Boosted Evidence Trees for Object Recognition with Applications to Arthropod Biodiversity Studies

Students: N. Larios, H. Deng, W. Zhang, N. Payet, M. Sarpola, C. Fagan, C. Baumberger, J. Lin, J. Yuen, S. Ruiz Correa

Postdoc: G. Martinez

Faculty: R. Paasch, A. Moldenke, D. A. Lytle, E. Mortensen, L. G. Shapiro, S. Todorovic, T. G. Dietterich

Oregon State University
University of Washington

Arthropod Population Counts: An Important Form of Ecological Data

- Arthropods are a powerful data source
 - Found in virtually all environments
 - streams, lakes, oceans, soils, birds, mammals
 - Easy to collect
 - Provide valuable information on ecosystem function
 - Consume the primary producers: bacteria, fungi, plants
 - Are consumed by more charismatic organisms: birds, mammals, fish
- Problem: Identification is timeconsuming and requires scarce expertise
- Solution: Combine robotics, computer vision, and machine learning to automate classification and population counting

Automated Rapid-Throughput Arthropod Population Counting

Goal:

- technician collects specimens in the field by various means
- robotic device automatically manipulates, photographs, classifies, and sorts the specimens

Two applications:

- EPTs in freshwater streams
- Soil mesofauna

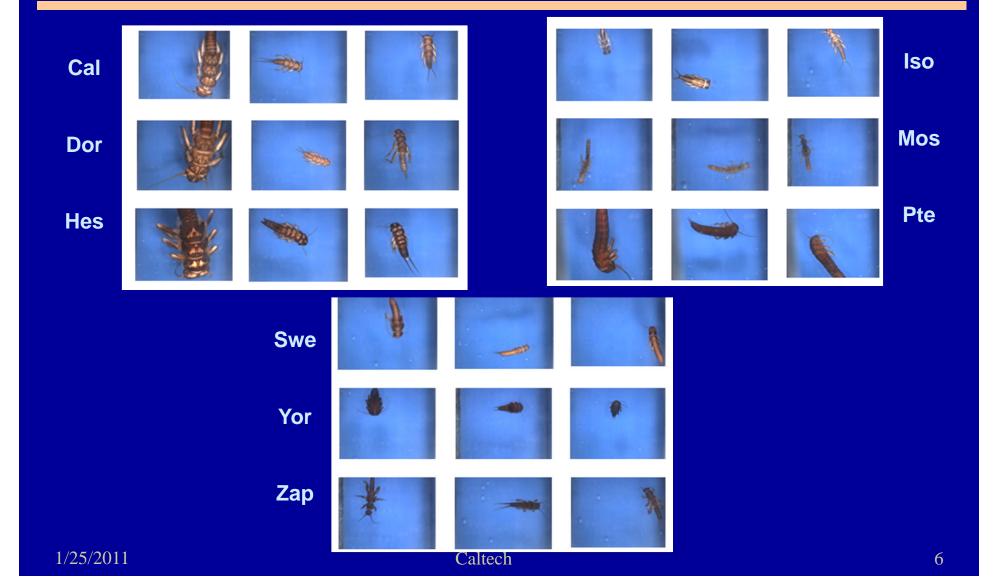
Application 1: EPT Larvae

- EPTs: Mayflies, Stoneflies, Caddis flies (Ephemeroptera, Plecoptera, Tricoptera)
- Live in freshwater streams
- Population surveys are used for
 - assessing stream health
 - measuring success of stream restoration
 - understanding basic stream ecology

Application 2: Small arthropods in soil: "soil mesofauna"

1/25/2011

Previous Results: 9 Taxa of Stoneflies



STONEFLY9 Dataset

- ◆ 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
 - all images of a specimen belong to the same fold

Image Capture Apparatus

Stonefly Imaging

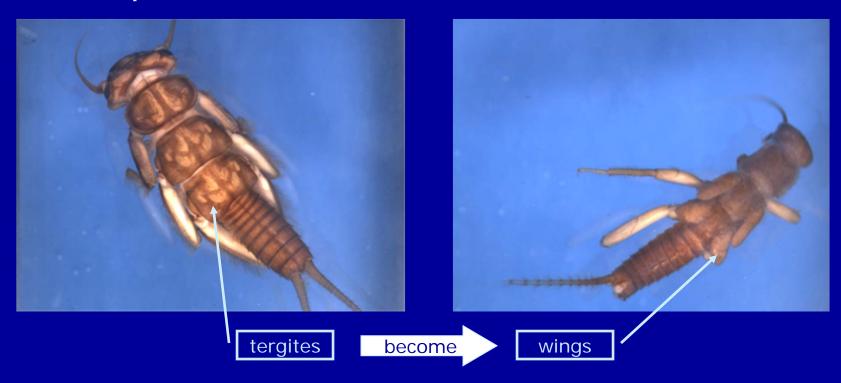
Soil Mesofauna Imaging

Computer Vision Challenges(1)

