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Arthropod Population Counts:
An Important Form of Ecological Data

 Arthropods are a powerful data 
source
 Found in virtually all environments

 streams, lakes, oceans, soils, birds, 
mammals

 Easy to collect
 Provide valuable information on 

ecosystem function
 Consume the primary producers: 

bacteria, fungi, plants
 Are consumed by more charismatic 

organisms: birds, mammals, fish
 Problem: Identification is time-

consuming and requires scarce 
expertise

 Solution: Combine robotics, 
computer vision, and machine 
learning to automate classification 
and population counting
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Automated Rapid-Throughput 
Arthropod Population Counting

 Goal: 
 technician collects specimens in the field by various 

means
 robotic device automatically manipulates, photographs, 

classifies, and sorts the specimens

 Two applications:
 EPTs in freshwater streams
 Soil mesofauna
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Application 1: 
EPT Larvae
 EPTs: Mayflies, Stoneflies, 

Caddis flies (Ephemeroptera, 
Plecoptera, Tricoptera)

 Live in freshwater streams
 Population surveys are used 

for
 assessing stream health
 measuring success of stream 

restoration
 understanding basic stream 

ecology
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Application 2: Small arthropods 
in soil: “soil mesofauna”

AchipteriaA BdellozoniumI BelbaA BelbaI CatoposurusA EniochthoniusA

EntomobrgaTM EpidamaeusA EpilohmanniaA EpilohmanniaD EpilohmanniaT HypochthoniusLA

HypogastruraA

IsotomaA
IsotomaVI LiacarusRA MetrioppiaA

NothrusF

onychiurusA
OppiellaA PeltenuialaA PhthiracarusA

PlatynothrusF
PlatynothrusI

PtenothrixV

PtiliidA

QuadroppiaA

SiroVITomocerusA
51/25/2011 Caltech



Previous Results:
9 Taxa of Stoneflies

Cal

Dor

Hes

Iso

Mos

Pte

Swe

Yor

Zap
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STONEFLY9 Dataset

 3826 images
 773 specimens
 9 classes
 Error estimation by 3-fold cross-validation

 all images of a specimen belong to the same fold
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Image Capture Apparatus

Stonefly Imaging

Soil Mesofauna
Imaging
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Computer Vision Challenges(1)

 Highly-articulated objects with deformation
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Computer Vision Challenges(2)

 Huge intra-class changes of appearance due to 
development and maturation

tergites wingsbecome
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Computer Vision Challenges(3)

 Small between-class differences

Calinueria Doronueria
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Machine Learning

Training 
Examples

Learning
Algorithm Classifier

New 
Examples

Doroneuria

Calineuria

Calineuria

Doroneuria

Doroneuria
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Region-Based Approaches:
Convert Image to Bag of Patches

 Handles
 Occlusion
 Rotation, translation
 Scale (with scale-independent 

patch representation)
 Partial out-of-plane orientation
 Articulation / Pose

 Problem:
 How to define the patches?
 How to represent each patch?
 How to classify a BAG of 

patches?
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Defining the Patches: 
Interest Region Detectors

Hessian-Affine Detector Kadir Entropy Detector PCBR Detector
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Representing the Patches:
SIFT (Lowe, 1999)

• Morph ellipse into a circle

• Compute intensity gradient at each pixel in 16x16 region

• Rotate whole circle according to dominant intensity gradient

• Weight gradients by a gaussian distribution (indicated by circle)

• Collect into histograms within each 4x4 region (gives 16 
histograms)

• Result: 128-element vector normalized to have Euclidean norm 1

(Low
e, 1999)
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Classify Bag of Patches
Method 1: Visual Dictionaries

 “look up” each patch in 
dictionary and count into a 
feature vector

 feature vector is then given 
to the classifier

1
2

3
4

100

0 0 0 0 0 0 . . . . . 0124 2 6 4 9 0 . . . . . 3

classifier

ŷ=2
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Learn Visual Dictionary by 
Clustering

