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Arthropod Population Counts:

An Important Form of Ecological Data

+ Arthropods are a powerful data
source
= Found in virtually all environments

e streams, lakes, oceans, soils, birds,
mammals

= Easy to collect
= Provide valuable information on
ecosystem function

e Consume the primary producers:
bacteria, fungi, plants

e Are consumed by more charismatic
organisms: birds, mammals, fish
Problem: Identification is time-
consuming and requires scarce
expertise

Solution: Combine robotics,
computer vision, and machine
learning to automate classification

and population counting
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Automated Rapid-Throughput
Arthropod Population Counting

¢ Goal:

= technician collects specimens in the field by various
EENRE

= robotic device automatically manipulates, photographs,
classifies, and sorts the specimens

+ Two applications:

s EPTs in freshwater streams
» Soil mesofauna
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Application 1.
EPT Larvae

¢+ EPTs: Mayflies, Stoneflies,
Caddis flies (Ephemeroptera,
Plecoptera, Tricoptera)

¢ Live in freshwater streams

¢ Population surveys are used

assessing stream health

measuring success of stream
restoration

understanding basic stream
ecology
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Application 2: Small arthropods
In soll: “soil mesofauna”
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Previous Results:
O Taxa of Stoneflies




STONEFLY9 Dataset

+ 3826 images
¢ /73 specimens
+ O classes

* Error estimation by 3-fold cross-validation
» all images of a specimen belong to the same fold
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Image Capture Apparatus

Stonefly Imaging

Soil Mesofauna

Imagin
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Computer Vision Challenges(1)

+ Highly-articulated objects with deformation
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Computer Vision Challenges(2)

+ Huge intra-class changes of appearance due to
development and maturation
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Computer Vision Challenges(3)

¢ Small between-class differences
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Machine Learning

Training New
Examples Examples
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Region-Based Approaches:
Convert Image to Bag of Patches

¢ Handles
Occlusion
Rotation, translation

Scale (with scale-independent
patch representation)

= Partial out-of-plane orientation
= Articulation / Pose

¢ Problem:
= How to define the patches?
= How to represent each patch?

= How to classify a BAG of
patches?
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Defining the Patches:
Interest Region Detectors

Hessian-Affine Detector Kadir Entropy Detector PCBR Detector
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Representing the Patches:
SIFT (Lowe, 1999)
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Image gradients Keypoint descriptor
Morph ellipse into a circle
Compute intensity gradient at each pixel in 16x16 region
Rotate whole circle according to dominant intensity gradient
Weight gradients by a gaussian distribution (indicated by circle)

Collect into histograms within each 4x4 region (gives 16
histograms)

Result; 128-element vector normalized to have Euclidean norm 1
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Classify Bag of Patches
Method 1: Visual Dictionaries

+ “look up” each patch in
dictionary and count into a
feature vector

+ feature vector is then given
to the classifier
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Learn Visual Dictionary by
Clustering

¢ Gaussian Mixture Model (k=100) with diagonal covariance
matrices (EM, initialized with K-means)
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Issues with Visual Dictionaries

¢ Information is lost

+ Unsupervised

s Several efforts to construct discriminative
dictionaries (Moosman et al., 2006)

* Do not scale to many classes

s 3 detectors x 9 classes x 100 keywords = 2700
features

s Some efforts to learn shared / universal
dictionaries (Winn, et al., 2005; Perronnin, et al., 2007)
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Boosting Visual Dictionaries

For each image i, assign weight w;, = 1
Fort=1,..,T
For each SIFT s;;, assign it weight w,

Apply weighted k-means clustering to
construct a dictionary D;

Train classifier F; on the training images
encoded using D;

Update the image weights according to the
Adaboost formula

Final classifier is weighted vote of the F;
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Why is this a good idea?

* |f D; is not adequate for correctly classifying
some images, then the next dictionary D, ,
will allocate more representational resources
to those images

+ This will lead to reduced quantization error
for the SIFTs in those images

* This will allow the next classifier F;,, to do a
better job
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Additional Detalls

* Feature vectors are reweighted using TF-IDF
weights

+ Classifier in each iteration: 50-fold bagged C4.5
decision trees (no pruning)

+ 30 boosting iterations

¢ Each iteration learns 100 codewords per
detector (300 codewords total)

* Final classifier is using a dictionary of 9000
codewords (but partitioned into 300-word parts)
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Classify Bag of Patches
Method 2: Multiple-Instance Classifier