Highly-articulated objects with deformation

Computer Vision Challenges(2)

 Huge intra-class changes of appearance due to development and maturation



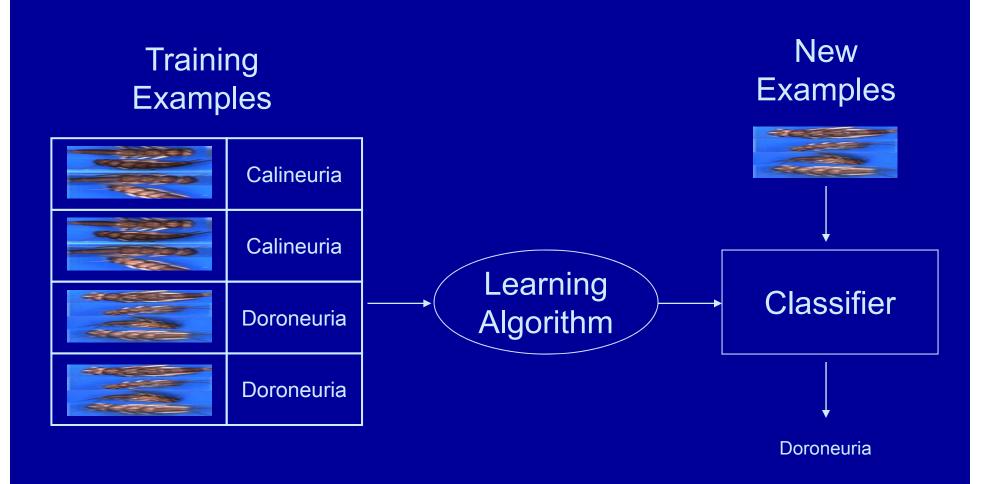
Computer Vision Challenges(3)

Small between-class differences

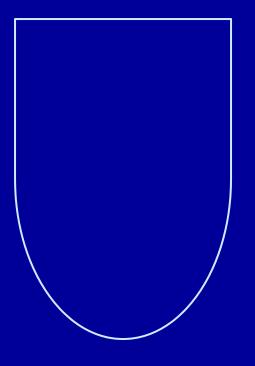
Calinueria

Doronueria

Machine Learning



Region-Based Approaches: Convert Image to Bag of Patches



Handles

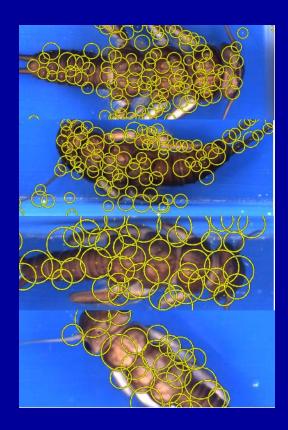
- Occlusion
- Rotation, translation
- Scale (with scale-independent patch representation)
- Partial out-of-plane orientation
- Articulation / Pose

Problem:

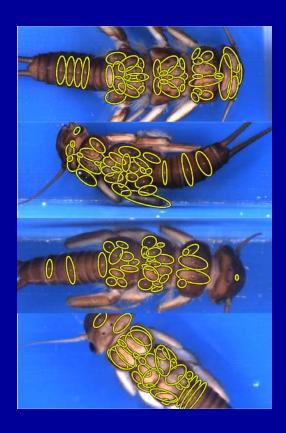
- How to define the patches?
- How to represent each patch?
- How to classify a BAG of patches?

Defining the Patches: Interest Region Detectors

Hessian-Affine Detector

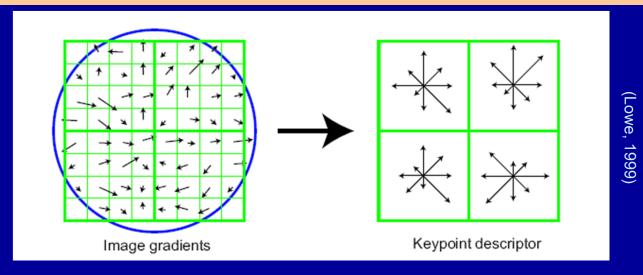


Kadir Entropy Detector



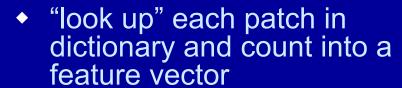
PCBR Detector

Representing the Patches: SIFT (Lowe, 1999)

