Machine Learning and Ecosystem Informatics: Challenges and Opportunities

Tom Dietterich

School of Electrical Engineering and Computer Science Oregon State University <u>http://web.engr.oregonstate.edu/~tgd</u>

tgd@eecs.oregonstate.edu

Threats to the Biosphere

ACML 200

Pollution including Greenhouse Gases

Habitat Loss and Fragmentation

Over-Harvesting

Lack of Scientific Knowledge

- Our understanding of ecosystem structure and function is poor
 - Extremely complex interactions
 - Operate at many temporal and spatial scales
 - Hard to do controlled experiments
 - Impossible to observe critical past events
- Long record of policy failures: "Ecological Surprises"
 - Doak et al. Ecology 39(4), 2008.
 - "Surprises are common and extreme"

A Limiting Factor: Ecological Data

- Many ecological simulation models are based on little or no data
- Historical time series only extend back 100 years
- For almost all species, their location, population size, and interactions are unobserved

Transforming Ecosystem Science

Data Driven

- Past approaches
 - Naturalists: museum collections
 - Artificial ecosystems (test tubes; barrels)
 - Isotope tagging of fluxes
- Emerging approaches
 - In-situ sensor networks
 - Radio/RFID tagging and tracking of organisms
 - Radar ornithology
 - Remote sensing

Data Pipeline

Optimal Sensor Placement

Optimal Sensor Placement for Environmental Data Collection

Leskovec et al, KDD2007

- Objectives
 - maximize detection probability
 - improve model accuracy
 - improve causal understanding
 - improve policy effectiveness

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Sampling Bias: ebird.org

- Citizen science collected by amateur bird watchers
- Strong bias toward where people live
- Explicit models of sampling bias

Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier: Sample Selection Bias and Presence-only Distribution models: implications for background and pseudo-absence data. *Ecological Applications*, 19(1), 181-197. 2009.

Detectability

- Birds may be present but not detected by observer
- Coupled models of detectability and presence can be fit simultaneously

Royle, Dorazio (2008). *Hierarchical Modeling and Inference in Ecology: The Analysis of Data from Populations, Metapopulations and Communities.*

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification

Recognizing individuals Tracking individuals

The BugID Project: Rapid Throughput Arthropod Counting

- Arthropods are a powerful data source
 - Found in virtually all environments
 - streams, lakes, oceans, soils, birds, mammals
 - Easy to collect
 - Provide valuable information on ecosystem function
 - Consume the primary producers: bacteria, fungi, plants
 - Are consumed by more charismatic organisms: birds, mammals, fish
- Problem: Identification is timeconsuming and requires scarce expertise
- Solution: Combine robotics, computer vision, and machine learning to automate classification and population counting 11/7/2009 ACML 2009

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise Sampling Bias

Species classification Recognizing individuals Tracking individuals

Sensor failures Networking failures Recognition errors

Multi-Sensor Anomaly Detection [Dereszynski & Dietterich, submitted]

15

Optimal Sensor Placement

Detectability Errors / Noise **Sampling Bias**

Species classification Recognizing individuals Tracking individuals

Sensor failures **Networking failures Recognition errors**

Species distribution models Behavioral models Dynamical systems models

Species Distribution Models

- What are the environmental/biological requirements for a species?
- Given:
 - Environmental features (elevation, soil properties, weather) of a site
 - Presence, presence/absence, or abundance of K species

• Find:

- Probability that each of the K species will be found at new sites
- Extrapolation to global climate change scenarios

Plants in Victoria

[Arwen Lettkeman]

5,605 plant species measured at >113,000 sites

 83 environmental features

Source: Matt White, Arthur Rylah Institute

Data Pipeline

Optimal Sensor Placement

Detectability Errors / Noise **Sampling Bias**

Species classification Recognizing individuals Tracking individuals

Sensor failures **Networking failures Recognition errors**

Species distribution models **Behavioral models** Dynamical systems models

Large spatio-temporal MDPs **Optima that are robust** to model uncertainty

Robust Reserve Design

- Given:
 - Species distribution model
 - Budget
- Find:
 - Set of reserves to purchase that are good habitat for the species and fit within the budget
- Robust to uncertainties in the model (and climate, etc.)
 - Optimize the machine learning to be more accurate where land is cheaper to acquire?
 - Joint optimization of model fitting and optimization?

