# Boosted Evidence Trees for Object Recognition with Applications to Arthropod Biodiversity Studies

Students: N. Larios, H. Deng, W. Zhang, N. Payet, M. Sarpola, C. Fagan, C. Baumberger, J. Lin, J. Yuen, S. Ruiz Correa

Postdoc: G. Martinez

Faculty: R. Paasch, A. Moldenke, D. A. Lytle, E. Mortensen, L. G. Shapiro, S. Todorovic, T. G. Dietterich

Oregon State University
University of Washington

### **Arthropod Population Counts:** An Important Form of Ecological Data

- Arthropods are a powerful data source
  - Found in virtually all environments
    - streams, lakes, oceans, soils, birds, mammals
  - Easy to collect
  - Provide valuable information on ecosystem function
    - Consume the primary producers: bacteria, fungi, plants
    - Are consumed by more charismatic organisms: birds, mammals, fish
- Problem: Identification is timeconsuming and requires scarce expertise
- Solution: Combine robotics, computer vision, and machine learning to automate classification and population counting









# Automated Rapid-Throughput Arthropod Population Counting

#### Goal:

- technician collects specimens in the field by various means
- robotic device automatically manipulates, photographs, classifies, and sorts the specimens

#### Two applications:

- EPTs in freshwater streams
- Soil mesofauna

# Application 1: EPT Larvae

- EPTs: Mayflies, Stoneflies, Caddis flies (Ephemeroptera, Plecoptera, Tricoptera)
- Live in freshwater streams
- Population surveys are used for
  - assessing stream health
  - measuring success of stream restoration
  - understanding basic stream ecology

















### Application 2: Small arthropods in soil: "soil mesofauna"



1/25/2011

# Previous Results: 9 Taxa of Stoneflies



#### STONEFLY9 Dataset

- ◆ 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
  - all images of a specimen belong to the same fold

## Image Capture Apparatus



Stonefly Imaging



Soil Mesofauna Imaging

## Computer Vision Challenges(1)

Highly-articulated objects with deformation





## Computer Vision Challenges(2)

 Huge intra-class changes of appearance due to development and maturation



# Computer Vision Challenges(3)

Small between-class differences





Calinueria

Doronueria

## Machine Learning



### Region-Based Approaches: Convert Image to Bag of Patches





#### Handles

- Occlusion
- Rotation, translation
- Scale (with scale-independent patch representation)
- Partial out-of-plane orientation
- Articulation / Pose

#### Problem:

- How to define the patches?
- How to represent each patch?
- How to classify a BAG of patches?

### Defining the Patches: Interest Region Detectors



Hessian-Affine Detector



Kadir Entropy Detector



**PCBR Detector** 

# Representing the Patches: SIFT (Lowe, 1999)



- Morph ellipse into a circle
- Compute intensity gradient at each pixel in 16x16 region
- Rotate whole circle according to dominant intensity gradient
- Weight gradients by a gaussian distribution (indicated by circle)
- Collect into histograms within each 4x4 region (gives 16 histograms)
- Result: 128-element vector normalized to have Euclidean norm 1

#### Classify Bag of Patches Method 1: Visual Dictionaries







 feature vector is then given to the classifier





### Learn Visual Dictionary by Clustering

Gaussian Mixture Model (k=100) with diagonal covariance matrices (EM, initialized with K-means)





1/25/2011

#### **Issues with Visual Dictionaries**

- Information is lost
- Unsupervised
  - Several efforts to construct discriminative dictionaries (Moosman et al., 2006)
- Do not scale to many classes
  - 3 detectors × 9 classes × 100 keywords = 2700 features
  - Some efforts to learn shared / universal dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)

### **Boosting Visual Dictionaries**

```
For each image i, assign weight w_i = 1
```

For t = 1, ..., T

For each SIFT  $s_{ij}$ , assign it weight  $w_i$ 

Apply weighted k-means clustering to construct a dictionary  $D_t$ 

Train classifier  $F_t$  on the training images encoded using  $D_t$ 

Update the image weights according to the Adaboost formula

Final classifier is weighted vote of the  $F_t$ 

## Why is this a good idea?

- If  $D_t$  is not adequate for correctly classifying some images, then the next dictionary  $D_{t+1}$  will allocate more representational resources to those images
- This will lead to reduced quantization error for the SIFTs in those images
- This will allow the next classifier F<sub>t+1</sub> to do a better job

#### **Additional Details**

- Feature vectors are reweighted using TF-IDF weights
- Classifier in each iteration: 50-fold bagged C4.5 decision trees (no pruning)
- 30 boosting iterations
- Each iteration learns 100 codewords per detector (300 codewords total)
- Final classifier is using a dictionary of 9000 codewords (but partitioned into 300-word parts)

#### Classify Bag of Patches Method 2: Multiple-Instance Classifier





- The classifier
   predicts the class
   of the image
   separately using
   each patch
- These vote to make the final decision