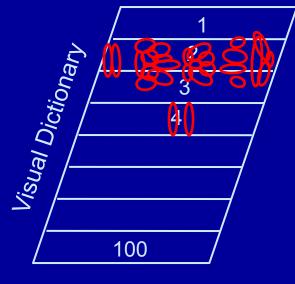


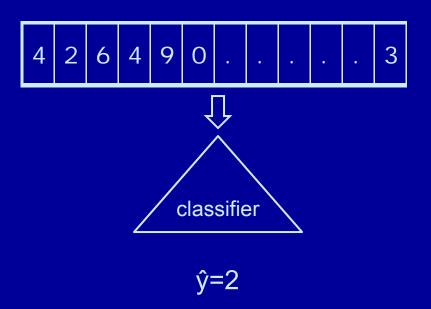
- Morph ellipse into a circle
- Compute intensity gradient at each pixel in 16x16 region
- Rotate whole circle according to dominant intensity gradient
- Weight gradients by a gaussian distribution (indicated by circle)
- Collect into histograms within each 4x4 region (gives 16 histograms)
- Result: 128-element vector normalized to have Euclidean norm 1

Classify Bag of Patches Method 1: Visual Dictionaries



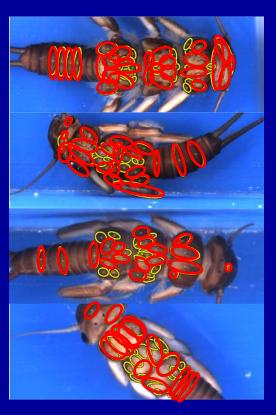
 feature vector is then given to the classifier

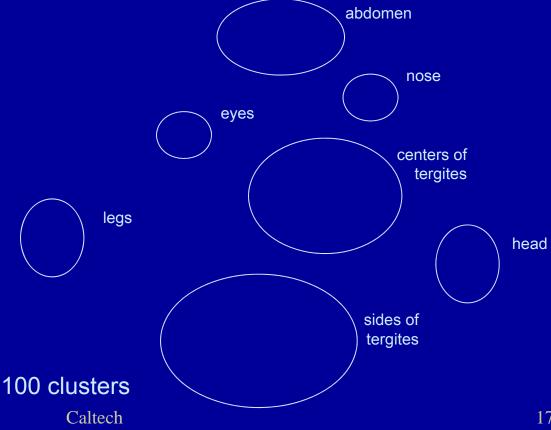




Learn Visual Dictionary by Clustering

Gaussian Mixture Model (k=100) with diagonal covariance matrices (EM, initialized with K-means)





1/25/2011

Issues with Visual Dictionaries

- Information is lost
- Unsupervised
 - Several efforts to construct discriminative dictionaries (Moosman et al., 2006)
- Do not scale to many classes
 - 3 detectors × 9 classes × 100 keywords = 2700 features
 - Some efforts to learn shared / universal dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)

Boosting Visual Dictionaries

```
For each image i, assign weight w_i = 1
```

For t = 1, ..., T

For each SIFT s_{ij} , assign it weight w_i

Apply weighted k-means clustering to construct a dictionary D_t

Train classifier F_t on the training images encoded using D_t

Update the image weights according to the Adaboost formula

Final classifier is weighted vote of the F_t

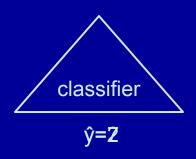
Why is this a good idea?

- If D_t is not adequate for correctly classifying some images, then the next dictionary D_{t+1} will allocate more representational resources to those images
- This will lead to reduced quantization error for the SIFTs in those images
- This will allow the next classifier F_{t+1} to do a better job

Additional Details

- Feature vectors are reweighted using TF-IDF weights
- Classifier in each iteration: 50-fold bagged C4.5 decision trees (no pruning)
- 30 boosting iterations
- Each iteration learns 100 codewords per detector (300 codewords total)
- Final classifier is using a dictionary of 9000 codewords (but partitioned into 300-word parts)

Classify Bag of Patches Method 2: Multiple-Instance Classifier



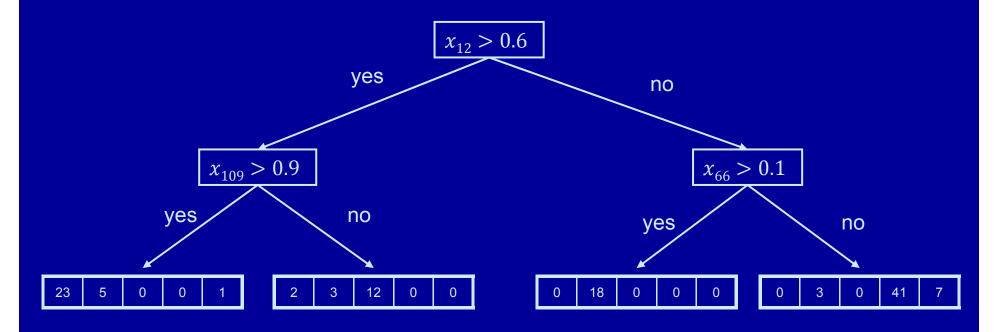
- The classifier
 predicts the class
 of the image
 separately using
 each patch
- These vote to make the final decision