Predicted winter distribution of tree swallows (Fink, et al., unpublished)

Outline: Three Challenges for Machine Learning

- Object Recognition for Arthropod Counting
- Multiple Species Prediction

 Spatio-Temporal Optimization for Forest Management

Automated Rapid-Throughput Arthropod Population Counting

Goal:

- technician collects specimens in the field by various means
- robotic device automatically manipulates, photographs, classifies, and sorts the specimens

Two applications:

- stoneflies in freshwater streams
- soil mesofauna

Application 1: Stonefly populations in freshwater streams

- differentially sensitive to many pollutants
- live in rivers; reliable indicator of stream health
- difficult and expensive for people to classify (particularly to genus or species levels)
- hundreds of species

Application 2: Small arthropods in soil: "soil mesofauna"

Bdellozonium

BelbaA

CatoposurusA

EniochthoniusA

PtenothrixV

EntomobrgaTM

EpidamaeusA

EpilohmanniaA

Belbal

EpilohmanniaT HypochthoniusLA EpilohmanniaD

PtiliidA

QuadroppiaA

NothrusF

SiroVI 24

HypogastruraA

TomocerusA

11/7/2009

IsotomaA

onychiurusA

IsotomaVI

LiacarusRA

OppiellaA PeltenujalaA PhthiracarusA

PlatynothrusF

Computer Vision Challenges(1)

Highly-articulated objects with deformation

Computer Vision Challenges(2)

 Huge intra-class changes of appearances due to development and maturation

Computer Vision Challenges(3)

Small between-class differences

Calinueria

Doronueria

Machine Learning

State of the Art in Object Recognition

- "Bag of Keypoints" based on visual dictionaries
 - 85% correct

 New method: multiple-instance classification of bags of regions
 95% correct

Region-Based Approaches: Convert Image to Bag of Patches

- Handles
 - Occlusion
 - Rotation, translation
 - Scale (with scale-independent patch representation)
 - Partial out-of-plane orientation
 - Articulation / Pose
- Problem:
 - How to define the patches?
 - How to represent each patch?
 - How to classify a BAG of patches?

Defining the Patches: Interest Region Detectors

Hessian-Affine Detector

Kadir Entropy Detector

PCBR Detector

Representing the Patches: SIFT (Lowe, 1999)

Morph ellipse into a circle

11/7/2009

- Compute intensity gradient at each pixel in 16x16 region
- Rotate whole circle according to dominant intensity gradient
- Weight gradients by a Gaussian distribution (indicated by circle)
- Collect into histograms within each 4x4 region (gives 16 histograms)

Result: 128-element vector normalized to have Euclidean norm 1 ACML 2009

Classify Bag of Patches Method 1: Visual Dictionaries

- "look up" each patch in dictionary and count into a feature vector
- feature vector is then given to the classifier

Learn visual dictionary via clustering

 Gaussian Mixture Model (k=100) with diagonal covariance matrices (EM, initialized with K-means)

Issues with Visual Dictionaries

Unsupervised

- Several efforts to construct discriminative dictionaries (Moosman et al., 2006)
- Lose information
 - 128-element SIFT contains 1024 bits, a bag of 256 SIFTs contains 256K bits
 - Keyword histogram from 2700-element dictionary contains ~2700bits

Classify Bag of Patches Method 2: Multiple-Instance Classifier

- The classifier predicts the class of the image separately from each patch
- These vote to make the final decision

votes

Final prediction: ŷ=2

Improved Multiple-Instance Classification

- Evidence Trees: Like decision trees, but store the "evidence" in each leaf
- Given an input, output the evidence

Classify Bag of Patches Voted Evidence Trees

- The classifier predicts the class of the image separately from each patch
- These vote to make the final decision

votes

Final prediction: ŷ=1

Theorem: Voting Evidence is Better than Voting Decisions

- Intuition: When voting decisions, there are two opportunities to make a mistake:
 - 1. Making the wrong decision at each leaf
 - 2. Making the wrong decision when combining the votes
- With evidence trees, the first opportunity is avoided

 γ = margin of decision tree nodes π = fraction of non-noise patches

Voting Decisions vs. Voting Evidence

PASCAL 2006 VOC

Final Classifier: Stacked Random Forests

- 1. Each patch is processed by a *random forest* of evidence trees
- 2. Evidence is summed and normalized to produce C
- 3. C is classified by a second-level **boosted decision tree ensemble**

Experimental Study 9 Taxa of Stoneflies

STONEFLY9 Dataset

- 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
 all images of a specimen belong to the same fold

