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Threats to the Biospherep
Pollution  including Greenhouse GasesPollution  including Greenhouse Gases Habitat Loss and FragmentationHabitat Loss and Fragmentation

OverOver--HarvestingHarvesting
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Lack of Scientific Knowledgeg

Our understanding of ecosystem structure andOur understanding of ecosystem structure and 
function is poor

Extremely complex interactions
Operate at many temporal and spatial scales
Hard to do controlled experiments
I ibl t b iti l t tImpossible to observe critical past events

Long record of policy failures: “Ecological 
Surprises”Surprises

Doak et al. Ecology 39(4), 2008.
“Surprises are common and extreme”Surprises are common and extreme
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A Limiting Factor: 
Ecological DataEcological Data

Many ecological simulation models areMany ecological simulation models are 
based on little or no data
Historical time series only extend back 100Historical time series only extend back 100 
years
F l t ll i th i l tiFor almost all species, their location, 
population size, and interactions are 

b dunobserved
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Transforming Ecosystem Scienceg y
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Artificial ecosystems (test tubes; barrels)
Isotope tagging of fluxes

Emerging approaches
In-situ sensor networks

JJ

Radio/RFID tagging and tracking of 
organisms
Radar ornithology
R t iRemote sensing
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Optimal Sensor Placement for 
Environmental Data CollectionEnvironmental Data Collection

ObjectivesObjectives
maximize detection 
probabilityprobability
improve model 
accuracyaccuracy
improve causal 
understandingg
improve policy 
effectiveness

Leskovec et al, KDD2007Leskovec et al, KDD2007
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Sampling Bias: ebird.orgp g g

Citizen science CardinalsCitizen science 
collected by amateur 
bird watchers
Strong bias toward 
where people live
E li it d l fExplicit models of 
sampling bias

Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier: Sample Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier: Sample 
Selection Bias and PresenceSelection Bias and Presence--only Distribution models: implications for only Distribution models: implications for 
background and pseudobackground and pseudo--absence data. absence data. Ecological ApplicationsEcological Applications, 19(1), , 19(1), 
181181--197 2009197 2009

ACML 2009 10

181181--197. 2009.197. 2009.

11/7/2009



Detectabilityy

Birds may be present but not detected by y p y
observer
Coupled models of detectability and presence 
can be fit simultaneouslycan be fit simultaneously
Royle, Dorazio (2008). Hierarchical Modeling and Inference in 
Ecology: The Analysis of Data from Populations, Metapopulations 
and Communitiesand Communities.

t=1,…,Tt=1,…,T

presentpresentii observedobserveditit xoxoititxpxpii
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The BugID Project:
Rapid Throughput Arthropod CountingRapid Throughput Arthropod Counting
Arthropods are a powerful data 
sourcesource

Found in virtually all environments
streams, lakes, oceans, soils, birds, 
mammals

Easy to collect
Provide valuable information on 
ecosystem function

Consume the primary producers:Consume the primary producers: 
bacteria, fungi, plants
Are consumed by more charismatic 
organisms: birds, mammals, fish

Problem: Identification is time-Problem: Identification is time
consuming and requires scarce 
expertise
Solution: Combine robotics, 
computer vision, and machine 
learning to automate classification 
and population counting
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Multi-Sensor Anomaly Detection
[Dereszynski & Dietterich submitted][Dereszynski & Dietterich submitted][Dereszynski & Dietterich, submitted][Dereszynski & Dietterich, submitted]
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Species Distribution Modelsp

What are the environmental/biological g
requirements for a species?
Given:

E i t l f t ( l ti il tiEnvironmental features (elevation, soil properties, 
weather) of a site
Presence, presence/absence, or abundance of K , p ,
species

Find:
Probability that each of the K species will be foundProbability that each of the K species will be found 
at new sites
Extrapolation to global climate change scenarios

ACML 2009 1711/7/2009



Plants in Victoria
[Arwen Lettkeman][Arwen Lettkeman]