Final prediction: $\hat{y} = 2$

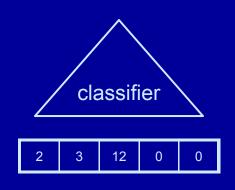
votes

Improved Multiple-Instance Classification

- Evidence Trees: Like decision trees, but store the "evidence" in each leaf
- Given an input, output the evidence



Classify Bag of Patches Voted Evidence Trees



- The classifier
 predicts the class
 of the image
 separately from
 each patch
- These vote to make the final decision

Final prediction: $\hat{y} = 1$

votes

Claim: Combining Evidence is better than Voting Decisions or Probabilities

Mathematical Model

Parameters:

- C training examples in each leaf
- L trees in the ensemble
- D regions detected in the test image
- γ: probabilistic margin of each leaf
 - one class has probability $1/2 + \gamma$
 - one class has probability $1/2 \gamma$

Proof

- Let $\beta = 2 \gamma^2 \pi^2$
- Voting decisions. Lower-bound binomial tail by largest term:

$$\epsilon_{vd} \ge \left(\frac{1}{2} - \beta\right)^{\frac{D}{2}}$$

 Voting evidence. Upper-bound binomial tail via Chernoff bound:

$$\epsilon_{v\#} \leq \exp[-8CDL\gamma^4]$$

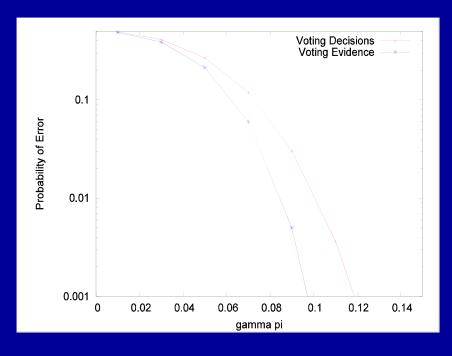
Result

• If $C > -\log(\frac{1}{2} - \beta)/4\beta^2$ then voting evidence is better than voting decisions: $\epsilon_{v\#} < \epsilon_{vd}$

 ◆ Exact computation for reasonable values (e.g., C=21, D=301) verifies this

Theorem: Voting Evidence is Better than Voting Decisions

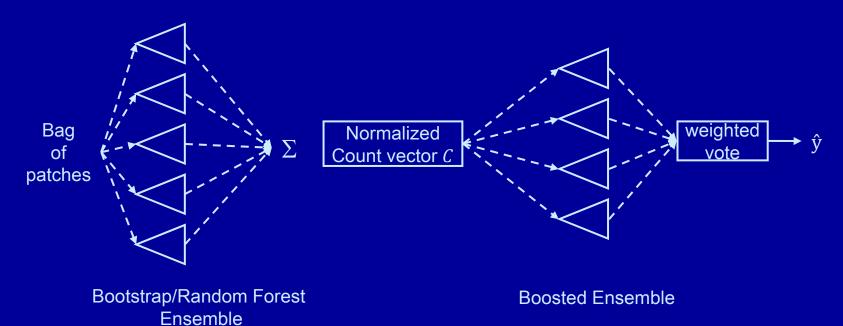
- Intuition: When voting decisions, there are two opportunities to make a mistake:
 - Making the wrong decision at each leaf
 - 2. Making the wrong decision when combining the votes
- With evidence trees, the first opportunity is avoided



 γ = margin of decision tree nodes π = fraction of non-noise patches

Final Classifier: Stacked Evidence Tree Random Forest

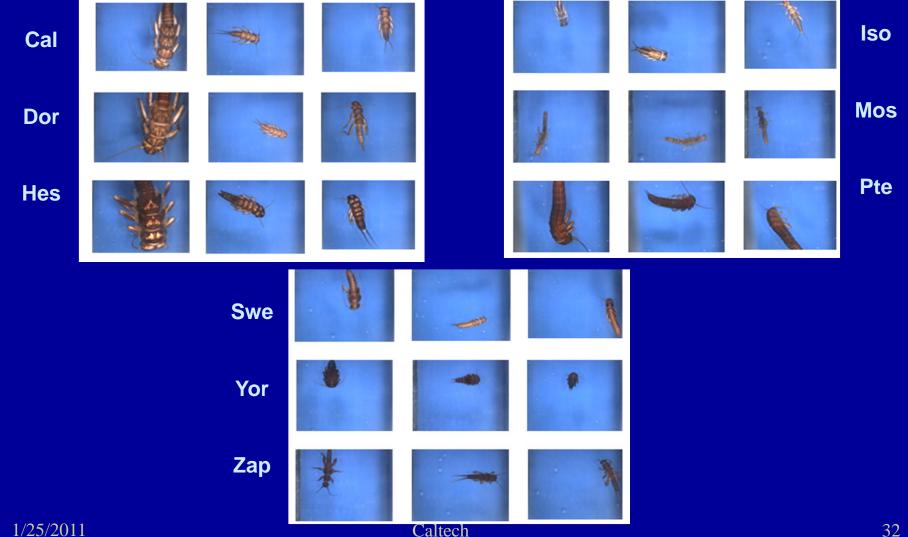
- Each patch is processed by a random forest of evidence trees
- 2. Evidence is summed and normalized to produce C
- C is classified by a second-level boosted decision tree ensemble



