optimal Sensor Placement

Detectability
Errors / Noise
Sampling Bias

Species classification
Recognizing individuals
Tracking individuals

Sensor failures
Networking failures
Recognition errors

Species distribution models
Behavioral models
Dynamical systems models




Species Distribution Models

+ \What are the environmental/biological
requirements for a species?

¢ Given:

= Environmental features (elevation, soil properties,
weather) of a site

= Presence, presence/absence, or abundance of K
species

* Find:

= Probability that each of the K species will be found
at new sites

= Extrapolation to global climate change scenarios
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Plants in Victoria

[Arwen Lettkeman]

+ 5,605 plant
species measured
at >113,000 sites

¢ 83 environmental
features

Source: Matt White, Arthur Rylah Institute
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Robust Reserve Design

+ Given:
= Species distribution model
= Budget

+ Find:

= Set of reserves to purchase that
are good habitat for the species
and fit within the budget

+* Robust to uncertainties in the
model (and climate, etc.)

=  Optimize the machine learning to
be more accurate where land is
cheaper to acquire?

= Joint optimization of model fitting
and optimization?
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Predicted winter distribution of tree
swallows (Fink, et al., unpublished)




Outline: Three Challenges for
Machine Learning

+ Object Recognition for Arthropod Counting

+ Multiple Species Prediction

¢ Spatio-Temporal Optimization for Forest
Management
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Automated Rapid-Throughput
Arthropod Population Counting

¢ Goal:

= technician collects specimens in the field by various
EENRE

= robotic device automatically manipulates, photographs,
classifies, and sorts the specimens

* Two applications:

s stoneflies in freshwater streams
= SOil mesofauna
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Application 1: Stonefly populations in
freshwater streams

 differentially sensitive to
many pollutants

live in rivers: reliable
Indicator of stream health

difficult and expensive for
people to classify
(particularly to genus or
species levels)

* hundreds of species
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Application 2: Small arthropods
in soil: “soil mesofauna”
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Computer Vision Challenges(1)

+ Highly-articulated objects with deformation
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Computer Vision Challenges(2)

+ Huge intra-class changes of appearances due to
development and maturation
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Computer Vision Challenges(3)

¢ Small between-class differences
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Machine Learning

Training New

Calineuria

Calineuria

Learning

Doroneuria A|gorithm Classifier

Doroneuria l

Doroneuria
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State of the Art in Object
Recognition

* "Bag of Keypoints” based on visual
dictionaries

s 85% correct

+* New method: multiple-instance classification
of bags of regions

s 95% correct
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Region-Based Approaches:
Convert Image to Bag of Patches

+ Handles
= Occlusion
= Rotation, translation

= Scale (with scale-independent
patch representation)

= Partial out-of-plane orientation
= Articulation / Pose

¢ Problem:
= How to define the patches?
= How to represent each patch?

= How to classify a BAG of
patches?
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Defining the Patches:
Interest Region Detectors

Hessian-Affine Detector Kadir Entropy Detector PCBR Detector
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Representing the Patches:
SIFT (Lowe, 1999)
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Image gradients Keypoint descriptor
Morph ellipse into a circle
Compute intensity gradient at each pixel in 16x16 region
Rotate whole circle according to dominant intensity gradient
Weight gradients by a Gaussian distribution (indicated by circle)

Collect into histograms within each 4x4 region (gives 16
histograms)

Result; 128-element vector normalized to have Euclidean norm 1
11/7/2009 ACML 2009




Classify Bag of Patches
Method 1: Visual Dictionaries

+ “look up” each patch in
dictionary and count into a
feature vector

+ feature vector is then given
to the classifier

Of.

J

classifier
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Learn visual dictionary via
clustering

Gaussian Mixture Model (k=100) with diagonal covariance
matrices (EM, initialized with K-means)

Qabdomen

100 clusters
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Issues with Visual Dictionaries

+ Unsupervised

s Several efforts to construct discriminative
dictionaries (Moosman et al., 2006)

¢ L ose information

s 128-element SIFT contains 1024 bits, a bag of
256 SIFTs contains 256K bits

s Keyword histogram from 2700-element
dictionary contains ~2/700bits

11/7/2009 ACML 2009




Classify Bag of Patches
Method 2: Multiple-Instance Classifier
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¢ The classifier
predicts the class
of the image
separately from
each patch

* These vote to make
the final decision

Final prediction: y=2
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Improved Multiple-Instance
Classification

¢ Evidence Trees: Like decision trees, but store
the “evidence” in each leaf

+ Given an input, output the evidence

X1, > 0.6
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Classify Bag of Patches
Voted Evidence Trees

R * The classifier
[ T‘g \\ A l .
TR predicts the class
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2t ¥ of the image
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A each patch