 Gaussian Mixture Model (k=100) with diagonal covariance 
matrices (EM, initialized  with K-means)

abdomen

nose

eyes

centers of
tergites

sides of
tergites

head
legs

100 clusters
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Issues with Visual Dictionaries

 Information is lost
 Unsupervised

 Several efforts to construct discriminative 
dictionaries  (Moosman et al., 2006)

 Do not scale to many classes
 3 detectors  9 classes  100 keywords = 2700 

features
 Some efforts to learn shared / universal 

dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)
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Boosting Visual Dictionaries

For each image , assign weight ݅
For 

For each SIFT ݆݅, assign it weight ݅
Apply weighted k-means clustering to     
construct a dictionary ௧
Train classifier ௧ on the training images 
encoded using ௧
Update the image weights according to the 
Adaboost formula

Final classifier is weighted vote of the ௧
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Why is this a good idea?

 If ௧ is not adequate for correctly classifying 
some images, then the next dictionary ௧ାଵ
will allocate more representational resources 
to those images
 This will lead to reduced quantization error 

for the SIFTs in those images
 This will allow the next classifier ௧ାଵ to do a 

better job
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Additional Details

 Feature vectors are reweighted using TF-IDF 
weights

 Classifier in each iteration: 50-fold bagged C4.5 
decision trees (no pruning)

 30 boosting iterations
 Each iteration learns 100 codewords per 

detector (300 codewords total)
 Final classifier is using a dictionary of 9000 

codewords (but partitioned into 300-word parts)
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classifier

Classify Bag of Patches
Method 2: Multiple-Instance Classifier

 The classifier 
predicts the class 
of the image 
separately using 
each patch
 These vote to make 

the final decision

0 0 0 0 0 0 0 0 0

votes

1

ŷ=7ŷ=2

12 8 1 3 0 0 6 4 2 Final prediction: ŷ ൌ 2
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Improved Multiple-Instance 
Classification

 Evidence Trees: Like decision trees, but store 
the “evidence” in each leaf

 Given an input, output the evidence

12ݔ ൐ 0.6

109ݔ ൐ 0.9 66ݔ ൐ 0.1

100523 001232 000180 741030

yes no

nono yesyes
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classifier

Classify Bag of Patches
Voted Evidence Trees

 The classifier 
predicts the class 
of the image 
separately from 
each patch
 These vote to make 

the final decision

0 0 0 0 0

votes

Final prediction: ŷ ൌ 1

100523

23 5 0 0 1

001232

25 8 12 0 187 14 34 6 61

241/25/2011 Caltech



Claim: Combining Evidence is better 
than Voting Decisions or Probabilities

54 55 3 1 6 2 2 2 12 5 30 20

72 62 35 23

.48 .49 .03 .01

0 1 0 0 1 0 0 0 0 0 1 0

.50 .17 .17 .17 .18 .07 .30 .45

1.16 0.73 0.50 0.63 1 1 1 0

.38 .32 .18 .12 .38 .24 .17 .21 .33 .33 .33 .00

Evidence 
Counts

Class 
Probabilities

Evidence Counts Class Probabilities Decisions

Decisions
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Mathematical Model

 Parameters:
 training examples in each leaf
 trees in the ensemble
 regions detected in the test image
 : probabilistic margin of each leaf 

 one class has probability 1/2 ൅ 
 one class has probability 1/2 െ 
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Proof

 Let  2 2

 Voting decisions. Lower-bound binomial tail 
by largest term:

௩ௗ
ଵ
ଶ

ವ
మ

 Voting evidence. Upper-bound binomial tail 
via Chernoff bound: 

௩#
ସ
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Result

 If ଵ
ଶ

ଶ then voting evidence 
is better than voting decisions: ௩# ௩ௗ

 Exact computation for reasonable values 
(e.g., =21, =301) verifies this
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Theorem: Voting Evidence is Better 
than Voting Decisions