Additional Details

- Train a separate bootstrapped random forest for each of three detectors
 - Harris-Affine
 - Kadir
 - PCBR
- Concatenate the resulting feature vectors prior to stacking
- Adaboost: 100 C4.5 decision trees
- Can also grow random forests based on other features (e.g., shape)

Experimental Study 9 Taxa of Stoneflies



Caltech

STONEFLY9 Dataset

- ◆ 3826 images
- 773 specimens
- 9 classes
- Error estimation by 3-fold cross-validation
 - all images of a specimen belong to the same fold

Results

Configuration	Error Rate
Single GMM Dictionary + Boosted Decision Trees	16.1%
30-fold Boosted Dictionaries	4.9%
Stacked Evidence Trees	5.6%

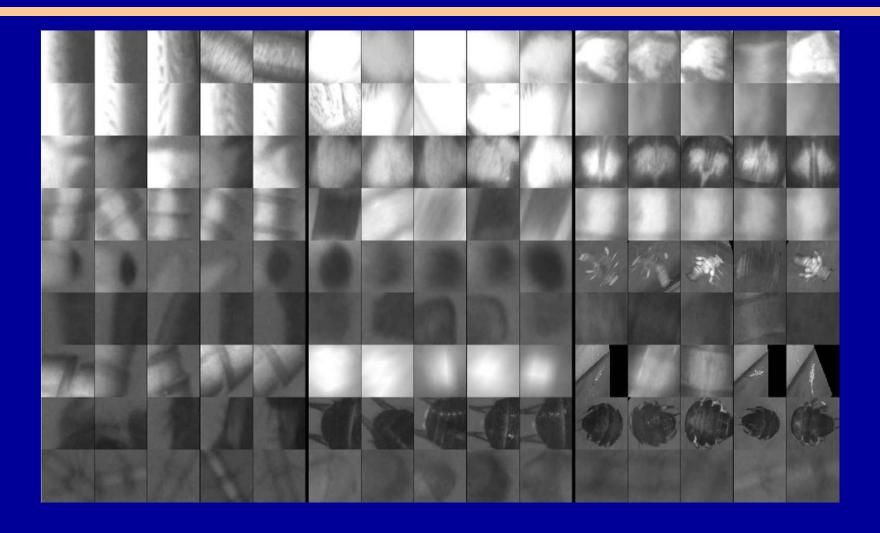
Evidence Tree Confusion Matrix

Predicted Species

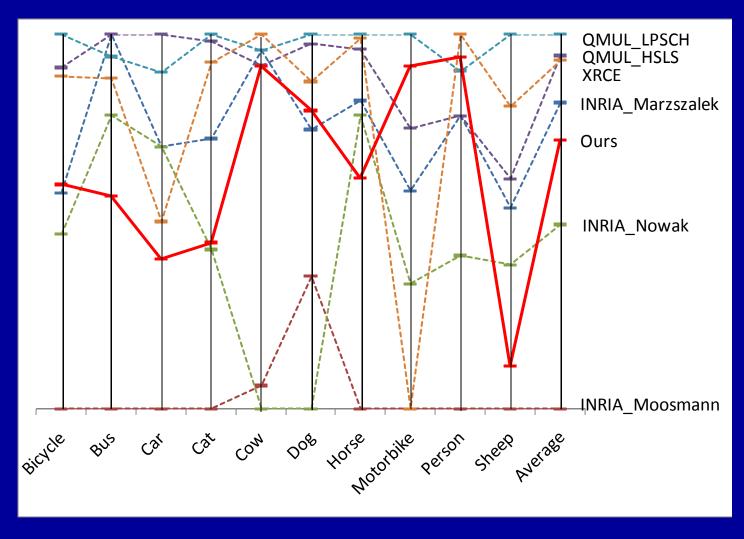
True Species

	Cal	Dor	Hes	Iso	Mos	Pte	Swe	Yor	Zap
Cal	443	17	3	4	0	0	20	0	5
Dor	19	489	1	10	1	0	7	0	5
Hes	6	5	460	5	0	1	12	0	2
Iso	3	6	3	456	0	2	27	0	3
Mos	0	0	0	1	107	0	3	0	8
Pte	0	3	0	0	0	203	6	5	6
Swe	4	10	2	23	0	1	433	1	5
Yor	1	1	1	1	1	3	0	481	3
Zap	0	0	2	8	4	9	3	4	468