Comparison of Methods

Outline: Three Challenges

Object Recognition for Arthropod Counting

Multiple Species Prediction

 Spatio-Temporal Optimization for Forest Management

Plants in Victoria

[Arwen Lettkeman]

5,605 plant species measured at >113,000 sites

 83 environmental features

Source: Matt White, Arthur Rylah Institute

Labels are Sparse

11/7/2009

Many Species are Rare Many Species are Common

Species Index

Exploiting Multiple Species

- Experiment: Predict presence/absence of one species given
 - Environmental attributes
 - Presence/Absence of other species
 - Both

Multi-Label Classification

Multiple-output neural networks

Multiple-response decision trees

- Zhang, H. 1998. Classification Trees for Multiple Binary Responses, JASA.
- De'ath, G. 2002. Multivariate Regression Trees: A new technique for modeling speciesenvironment relationships. *Ecology.*

Conditional random fields

McCallum, A., Ghamrawi, N. 2204. Collective multi-label text classification. Tech Report.

Conditional topic models

 Mimno, D., McCallum, A. 2008. Topic models conditioned on arbitrary features with Dirichlet-multinomial regression. UAI.

Stacking

- Wolpert, D. 1992. Stacked generalization. Neural Networks
- Reduction to multi-class classification problems
 - Read, J., Pfaringer, B., Holmes, G. 2008. Multi-label classification using ensembles of pruned sets. *ICDM*.
 - Tsoumakis, G., Vlahavas, I. 2007. Random k-label sets: an ensemble method for multilabel classification. ECML.

Multi-Task Learning

- Train one model for each species, but use the other species as auxiliary tasks
- Train a joint model, but choose separate regularization constant and decision threshold for each species

Status

No results yet!

Outline: Three Challenges

Object Recognition for Arthropod Counting

Multiple Species Prediction

 Spatio-Temporal Optimization for Ecosystem Management

Fires in the Western US

- Natural behavior frequent low-intensity fires (every 15-20 years)
 - Favors Ponderosa Pine forests
 - thick bark to survive lowintensity fire
 - Takes out weaker trees
 "natural thinning"
 - Result: Open stands of big, valuable trees

Fire Suppression Policy

www.mtmultipleuse.org/images/smokey.jpg 11/7/2009

 William Greeley USFS chief 1920-9:
 "the conviction was burned into me that that fire prevention is the number 1 job of American foresters

(Greeley, WB. 1951. *Forests and men*. NY: Doubleday.)

 10:00 am policy: Contain every wildfire by 10:00 am the day after it is reported regardless of cost.

Result of this Policy

- Lodgepole pine becomes dominant tree
 - low economic value
 - vulnerable to pine bark beetle
 - dies and creates enormous fuel buildups

Fires become catastrophic

- most vegetation killed
- most soil organic matter destroyed
- very long recovery time
- big CO₂ release

Adaptive Fire Treatment

- Choose what fires to allow to burn
 Derform "reaches is all this piner" to read
- Perform "mechanical thinning" to reduce fuel loads

Formulation as a Markov Decision Process

States:

- Landscape divided into 100 management units (MUs)
- Each MU has two state variables:
 - Age: age of trees {0-9, 10-19, 20-29, 30-39, 40-49}
 - Fuel: fuel load {very-low, low, medium, high, very-high}
 - 25¹⁰⁰ states
- Actions:
 - Every 10 years for each MU: {grow, cut, fuel}
 - 3¹⁰⁰ actions
- State transition function:
 - Actions are deterministic, but then fire burns stochastically depending on states and spatial arrangement of states
- Reward Function:
 - Value of timber cut and sold
 - Cost of fuel treatments

 We have no algorithms that can handle such large spatio-temporal MDPs

And there are typically 2000-3000 MUs

Acknowledgements

- Grant Support: US National Science Foundation, US Forest Service
- Species Distribution Models
 - Students: A. Lettkeman, P. Wilkins
 - Postdocs: R. Hutchinson
 - Faculty: W-K. Wong, T. Dietterich
- BugID:
 - Students: N. Larios, H. Deng, W. Zhang, N. Payet, M. Sarpola, C. Fagan, J. Yuen, S. Ruiz Correa
 - Postdocs: G. Martínez-Muñoz
 - Faculty: R. Paasch, A. Moldenke, D. A. Lytle, E. Mortensen, L. G. Shapiro, S. Todorovic, T. Dietterich
- Fire Management
 - Students: A. Gagnon, R. Houtman, J. Mark
 - Faculty: C. Montgomery, T. Dietterich, W-K. Wong

11/7/2009

Questions?