 Intuition: When voting 
decisions, there are 
two opportunities to 
make a mistake:
1. Making the wrong 

decision at each leaf
2. Making the wrong 

decision when 
combining the votes

 With evidence trees, 
the first opportunity is 
avoided

 = margin of decision tree nodes
 = fraction of non-noise patches
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Final Classifier:
Stacked Evidence Tree Random Forest

1. Each patch is processed by a random forest of 
evidence trees

2. Evidence is summed and normalized to produce ܥ
3. ܥ is classified by a second-level boosted decision tree 

ensemble

Bag
of

patches

Normalized
Count vector ܥ

weighted
vote ŷ

Bootstrap/Random Forest
Ensemble

Boosted Ensemble
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Additional Details

 Train a separate bootstrapped random forest for 
each of three detectors
 Harris-Affine
 Kadir
 PCBR

 Concatenate the resulting feature vectors prior 
to stacking

 Adaboost: 100 C4.5 decision trees
 Can also grow random forests based on other 

features (e.g., shape)
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Experimental Study
9 Taxa of Stoneflies

Cal

Dor

Hes

Iso

Mos

Pte

Swe

Yor

Zap
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STONEFLY9 Dataset

 3826 images
 773 specimens
 9 classes
 Error estimation by 3-fold cross-validation

 all images of a specimen belong to the same fold
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Results
Configuration Error Rate
Single GMM Dictionary + Boosted 
Decision Trees

16.1%

30-fold Boosted Dictionaries 4.9%
Stacked Evidence Trees 5.6%
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Evidence Tree Confusion Matrix

Cal Dor Hes Iso Mos Pte Swe Yor Zap
Cal 443 17 3 4 0 0 20 0 5
Dor 19 489 1 10 1 0 7 0 5
Hes 6 5 460 5 0 1 12 0 2
Iso 3 6 3 456 0 2 27 0 3

Mos 0 0 0 1 107 0 3 0 8
Pte 0 3 0 0 0 203 6 5 6

Swe 4 10 2 23 0 1 433 1 5
Yor 1 1 1 1 1 3 0 481 3
Zap 0 0 2 8 4 9 3 4 468

Tr
ue

 S
pe

ci
es

Predicted Species
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Most Discriminative Regions
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Generic Object Recognition:
PASCAL 2006 VOC

AUC Rank:
5th out of 21

QMUL_LPSCH

XRCE
QMUL_HSLS

INRIA_Marzszalek

INRIA_Nowak

Ours

INRIA_Moosmann
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Comparison: Voting Evidence 
vs. Voting Decisions
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 29 taxa of stoneflies 
(Plecoptera), caddisflies
(Trichoptera), and 
mayflies 
(Ephemeroptera)

 4722 images
 1-4 images per 

specimen
 automatically 

segmented, rotated, and 
aligned to face left

 3 folds (all images per 
specimen in same fold)

EPT 29 Data Set



Method 3: Stacked Spatial Pyramid
Natalia Larios

Larios, N., Lin, J., Zhang, M., Lytle, D., Moldenke, A., Shapiro, L., Dietterich, 
T. (2011). Stacked Spatial-Pyramid Kernel: An Object-Class Recognition 
Method to Combine Scores from Random Trees. WACV 2011.
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Experiment Details
 Detectors/Descriptors

 HOC: Dense 16x16 pixels with 8 pixel overlap
 BAS: salient points on perimeter, beam angle statistics + SIFT at each 

salient point
 SIFT: DoG detector + SIFT descriptor

 Random Forest classifiers (RT)
 150 trees with max depth 25
 trained to predict class of image from single patch descriptor (HOG, BAS, or 

SIFT)
 score every patch, sum and normalize to obtain class probabilities
 based on Evidence Trees but with normalization

 Stacked classifier
 3-level pyramid (16, 4, 1)
 intersection kernel
 trained via “out of bag” instances
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Results
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Confusion Matrix
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Challenge Problem: Detecting and 
Rejecting “Novel” Species

 Can the system detect 
that a specimen does 
not belong to any of 
the training classes?