Most Discriminative Regions

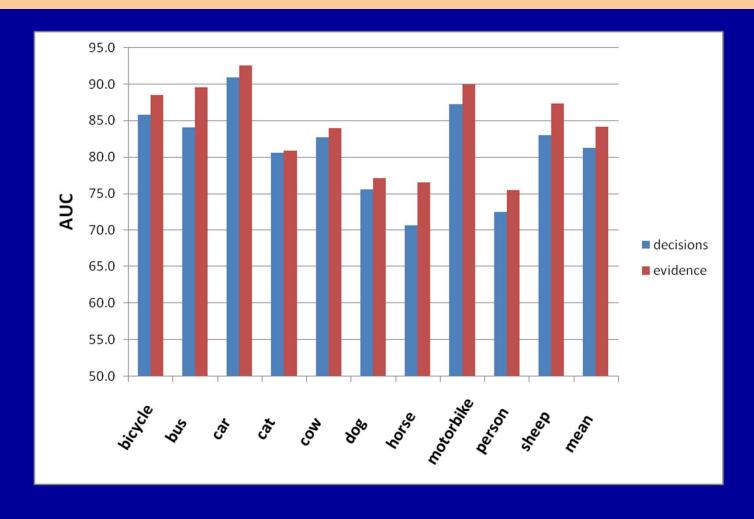


Generic Object Recognition: PASCAL 2006 VOC



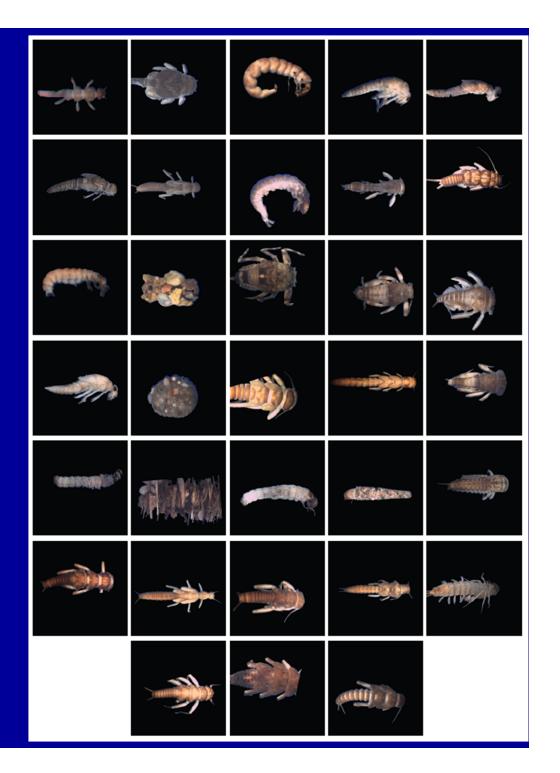
AUC Rank: 5th out of 21

Comparison: Voting Evidence vs. Voting Decisions



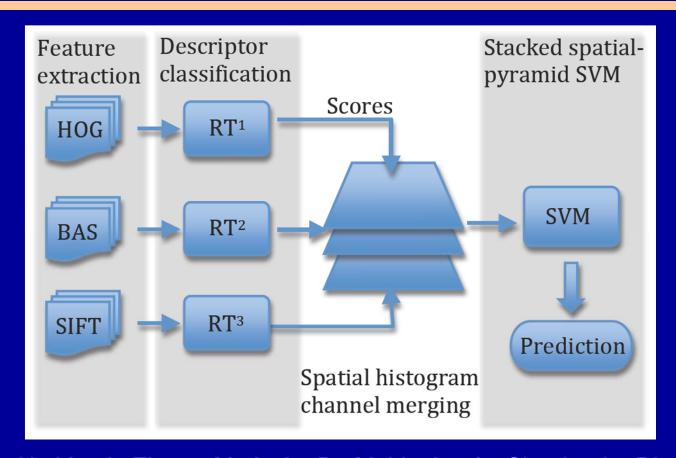
EPT 29 Data Set

- 29 taxa of stoneflies (Plecoptera), caddisflies (Trichoptera), and mayflies (Ephemeroptera)
- 4722 images
- 1-4 images per specimen
- automatically segmented, rotated, and aligned to face left
- 3 folds (all images per specimen in same fold)