5,605 plant 
species measured

Australian Data Sites

2800000

2900000

species measured 
at >113,000 sites
83 environmental 2600000

2700000

2800000

 C
oo

rd

features
2400000

2500000

N
or

th
in

g

2200000

2300000

2100000 2200000 2300000 2400000 2500000 2600000 2700000 2800000 2900000 3000000

Easting Coord

11/7/2009 18ACML 2009

Source: Matt White, Arthur Rylah InstituteSource: Matt White, Arthur Rylah Institute



Data
SensorSensor

PlacementPlacement Optimal Sensor PlacementOptimal Sensor PlacementData
Pipeline

DataData
CollectionCollection

PlacementPlacement

DetectabilityDetectability
Errors / NoiseErrors / Noise
Sampling BiasSampling Bias

FeatureFeature
ExtractionExtraction

CollectionCollection

Species classificationSpecies classification
Recognizing individualsRecognizing individuals
T ki i di id lT ki i di id l

Sampling BiasSampling Bias

ExtractionExtraction

DataData
CleaningCleaning

Tracking individualsTracking individuals

Sensor failuresSensor failures
Networking failuresNetworking failures
Recognition errorsRecognition errors

Model FittingModel Fitting

CleaningCleaning Recognition errorsRecognition errors

Species distribution modelsSpecies distribution models
Behavioral modelsBehavioral models

PolicyPolicy
OptimizationOptimization

Dynamical systems modelsDynamical systems models

Large spatioLarge spatio--temporal MDPstemporal MDPs
OptimaOptima that are robustthat are robust

Coupling Multiple Coupling Multiple 
ProblemsProblems

ACML 2009 19

OptimizationOptimization Optima Optima that are robustthat are robust
to model uncertaintyto model uncertainty

ProblemsProblems

11/7/2009



Robust Reserve Designg
Given:

S i di ib i d lSpecies distribution model
Budget

Find:
Set of reserves to purchase thatSet of reserves to purchase that 
are good habitat for the species 
and fit within the budget

Robust to uncertainties in the 
model (and climate etc )model (and climate, etc.)

Optimize the machine learning to 
be more accurate where land is 
cheaper to acquire?
Joint optimization of model fitting Predicted winter distribution of treePredicted winter distribution of treeJoint optimization of model fitting 
and optimization?

Predicted winter distribution of tree Predicted winter distribution of tree 
swallows (Fink, et al., unpublished)swallows (Fink, et al., unpublished)
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Outline: Three Challenges for 
Machine LearningMachine Learning

Object Recognition for Arthropod CountingObject Recognition for Arthropod Counting

M lti l S i P di tiMultiple Species Prediction

Spatio-Temporal Optimization for Forest 
Management

ACML 2009 2111/7/2009



Automated Rapid-Throughput 
Arthropod Population CountingArthropod Population Counting

G lGoal: 
technician collects specimens in the field by various 
means
robotic device automatically manipulates, photographs, 
classifies, and sorts the specimens

Two applications:
stoneflies in freshwater streams
soil mesofaunasoil mesofauna

ACML 2009 2211/7/2009



Application 1: Stonefly populations in 
freshwater streamsfreshwater streams

• differentially sensitive to• differentially sensitive to 
many pollutants

• live in rivers; reliable 
indicator of stream health

• difficult and expensive for 
people to classify 
(particularly to genus or(particularly to genus or 
species levels)

f

ACML 2009

• hundreds of species
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Application 2: Small arthropods 
in soil: “soil mesofauna”in soil: soil mesofauna

AchipteriaAAchipteriaA BdellozoniumIBdellozoniumI BelbaABelbaA BelbaIBelbaI CatoposurusACatoposurusA EniochthoniusAEniochthoniusA PtenothrixVPtenothrixV

E t b TME t b TM E id AE id A EpilohmanniaAEpilohmanniaA EpilohmanniaDEpilohmanniaD EpilohmanniaTEpilohmanniaT HypochthoniusLAHypochthoniusLA PtiliidAPtiliidA
EntomobrgaTMEntomobrgaTM EpidamaeusAEpidamaeusA EpilohmanniaAEpilohmanniaA EpilohmanniaDEpilohmanniaD EpilohmanniaTEpilohmanniaT HypochthoniusLAHypochthoniusLA