 Stonefly 9 with 10 
“Distractor Classes”

 P2: Equal-Error Rate 
21.3%
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Novelty Detection Methods
 Density estimation (applied to BoW histograms)

 Projection Pursuit Density Estimation (Friedman, Stuetzle & 
Schroeder, 1984)

 Boosted Density Estimation (Rosset & Segal, 2002) 
 PCA + GMM
 Manifold Embedding + GMM
 Mixtures of Factor Analyzers

 Density ratio estimation
 uLSIF (Hido et al, 2010)

 Reconstruction error methods
 PCA + reconstruction
 Sparse coding + reconstruction error

 One-class SVM
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Preliminary Results
Method Equal Error Rate (accept/reject)
Supervised classification lower bound ~3.5%
PCA + GMM 16.3%
Gaussian Naïve Bayes + tricks 21.3%
Boosted GMMs Numerical problems
PCA + reconstruction error 29.2%
Sparse Coding + reconstruction error 40.0%
uLSIF >38.0%
One-class SVM >34.6%
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Next Steps

 EPTs
 EPT52 data set
 Field studies using EPA data
 Comprehensive rejection experiments

 Soil Mesofauna
 Samples collected; awaiting photography

 Other Applications
 Freshwater Zooplankton
 Flies
 Moths
 Mosquitoes
 Soil Mesofauna
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Evidence Trees:
A New Machine Learning Paradigm

 General Principle:
 Store evidence in the leaves of random forest 

trees
 Combine evidence via non-parametric method to 

make final decision
 The purpose of the tree is NOT to make a 

decision but to identify the evidence relevant 
to making the decision
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Another Example: Hough Forests
[Gall & Lempitsky, CVPR 2009]

 Task: Object Detection (aka Localization)
 Find all instances of object class in image

+
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Training Examples

 At each interest point, compute
(dx, dy, class)

+
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Evidence Trees

 Training criterion
 all examples in a leaf should

 belong to the same class
 have similar (dx,dy) offsets  (2-D variance)

 Note: All training images are scaled to a 
fixed scale based on the size of the car
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Predicting New Images

 For each interest region (x,y) in test image
 Drop SIFT vector through each tree 
 For each (dx, dy, k) stored in leaf 

 Predict that an object belonging to class k is located at 
(x + dx, y + dy)

 Apply mode-finding algorithm (e.g., mean 
shift) to find peaks in the distribution of 
predictions
 Repeat at multiple scales; choose best scale; 

predict a car at the top N peaks
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Example for Pedestrian Detection

Gall & Lempitski, CVPR 2009
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Tree Splitting

 Gall & Lempitski:
 alternate between splitting on class information 

gain and splitting on variance of (dx,dy)
 Our work (Martinez & Dietterich)

 split to maximize information gain:
I(split ; dx,dy,class)
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Results: UIUC Cars (multiple)
Method Equal Error Rate
Mutch & Lowe (CVPR 06) 90.6%
Lampert, et al. (CVPR 08) 98.6%
Gall & Lempitsky (CVPR 09) 98.6%
Stacked Evidence Trees (unpublished) 98.5%
Stacked Decision Trees (unpublished) 89.5%

We can probably improve the results by using the re-centering 
technique employed by Gall & Lempitsky
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Conclusions

 Computer vision and machine learning methods can 
achieve high accuracy classification of stoneflies
 two methods scoring ~5% error on 9 classes

 Similar techniques achieve ~12% error on 29 classes 
of EPTs

 For computer vision problems involving multiple 
detections per image, voting the evidence is more 
accurate than voting class probabilities or voting 
decisions

 Our methods are competitive on generic object 
recognition problems

 Major challenge: novel class detection / rejection
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