¢ The classifier
predicts the class
of the image
separately using

each paftch
431‘\ * These vote to make

g=2 the final decision

2|8 Final prediction: § = 2
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Improved Multiple-Instance
Classification

¢ Evidence Trees: Like decision trees, but store
the “evidence” in each leaf

+ Given an input, output the evidence

X1, > 0.6
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Classify Bag of Patches
Voted Evidence Trees

¢ The classifier
predicts the class
of the image

separately from
431‘\ each patch

* These vote to make
the final decision

2 3 12 0 0

87 Final prediction: § = 1
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Claim: Combining Evidence is better
than Voting Decisions or Probabilities

Evidence \ \
Class /
Decisions abilities

y S adil

Evidence Counts Class Probabilities Decisions

721 62| 35| 23 1.16 | 0.73 | 0.50 | 0.63 1] 1

38| .32 .18 | .12 38|(.24 | .17 .21 : 33| .33
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Mathematical Model

+ Parameters:
= C training examples in each leaf
= L trees in the ensemble
s D regions detected in the test image

= 7. probabilistic margin of each leaf
e one class has probability 1/2 + vy
e one class has probability 1/2 —y
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Proof

¢ Let B =2vy%n?
+ \oting decisions. Lower-bound binomial tail
by largest term:

> (26
+ \/oting evidence. Upper-bound binomial tall
via Chernoff bound:

€, 4 < exp[—8CDLy*]
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Result

* If C > —log(; — B)/45? then voting evidence
IS better than voting decisions: 6,4 < €,4

+ Exact computation for reasonable values
(e.g., C=21, D=301) verifies this
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Theorem: Voting Evidence is Better
than Voting Decisions

* |ntuition: When voting
decisions, there are
two opportunities to
make a mistake:

1. Making the wrong
decision at each leaf

2. Making the wrong
deC|S|_or_1 when
Comblnlng the VOteS 0'0016 002 004 006 008 0.1 012 014

+ With evidence trees,

the first opportunity is y = margin of decision tree nodes
avoided n = fraction of non-noise patches

Probability of Error
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Final Classifier:
Stacked Evidence Tree Random Forest

Each patch is processed by a random forest of
evidence trees

Evidence is summed and normalized to produce C

C is classified by a second-level boosted decision tree
ensemble
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Additional Detalls

¢ Train a separate bootstrapped random forest for
each of three detectors

Harris-Affine
Kadir
PCBR

+ Concatenate the resulting feature vectors prior
to stacking

¢ Adaboost: 100 C4.5 decision trees

¢ Can also grow random forests based on other
features (e.g., shape)
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Experimental Study
O Taxa of Stoneflies




STONEFLY9 Dataset

+ 3826 images
¢ /73 specimens
+ O classes

* Error estimation by 3-fold cross-validation
» all images of a specimen belong to the same fold
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Results

Configuration Error Rate

Single GMM Dictionary + Boosted 16.1%
Decision Trees

30-fold Boosted Dictionaries 4.9%
Stacked Evidence Trees 5.6%
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Evidence Tree Confusion Matrix

Predicted Species
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Most Discriminative Regions
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Generic Object Recognition:
PASCAL 2006 VOC

QMUL_LPSCH
QMUL_HSLS
XRCE

INRIA_Marzszalek

Ours

INRIA_Nowak AUC Rank:
5th out of 21

INRIA_Moosmann
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Comparison: Voting Evidence
vs. Voting Decisions
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EPT 29 Data Set

29 taxa of stoneflies
(Plecoptera), caddisflies
(Trichoptera), and
EWIET
(Ephemeroptera)

* 4722 images
+ 1-4 images per
specimen

automatically
segmented, rotated, and
aligned to face left

3 folds (all images per
specimen in same fold)




Method 3: Stacked Spatial Pyramid

Natalia Larios

Feature Descriptor Stacked spatial-
extraction classification pyramid SVM

Scores
RT1

s,

Prediction

-

Spatial histogram
channel merging

Larios, N., Lin, J., Zhang, M., Lytle, D., Moldenke, A., Shapiro, L., Dietterich,
T. (2011). Stacked Spatial-Pyramid Kernel: An Object-Class Recognition
Method to Combine Scores from Random Trees. WACV 2011.
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Experiment Details

¢ Detectors/Descriptors
= HOC: Dense 16x16 pixels with 8 pixel overlap

= BAS: salient points on perimeter, beam angle statistics + SIFT at each
salient point

= SIFT: DoG detector + SIFT descriptor
¢+ Random Forest classifiers (RT)
= 150 trees with max depth 25

= trained to predict class of image from single patch descriptor (HOG, BAS, or
SIFT)

= Score every patch, sum and normalize to obtain class probabilities
= based on Evidence Trees but with normalization
+ Stacked classifier
= 3-level pyramid (16, 4, 1)
= intersection kernel
= trained via “out of bag” instances
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Confusion Matrix

Confusion matrix of the 3-feature SSP classifier (SSP 3Cmb) on the EPT29 set
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Challenge Problem: Detecting and
Rejecting “Novel” Species

¢ Can the system detect
that a specimen does
not belong to any of
the training classes?