HypogastruraAHypogastruraA

IsotomaAIsotomaA
IsotomaVIIsotomaVI LiacarusRALiacarusRA MetrioppiaAMetrioppiaA

NothrusFNothrusF

QuadroppiaAQuadroppiaA

onychiurusAonychiurusA
OppiellaAOppiellaA PeltenuialaAPeltenuialaA PhthiracarusAPhthiracarusA

PlatynothrusFPlatynothrusF
PlatynothrusIPlatynothrusI SiroVISiroVITomocerusATomocerusA

24ACML 200911/7/2009



Computer Vision Challenges(1)p g ( )

Highly-articulated objects with deformationHighly articulated objects with deformation

ACML 2009 2511/7/2009



Computer Vision Challenges(2)p g ( )

Huge intra-class changes of appearances due toHuge intra class changes of appearances due to 
development and maturation

tergites wingsbecome

ACML 2009

g g
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Computer Vision Challenges(3)p g ( )

Small between-class differencesSmall between class differences

Calinueria Doronueria

ACML 2009 2711/7/2009



Machine Learningg

Training 
Examples

New 
Examples

CalineuriaCalineuria

Learning
Algorithm Classifier

CalineuriaCalineuria

DoroneuriaDoroneuria Algorithm

DoroneuriaDoroneuria

ACML 2009

Doroneuria
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State of the Art in Object 
RecognitionRecognition

“Bag of Keypoints” based on visualBag of Keypoints  based on visual 
dictionaries

85% correct85% correct

New method: multiple-instance classification 
of bags of regions

95% correct

11/7/2009 ACML 2009 29



Region-Based Approaches:
Convert Image to Bag of PatchesConvert Image to Bag of Patches

Handles
Occlusion
Rotation, translation
Scale (with scale-independent ( p
patch representation)
Partial out-of-plane orientation
Articulation / Pose

Problem:
How to define the patches?p
How to represent each patch?
How to classify a BAG of 
patches?

ACML 2009 3011/7/2009



Defining the Patches: 
Interest Region DetectorsInterest Region Detectors

ACML 2009 31

HessianHessian--Affine DetectorAffine Detector Kadir Entropy DetectorKadir Entropy Detector PCBR DetectorPCBR Detector
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Representing the Patches:
SIFT (Lowe 1999)SIFT (Lowe, 1999)

(Low
e, 19

(Low
e, 19999)

999)

•• Morph ellipse into a circleMorph ellipse into a circle

•• Compute Compute intensity gradient at each pixel in 16x16 regionintensity gradient at each pixel in 16x16 region

R t t h l i l di t d i t i t it di tR t t h l i l di t d i t i t it di t•• Rotate whole circle according to dominant intensity gradientRotate whole circle according to dominant intensity gradient

•• Weight gradients by Weight gradients by a a Gaussian Gaussian distribution (indicated by circle)distribution (indicated by circle)

•• Collect into histograms within each 4x4 region (gives 16Collect into histograms within each 4x4 region (gives 16

ACML 2009

Collect into histograms within each 4x4 region (gives 16 Collect into histograms within each 4x4 region (gives 16 
histograms)histograms)

•• Result: 128Result: 128--element vector normalized to have Euclidean norm 1element vector normalized to have Euclidean norm 1
3211/7/2009



Classify Bag of Patches
Method 1: Visual DictionariesMethod 1: Visual Dictionaries

“look up” each patch in 
di ti d t i tdictionary and count into a 
feature vector
feature vector is then given 
to the classifierto the classifier

11
22

33

0 0 0 0 0 0 . . . . . 011224 2 6 4 9 0 . . . . . 3

44

classifierclassifier
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Learn visual dictionary via 
clusteringclustering

Gaussian Mixture Model (k=100) with diagonal covariance ( ) g
matrices (EM, initialized  with K-means)

abdomenabdomen

nosenose

eyeseyes

centers ofcenters of
tergitestergites

legslegs

sides ofsides of

headhead
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Issues with Visual Dictionaries