Method 3: Stacked Spatial Pyramid

Natalia Larios

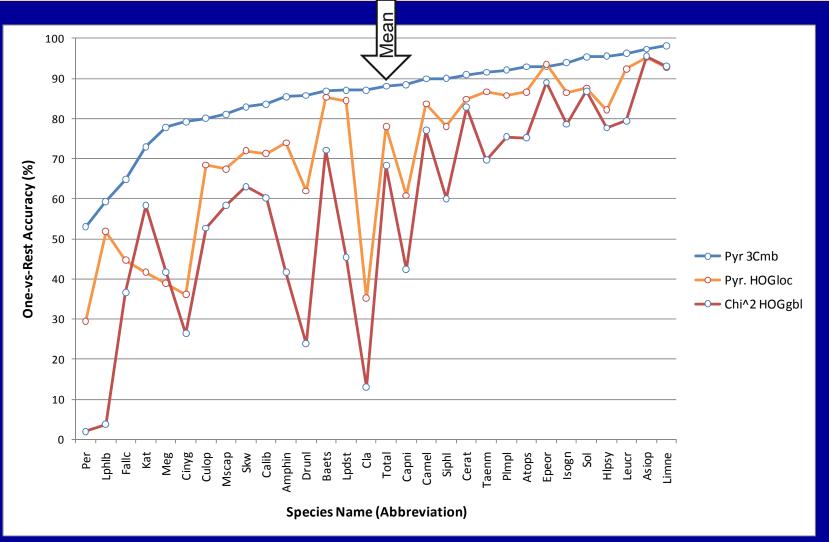


Larios, N., Lin, J., Zhang, M., Lytle, D., Moldenke, A., Shapiro, L., Dietterich, T. (2011). Stacked Spatial-Pyramid Kernel: An Object-Class Recognition Method to Combine Scores from Random Trees. WACV 2011.

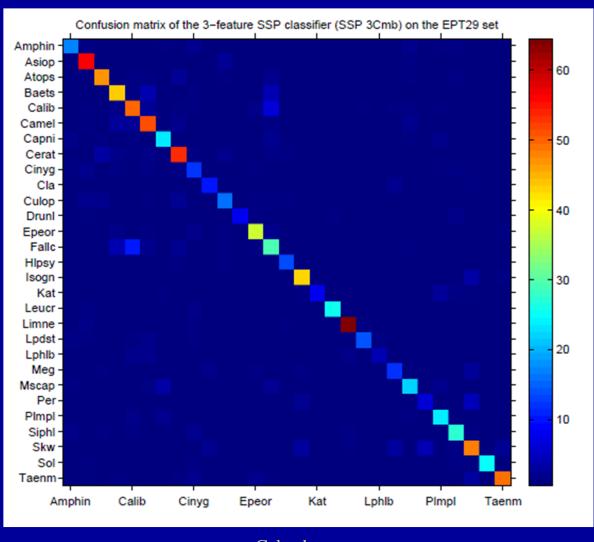
Experiment Details

- Detectors/Descriptors
 - HOC: Dense 16x16 pixels with 8 pixel overlap
 - BAS: salient points on perimeter, beam angle statistics + SIFT at each salient point
 - SIFT: DoG detector + SIFT descriptor
- Random Forest classifiers (RT)
 - 150 trees with max depth 25
 - trained to predict class of image from single patch descriptor (HOG, BAS, or SIFT)
 - score every patch, sum and normalize to obtain class probabilities
 - based on Evidence Trees but with normalization
- Stacked classifier
 - 3-level pyramid (16, 4, 1)
 - intersection kernel
 - trained via "out of bag" instances

Results

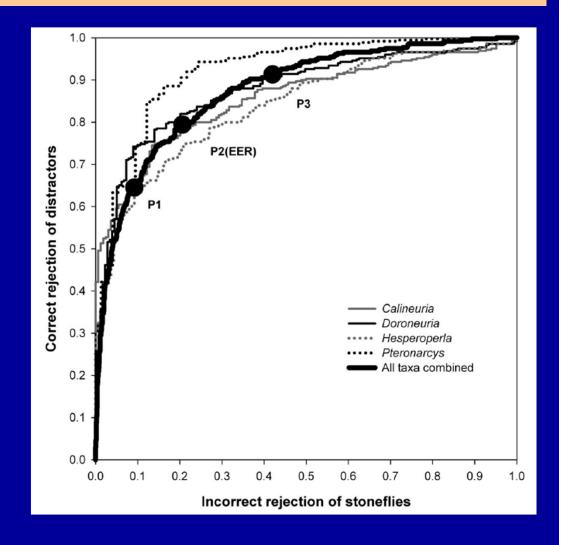


Confusion Matrix



Challenge Problem: Detecting and Rejecting "Novel" Species

- Can the system detect that a specimen does not belong to any of the training classes?
- Stonefly 9 with 10 "Distractor Classes"
- P2: Equal-Error Rate 21.3%



Novelty Detection Methods

- Density estimation (applied to BoW histograms)
 - Projection Pursuit Density Estimation (Friedman, Stuetzle & Schroeder, 1984)
 - Boosted Density Estimation (Rosset & Segal, 2002)
 - PCA + GMM
 - Manifold Embedding + GMM
 - Mixtures of Factor Analyzers
- Density ratio estimation
 - uLSIF (Hido et al, 2010)
- Reconstruction error methods
 - PCA + reconstruction
 - Sparse coding + reconstruction error
- One-class SVM