¢ Stonefly 9 with 10
“Distractor Classes”

¢+ P2: Equal-Error Rate
21.3%

P2(EER)
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Doroneuria
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Incorrect rejection of stoneflies
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Novelty Detection Methods

+ Density estimation (applied to BoW histograms)

» Projection Pursuit Density Estimation (Friedman, Stuetzle &
Schroeder, 1984)

= Boosted Density Estimation (Rosset & Segal, 2002)
« PCA +GMM
= Manifold Embedding + GMM

Mixtures of Factor Analyzers
¢ Density ratio estimation
= ULSIF (Hido et al, 2010)
¢ Reconstruction error methods
= PCA + reconstruction
s Sparse coding + reconstruction error

¢ One-class SVM
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Preliminary Results

Equal Error Rate (accept/reject)

Supervised classification lower bound ~3.5%

PCA + GMM 16.3%

Gaussian Naive Bayes + tricks 21.3%

Boosted GMMs Numerical problems

PCA + reconstruction error 29.2%

Sparse Coding + reconstruction error 40.0%

uLSIF >38.0%

One-class SVM >34.6%
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Next Steps

* EPTs

= EPT52 data set
= Field studies using EPA data
= Comprehensive rejection experiments

+ Soil Mesofauna
s Samples collected; awaiting photography

¢ Other Applications
= Freshwater Zooplankton
= Flies
s Moths
= Mosquitoes
= Soil Mesofauna
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Evidence Trees:
A New Machine Learning Paradigm

¢ General Principle:

s Store evidence in the leaves of random forest
trees

= Combine evidence via non-parametric method to
make final decision

* The purpose of the tree is NOT to make a
decision but to identify the evidence relevant
to making the decision
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Another Example: Hough Forests
[Gall & Lempitsky, CVPR 2009]

¢ Task: Object Detection (aka Localization)
. Fmd aII instances of object class in image
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Training Examples

+ At each interest point, compute
(dx, dy, class)
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Evidence Trees

¢ Training criterion
= all examples in a leaf should

e belong to the same class
e have similar (dx,dy) offsets (2-D variance)

+ Note: All training images are scaled to a
fixed scale based on the size of the car
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Predicting New Images

¢ For each interest region (x,y) in test image
= Drop SIFT vector through each tree

s For each (dx, dy, k) stored in leaf
e Predict that an object belonging to class k is located at

(x + dx, y + dy)
* Apply mode-finding algorithm (e.g., mean
shift) to find peaks in the distribution of
predictions

+ Repeat at multiple scales; choose best scale;
predict a car at the top N peaks
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Example for Pedestrian Detection

(a) — Original image with three (b) — Votes assigned to these (c) — Hough image aggregating
sample patches emphasized patches by the Hough forest votes from all patches

Gall & Lempitski, CVPR 2009

1/25/2011




Tree Splitting

+ Gall & Lempitski:

= alternate between splitting on class information
gain and splitting on variance of (dx,dy)

¢ Our work (Martinez & Dietterich)

= Split to maximize information gain:
|(split ; dx,dy,class)
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Results: UIUC Cars (multiple)

Mutch & Lowe (CVPR 06) 90.6%
Lampert, et al. (CVPR 08) 98.6%
Gall & Lempitsky (CVPR 09) 98.6%
Stacked Evidence Trees (unpublished) 98.5%
Stacked Decision Trees (unpublished) 89.5%

We can probably improve the results by using the re-centering
technique employed by Gall & Lempitsky
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Conclusions

Computer vision and machine learning methods can
achieve high accuracy classification of stoneflies

= two methods scoring ~5% error on 9 classes

Similar techniques achieve ~12% error on 29 classes
of EPTs

For computer vision problems involving multiple
detections per image, voting the evidence is more
accurate than voting class probabilities or voting
decisions

Our methods are competitive on generic object
recognition problems

Major challenge: novel class detection / rejection
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