UnsupervisedUnsupervised
Several efforts to construct discriminative 
dictionaries (Moosman et al 2006)dictionaries  (Moosman et al., 2006)

Lose information
128 element SIFT contains 1024 bits a bag of128-element SIFT contains 1024 bits, a bag of 
256 SIFTs contains 256K bits
Keyword histogram from 2700 elementKeyword histogram from 2700-element 
dictionary contains ~2700bits

11/7/2009 ACML 2009 35



Classify Bag of Patches
Method 2: Multiple Instance ClassifierMethod 2: Multiple-Instance Classifier

The classifierThe classifier 
predicts the class 
of the imageof the image 
separately from 
each patch

classifierclassifier

each patch
These vote to make 
the final decisionthe final decision

0 0 0 0 0 0 0 0 011

ŷŷ=7=7ŷŷ=2=2

112 8 1 3 0 0 6 4 2 Final predictionFinal prediction ŷ 2ŷ 2

ACML 2009 36

0 0 0 0 0 0 0 0 0

votesvotes

11112 8 1 3 0 0 6 4 2 Final prediction: Final prediction: ŷ=2ŷ=2
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Improved Multiple-Instance 
ClassificationClassification

Evidence Trees: Like decision trees, but store ,
the “evidence” in each leaf
Given an input, output the evidence

xx1212 > 0.6> 0.6
yesyes nono

xx109109 > 0.9> 0.9 xx6666 > 0.1> 0.1

100523 001232 000180 741030

nononono yesyesyesyes

ACML 2009 3711/7/2009



Classify Bag of Patches
Voted Evidence TreesVoted Evidence Trees

The classifierThe classifier 
predicts the class 
of the imageof the image 
separately from 
each patchclassifierclassifier each patch
These vote to make 
the final decision

100523 001232

the final decision

Final predictionFinal prediction ŷ 1ŷ 1

ACML 2009 38
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Theorem: Voting Evidence is Better 
than Voting Decisionsthan Voting Decisions

Intuition: When voting g
decisions, there are 
two opportunities to 
make a mistake:
1. Making the wrong 

decision at each leaf
2. Making the wrong2. Making the wrong 

decision when 
combining the votes

With evidence trees,With evidence trees, 
the first opportunity is 
avoided

γγ = margin of decision tree nodes= margin of decision tree nodes
ππ = fraction of non= fraction of non--noise patchesnoise patches

ACML 2009 3911/7/2009



Voting Decisions vs. 
Voting EvidenceVoting Evidence
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Final Classifier:
Stacked Random ForestsStacked Random Forests

1. Each patch is processed by a random forest of 
evidence trees

2. Evidence is summed and normalized to produce C
3. C is classified by a second-level boosted decision3. C is classified by a second level boosted decision 

tree ensemble

BagBag
ofof
t ht h

NormalizedNormalized
Count vector CCount vector CΣΣ

weightedweighted
votevote ŷŷ

patchespatches

ACML 2009 41

Bootstrap/Random ForestBootstrap/Random Forest
EnsembleEnsemble

Boosted EnsembleBoosted Ensemble

11/7/2009



Experimental Study
9 Taxa of Stoneflies9 Taxa of Stoneflies

C lC l IsoIsoCalCal

DorDor

IsoIso

MosMos

HesHes PtePte

SweSwe

YorYor
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STONEFLY9 Dataset

3826 images3826 images
773 specimens
9 l9 classes
Error estimation by 3-fold cross-validation

all images of a specimen belong to the same fold

11/7/2009 ACML 2009 43



Comparison of Methodsp
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Outline: Three Challengesg

Object Recognition for Arthropod CountingObject Recognition for Arthropod Counting

M lti l S i P di tiMultiple Species Prediction

Spatio-Temporal Optimization for Forest 
Management

ACML 2009 4511/7/2009



Plants in Victoria
[Arwen Lettkeman][Arwen Lettkeman]

5,605 plant 
species measured

Australian Data Sites
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Labels are Sparsep
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Many Species are Rare 
Many Species are CommonMany Species are Common
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Exploiting Multiple Speciesp g p p
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Multi-Label Classification
Multiple-output neural networks
Multiple-response decision trees

Zhang, H. 1998. Classification Trees for Multiple Binary Responses, JASA.
De’ath, G. 2002. Multivariate Regression Trees: A new technique for modeling species-
environment relationships.  Ecology.