Final prediction:  $\hat{y} = 2$ 

votes

# Improved Multiple-Instance Classification

- Evidence Trees: Like decision trees, but store the "evidence" in each leaf
- Given an input, output the evidence



# Classify Bag of Patches Voted Evidence Trees





- The classifier
   predicts the class
   of the image
   separately from
   each patch
- These vote to make the final decision



Final prediction:  $\hat{y} = 1$ 

votes

# Claim: Combining Evidence is better than Voting Decisions or Probabilities



#### **Mathematical Model**

#### Parameters:

- C training examples in each leaf
- L trees in the ensemble
- D regions detected in the test image
- γ: probabilistic margin of each leaf
  - one class has probability  $1/2 + \gamma$
  - one class has probability  $1/2 \gamma$

#### **Proof**

- Let  $\beta = 2 \gamma^2 \pi^2$
- Voting decisions. Lower-bound binomial tail by largest term:

$$\epsilon_{vd} \ge \left(\frac{1}{2} - \beta\right)^{\frac{D}{2}}$$

 Voting evidence. Upper-bound binomial tail via Chernoff bound:

$$\epsilon_{v\#} \leq \exp[-8CDL\gamma^4]$$

#### Result

• If  $C > -\log(\frac{1}{2} - \beta)/4\beta^2$  then voting evidence is better than voting decisions:  $\epsilon_{v\#} < \epsilon_{vd}$ 

 ◆ Exact computation for reasonable values (e.g., C=21, D=301) verifies this

# Theorem: Voting Evidence is Better than Voting Decisions

- Intuition: When voting decisions, there are two opportunities to make a mistake:
  - Making the wrong decision at each leaf
  - 2. Making the wrong decision when combining the votes
- With evidence trees, the first opportunity is avoided



 $\gamma$  = margin of decision tree nodes  $\pi$  = fraction of non-noise patches

# Final Classifier: Stacked Evidence Tree Random Forest

- Each patch is processed by a random forest of evidence trees
- 2. Evidence is summed and normalized to produce C
- C is classified by a second-level boosted decision tree ensemble



#### **Additional Details**

- Train a separate bootstrapped random forest for each of three detectors
  - Harris-Affine
  - Kadir
  - PCBR
- Concatenate the resulting feature vectors prior to stacking
- Adaboost: 100 C4.5 decision trees
- Can also grow random forests based on other features (e.g., shape)

### **Experimental Study** 9 Taxa of Stoneflies



Caltech

#### STONEFLY9 Dataset

- ◆ 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
  - all images of a specimen belong to the same fold

### Results

| Configuration                                     | Error Rate |
|---------------------------------------------------|------------|
| Single GMM Dictionary + Boosted<br>Decision Trees | 16.1%      |
| 30-fold Boosted Dictionaries                      | 4.9%       |
| Stacked Evidence Trees                            | 5.6%       |

### **Evidence Tree Confusion Matrix**

#### **Predicted Species**

True Species

|     | Cal | Dor | Hes | Iso | Mos | Pte | Swe | Yor | Zap |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Cal | 443 | 17  | 3   | 4   | 0   | 0   | 20  | 0   | 5   |
| Dor | 19  | 489 | 1   | 10  | 1   | 0   | 7   | 0   | 5   |
| Hes | 6   | 5   | 460 | 5   | 0   | 1   | 12  | 0   | 2   |
| Iso | 3   | 6   | 3   | 456 | 0   | 2   | 27  | 0   | 3   |
| Mos | 0   | 0   | 0   | 1   | 107 | 0   | 3   | 0   | 8   |
| Pte | 0   | 3   | 0   | 0   | 0   | 203 | 6   | 5   | 6   |
| Swe | 4   | 10  | 2   | 23  | 0   | 1   | 433 | 1   | 5   |
| Yor | 1   | 1   | 1   | 1   | 1   | 3   | 0   | 481 | 3   |
| Zap | 0   | 0   | 2   | 8   | 4   | 9   | 3   | 4   | 468 |

# Most Discriminative Regions



# Generic Object Recognition: PASCAL 2006 VOC



AUC Rank: 5th out of 21

# Comparison: Voting Evidence vs. Voting Decisions



#### EPT 29 Data Set

- 29 taxa of stoneflies (Plecoptera), caddisflies (Trichoptera), and mayflies (Ephemeroptera)
- 4722 images
- 1-4 images per specimen
- automatically segmented, rotated, and aligned to face left
- 3 folds (all images per specimen in same fold)



#### Method 3: Stacked Spatial Pyramid

Natalia Larios



Larios, N., Lin, J., Zhang, M., Lytle, D., Moldenke, A., Shapiro, L., Dietterich, T. (2011). Stacked Spatial-Pyramid Kernel: An Object-Class Recognition Method to Combine Scores from Random Trees. WACV 2011.