Preliminary Results

Method	Equal Error Rate (accept/reject)
Supervised classification lower bound	~3.5%
PCA + GMM	16.3%
Gaussian Naïve Bayes + tricks	21.3%
Boosted GMMs	Numerical problems
PCA + reconstruction error	29.2%
Sparse Coding + reconstruction error	40.0%
uLSIF	>38.0%
One-class SVM	>34.6%

Next Steps

- EPTs
 - EPT52 data set
 - Field studies using EPA data
 - Comprehensive rejection experiments
- Soil Mesofauna
 - Samples collected; awaiting photography
- Other Applications
 - Freshwater Zooplankton
 - Flies
 - Moths
 - Mosquitoes
 - Soil Mesofauna

Evidence Trees: A New Machine Learning Paradigm

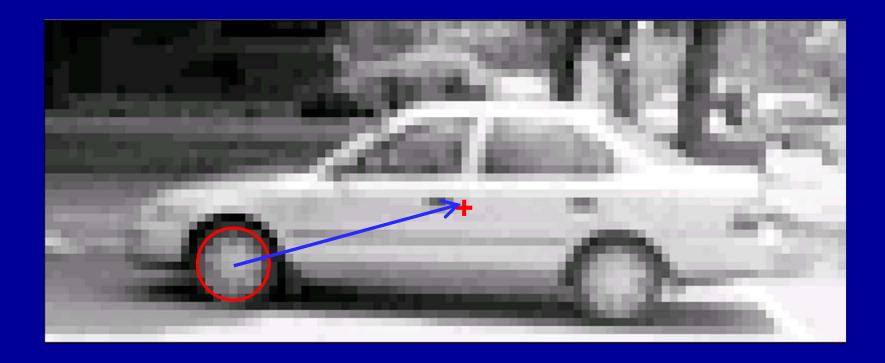
- General Principle:
 - Store evidence in the leaves of random forest trees
 - Combine evidence via non-parametric method to make final decision
- The purpose of the tree is NOT to make a decision but to identify the evidence relevant to making the decision

Another Example: Hough Forests [Gall & Lempitsky, CVPR 2009]

- Task: Object Detection (aka Localization)
 - Find all instances of object class in image

Training Examples

 At each interest point, compute (dx, dy, class)



Evidence Trees

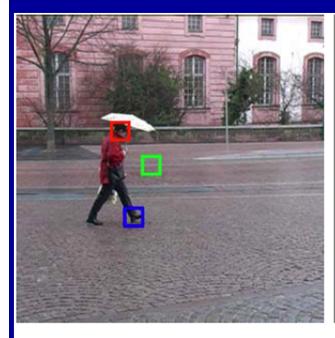
- Training criterion
 - all examples in a leaf should
 - belong to the same class
 - have similar (dx,dy) offsets (2-D variance)
- Note: All training images are scaled to a fixed scale based on the size of the car

Predicting New Images

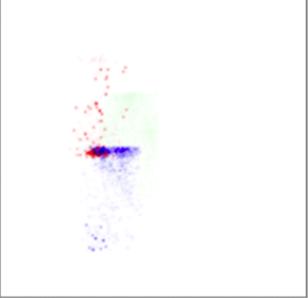
- For each interest region (x,y) in test image
 - Drop SIFT vector through each tree
 - For each (dx, dy, k) stored in leaf
 - Predict that an object belonging to class k is located at (x + dx, y + dy)
- Apply mode-finding algorithm (e.g., mean shift) to find peaks in the distribution of predictions
- Repeat at multiple scales; choose best scale; predict a car at the top N peaks

1/25/2011 Caltech 52

Example for Pedestrian Detection



(a) – Original image with three sample patches emphasized



(b) – Votes assigned to these patches by the Hough forest

(c) – Hough image aggregating votes from all patches

Gall & Lempitski, CVPR 2009

Tree Splitting

- Gall & Lempitski:
 - alternate between splitting on class information gain and splitting on variance of (dx,dy)
- Our work (Martinez & Dietterich)
 - split to maximize information gain:l(split; dx,dy,class)

Results: UIUC Cars (multiple)

Method	Equal Error Rate
Mutch & Lowe (CVPR 06)	90.6%
Lampert, et al. (CVPR 08)	98.6%
Gall & Lempitsky (CVPR 09)	98.6%
Stacked Evidence Trees (unpublished)	98.5%
Stacked Decision Trees (unpublished)	89.5%

We can probably improve the results by using the re-centering technique employed by Gall & Lempitsky

Conclusions

- Computer vision and machine learning methods can achieve high accuracy classification of stoneflies
 - two methods scoring ~5% error on 9 classes
- Similar techniques achieve ~12% error on 29 classes of EPTs
- For computer vision problems involving multiple detections per image, voting the evidence is more accurate than voting class probabilities or voting decisions
- Our methods are competitive on generic object recognition problems
- Major challenge: novel class detection / rejection

Acknowledgements

 Grant Support: US National Science Foundation