* These vote to make
the final decision
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Final prediction: y=1
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Theorem: Voting Evidence is Better
than Voting Decisions

¢ |ntuition: When voting
decisions, there are
two opportunities to
make a mistake:

1. Making the wrong
decision at each leaf

2. Making the wrong
decision when
Comb|n|ng the VOteS 0 005 01 015 o‘2ga£:;ipio.a 035 04 045 05

+ With evidence trees,

the first opportunity is y = margin of decision tree nodes
avoided © = fraction of non-noise patches
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Final Classifier:
Stacked Random Forests

Each patch is processed by a random forest of
evidence trees

Evidence is summed and normalized to produce C
C is classified by a second-level boosted decision
tree ensemble
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Ensemble
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Experimental Study
O Taxa of Stoneflies




STONEFLY9 Dataset

+ 3826 images
¢ /73 specimens
+ O classes

* Error estimation by 3-fold cross-validation
» all images of a specimen belong to the same fold
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Comparison of Methods

Error Rate

Visual Dictionary Stacked Evidence Trees
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Outline: Three Challenges

* Object Recognition for Arthropod Counting

+ Multiple Species Prediction

¢ Spatio-Temporal Optimization for Forest
Management
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Plants in Victoria

[Arwen Lettkeman]

+ 5,605 plant
species measured
at >113,000 sites

¢ 83 environmental
features

Source: Matt White, Arthur Rylah Institute
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Labels are Sparse
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Many Species are Rare
Many Species are Common
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Exploiting Multiple Species

¢ Experiment: Predict
presence/absence of
one species given
= Environmental
attributes

Presence/Absence
of other species

Both

o
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Multi-Label Classification

Multiple-output neural networks

Multiple-response decision trees
= Zhang, H. 1998. Classification Trees for Multiple Binary Responses, JASA.

= De’ath, G. 2002. Multivariate Regression Trees: A new technique for modeling species-
environment relationships. Ecology.

Conditional random fields

= McCallum, A., Ghamrawi, N. 2204. Collective multi-label text classification. Tech Report.

Conditional topic models

= Mimno, D., McCallum, A. 2008. Topic models conditioned on arbitrary features with
Dirichlet-multinomial regression. UAI.

Stacking

=  Wolpert, D. 1992. Stacked generalization. Neural Networks

Reduction to multi-class classification problems
= Read, J., Pfaringer, B., Holmes, G. 2008. Multi-label classification using ensembles of
pruned sets. ICDM.
= Tsoumakis, G., Vlahavas, |. 2007. Random k-label sets: an ensemble method for multilabel
classification. ECML.
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Multi-Task Learning

‘rain one model for each species, but use
ne other species as auxiliary tasks

‘rain a joint model, but choose separate
regularization constant and decision
threshold for each species
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* No results yet!
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Outline: Three Challenges

* Object Recognition for Arthropod Counting

* Multiple Species Prediction

¢ Spatio-Temporal Optimization for Ecosystem
Management
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Fires in the Western US

+ Natural behavior —
frequent low-intensity
fires (every 15-20 years)

s Favors Ponderosa Pine
forests

e thick bark to survive low-
intensity fire

n | akes out weaker trees
— “natural thinning”

= Result: Open stands of
big, valuable trees
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Fire Suppression Policy

"the conviction was burned into me that
that fire prevention is the number 1 job of
American foresters

(Greeley, WB. 1951. Forests and men. NY:
Doubleday.)

10:00 am policy: Contain every wildfire
by 10:00 am the day after it is reported
regardless of cost.

| < William Greeley USFS chief 1920-9:
Tlﬂmmeful waste ] icti |

fcemember—Only you can

www.mtmultipleuse.org/images/smokey.jpg
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Result of this Policy

+ | odgepole pine becomes
dominant tree
low economic value

vulnerable to pine bark
beetle

dies and creates enormous
fuel buildups

+ Fires become catastrophic
most vegetation killed

most soil organic matter
destroyed

very long recovery time
big CO, release
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Adaptive Fire Treatment

¢ Choose what fires to allow to burn

+ Perform “mechanical thinning” to reduce fuel
loads
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Formulation as a
Markov Decision Process

+ States:
= Landscape divided into 100 management units (MUs)

= Each MU has two state variables:
e Age: age of trees {0-9, 10-19, 20-29, 30-39, 40-49}
e Fuel: fuel load {very-low, low, medium, high, very-high}
o 25700 states

+ Actions:

= Every 10 years for each MU: {grow, cut, fuel}
» 3190 actions

¢ State transition function:

= Actions are deterministic, but then fire burns stochastically depending on
states and spatial arrangement of states

* Reward Function:
= Value of timber cut and sold
m Cost of fuel treatments
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Status

+ \We have no algorithms that can handle such
large spatio-temporal MDPs

+ And there are typically 2000-3000 MUs
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Questions?
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