### **Experiment Details**

- Detectors/Descriptors
  - HOC: Dense 16x16 pixels with 8 pixel overlap
  - BAS: salient points on perimeter, beam angle statistics + SIFT at each salient point
  - SIFT: DoG detector + SIFT descriptor
- Random Forest classifiers (RT)
  - 150 trees with max depth 25
  - trained to predict class of image from single patch descriptor (HOG, BAS, or SIFT)
  - score every patch, sum and normalize to obtain class probabilities
  - based on Evidence Trees but with normalization
- Stacked classifier
  - 3-level pyramid (16, 4, 1)
  - intersection kernel
  - trained via "out of bag" instances

#### Results



#### **Confusion Matrix**



# Challenge Problem: Detecting and Rejecting "Novel" Species

- Can the system detect that a specimen does not belong to any of the training classes?
- Stonefly 9 with 10 "Distractor Classes"
- P2: Equal-Error Rate 21.3%



## **Novelty Detection Methods**

- Density estimation (applied to BoW histograms)
  - Projection Pursuit Density Estimation (Friedman, Stuetzle & Schroeder, 1984)
  - Boosted Density Estimation (Rosset & Segal, 2002)
  - PCA + GMM
  - Manifold Embedding + GMM
  - Mixtures of Factor Analyzers
- Density ratio estimation
  - uLSIF (Hido et al, 2010)
- Reconstruction error methods
  - PCA + reconstruction
  - Sparse coding + reconstruction error
- One-class SVM

# **Preliminary Results**

| Method                                | Equal Error Rate (accept/reject) |
|---------------------------------------|----------------------------------|
| Supervised classification lower bound | ~3.5%                            |
| PCA + GMM                             | 16.3%                            |
| Gaussian Naïve Bayes + tricks         | 21.3%                            |
| Boosted GMMs                          | Numerical problems               |
| PCA + reconstruction error            | 29.2%                            |
| Sparse Coding + reconstruction error  | 40.0%                            |
| uLSIF                                 | >38.0%                           |
| One-class SVM                         | >34.6%                           |

### **Next Steps**

- EPTs
  - EPT52 data set
  - Field studies using EPA data
  - Comprehensive rejection experiments
- Soil Mesofauna
  - Samples collected; awaiting photography
- Other Applications
  - Freshwater Zooplankton
  - Flies
  - Moths
  - Mosquitoes
  - Soil Mesofauna

#### Evidence Trees: A New Machine Learning Paradigm

- General Principle:
  - Store evidence in the leaves of random forest trees
  - Combine evidence via non-parametric method to make final decision
- The purpose of the tree is NOT to make a decision but to identify the evidence relevant to making the decision

# Another Example: Hough Forests [Gall & Lempitsky, CVPR 2009]

- Task: Object Detection (aka Localization)
  - Find all instances of object class in image



#### Training Examples

 At each interest point, compute (dx, dy, class)



#### **Evidence Trees**

- Training criterion
  - all examples in a leaf should
    - belong to the same class
    - have similar (dx,dy) offsets (2-D variance)
- Note: All training images are scaled to a fixed scale based on the size of the car

### Predicting New Images

- For each interest region (x,y) in test image
  - Drop SIFT vector through each tree
  - For each (dx, dy, k) stored in leaf
    - Predict that an object belonging to class k is located at (x + dx, y + dy)
- Apply mode-finding algorithm (e.g., mean shift) to find peaks in the distribution of predictions
- Repeat at multiple scales; choose best scale; predict a car at the top N peaks

1/25/2011 Caltech 52

#### Example for Pedestrian Detection



(a) – Original image with three sample patches emphasized



(b) – Votes assigned to these patches by the Hough forest



(c) – Hough image aggregating votes from all patches

Gall & Lempitski, CVPR 2009

## Tree Splitting

- Gall & Lempitski:
  - alternate between splitting on class information gain and splitting on variance of (dx,dy)
- Our work (Martinez & Dietterich)
  - split to maximize information gain:l(split; dx,dy,class)

# Results: UIUC Cars (multiple)

| Method                               | <b>Equal Error Rate</b> |
|--------------------------------------|-------------------------|
| Mutch & Lowe (CVPR 06)               | 90.6%                   |
| Lampert, et al. (CVPR 08)            | 98.6%                   |
| Gall & Lempitsky (CVPR 09)           | 98.6%                   |
| Stacked Evidence Trees (unpublished) | 98.5%                   |
| Stacked Decision Trees (unpublished) | 89.5%                   |

We can probably improve the results by using the re-centering technique employed by Gall & Lempitsky

#### Conclusions

- Computer vision and machine learning methods can achieve high accuracy classification of stoneflies
  - two methods scoring ~5% error on 9 classes
- Similar techniques achieve ~12% error on 29 classes of EPTs
- For computer vision problems involving multiple detections per image, voting the evidence is more accurate than voting class probabilities or voting decisions
- Our methods are competitive on generic object recognition problems
- Major challenge: novel class detection / rejection

### Acknowledgements

 Grant Support: US National Science Foundation