Conditional random fields
McCallum, A., Ghamrawi, N. 2204. Collective multi-label text classification.  Tech Report.

Conditional topic models
Mimno D McCallum A 2008 Topic models conditioned on arbitrary features withMimno, D., McCallum, A. 2008. Topic models conditioned on arbitrary features with 
Dirichlet-multinomial regression.  UAI.

Stacking
Wolpert, D. 1992. Stacked generalization. Neural Networks

Reduction to multi class classification problemsReduction to multi-class classification problems
Read, J., Pfaringer, B., Holmes, G. 2008. Multi-label classification using ensembles of 
pruned sets. ICDM.
Tsoumakis, G., Vlahavas, I. 2007. Random k-label sets: an ensemble method for multilabel 
classification. ECML.

11/7/2009 ACML 2009 50



Multi-Task Learningg

Train one model for each species but useTrain one model for each species, but use 
the other species as auxiliary tasks
Train a joint model but choose separateTrain a joint model, but choose separate 
regularization constant and decision 
threshold for each speciesthreshold for each species

11/7/2009 ACML 2009 51



Status

No results yet!No results yet!
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Outline: Three Challengesg

Object Recognition for Arthropod CountingObject Recognition for Arthropod Counting

M lti l S i P di tiMultiple Species Prediction

Spatio-Temporal Optimization for Ecosystem 
Management

ACML 2009 5311/7/2009



Fires in the Western US

Natural behavior –
frequent low-intensity 
fires (every 15-20 years)

Fa ors Ponderosa PineFavors Ponderosa Pine 
forests

thick bark to survive low-
intensity fireintensity fire

Takes out weaker trees 
– “natural thinning”
Result: Open stands of 
big, valuable trees

11/7/2009 ACML 2009 54



Fire Suppression Policypp y

William Greeley USFS chief 1920-9:
"the conviction was burned into me that 
that fire prevention is the number 1 job of 
American foresters 
(Greeley, WB. 1951. Forests and men. NY: 
Doubleday.)

10:00 am policy:  Contain every wildfire 
by 10:00 am the day after it is reported  
regardless of cost.

11/7/2009 ACML 2009 55
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Result of this Policyy

Lodgepole pine becomes g p p
dominant tree

low economic value
vulnerable to pine barkvulnerable to pine bark 
beetle
dies and creates enormous 
fuel buildupsp

Fires become catastrophic
most vegetation killed
most soil organic mattermost soil organic matter 
destroyed
very long recovery time
big CO releasebig CO2 release

11/7/2009 ACML 2009 56



Adaptive Fire Treatmentp

Choose what fires to allow to burnChoose what fires to allow to burn
Perform “mechanical thinning” to reduce fuel 
loadsloads

11/7/2009 ACML 2009 57



Formulation as a 
Markov Decision ProcessMarkov Decision Process

States:
L d di id d i 100 i (MU )Landscape divided into 100 management units (MUs)
Each MU has two state variables:

Age: age of trees {0-9, 10-19, 20-29, 30-39, 40-49}
Fuel: fuel load {very-low, low, medium, high, very-high}
25100 states

Actions:
Every 10 years for each MU: {grow, cut, fuel}
3100 actions3 actions

State transition function:
Actions are deterministic, but then fire burns stochastically depending on 
states and spatial arrangement of states

R d F tiReward Function:
Value of timber cut and sold
Cost of fuel treatments

11/7/2009 ACML 2009 58



Status

We have no algorithms that can handle suchWe have no algorithms that can handle such 
large spatio-temporal MDPs

And there are typically 2000-3000 MUs
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PlacementPlacement Optimal Sensor PlacementOptimal Sensor PlacementSummary
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