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Al in Open Worlds

Eric Horvitz: “Artificial Intelligence in the Open World”
* (AAAI Presidential Address 2008)
* The open world is a complex world
* Requires combining sensing, learning, and reasoning

Tom Dietterich: “Steps Toward Robust Al”
* (AAAI Presidential Address 2016)

* The open world contains unknown failure modes, novel categories and behaviors

e Methods:

* Robust optimization for known and unknown model failures
* Risk-sensitive objectives
 Anomaly detection

Today’s talk: What we’ve learned since 2016
* ML for safety-critical applications
* Deep anomaly detection
* Near miss detection

Future Directions
* Distribution-Independent Machine Learning



The Open World

————————————————————————————————————————————

Known
Universe

R T EIEIEEeSSwea———————
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* Possible Universe:
(presumably unbounded)
space of additional
possibilities

* Known Universe: Space that is
known to the designer

* Modeled Universe: Space that
is representable by the
system’s ontology/features

e Task: Problem space needed
to perform the task



Narrow Al Systems

————————————————————————————————————————————

* Modeled Universe = Task
Problem Space

Known
Universe

* Representation can only
capture the task problem
space

e Reasoning is only performed
over the task problem space

Modeled
Universe

R T EIEIEEeSSwea———————




Closed-World Design

* Closed task description
* Closed set of diseases and symptoms
* Fixed goal language (e.g., PDDL over fixed ontology)

e Optimize a problem solver

* Machine learning approach

e Collect data

* Train a classifier or a decision making policy
* Planning/reasoning approach

* Customize a general inference engine
* Optimize heuristics to guide the reasoning



Example:
Automated Counting of Freshwater Macroinvertebrates

e Goal: Assess the health of
freshwater streams

* Method:
* Collect specimens via kicknet
* Photograph in the lab
* Classify to genus and species

* Histogram of species tells us
what pollutants have been in
the water

WWWw.epa.gov
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Data Collection
and Training

* Entomologists collected 100 specimens
each from 54 taxa

* Trained a computer vision classifier
* accuracy = 90%

Larios, N., Soran, B., Shapiro, L., Martinez-Mufos,
G., Lin, J., Dietterich, T. G. (2010). Haar Random
Forest Features and SVM Spatial Matching Kernel
for Stonefly Species Identification. /EEE
International Conference on Pattern Recognition
(ICPR-2010).

Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R.,
Shapiro, L., Todorovic, S., Dietterich, T. (2011). Fine-
Grained Recognition for Arthropod Field Surveys:
Three Image Collections. First Workshop on Fine-
Grained Visual Categorization (CVPR-2011)

Lytle, D. A., Martinez-Muhoz, G., Zhang, W., Larios,
N., Shapiro, L., Paasch, R., Moldenke, A.,
Mortensen, E. A., Todorovic, S., Dietterich, T. G.
(2010). Automated processing and identification of
benthic invertebrate samples. Journal of the North
American Benthological Society, 29(3), 867-874.




Result: Narrow Al System

————————————————————————————————————————————

* Supervised deep learning only
learns features sufficient to
separate the known classes

Known

Universe * Modeled Universe = Task

Problem Space

Modeled
Universe

R T EIEIEEeSSwea———————




Closed-World Safety-Critical Design

* Define task and Operational
Design Domain (ODD)

* Enumerate known hazards

* Hazard = a region of state
space likely to lead to a harm

Known
Universe

Modeled

* Introduce margins of safety Universe

around each known hazard

* Design optimal control
policy that respects margins
of safety

R T EIEmISSmeS—wa————



Key Challenge of Open Worlds: Novelty

* New diseases (e.g., COVID in chest x-rays)

* New objects (e.g., OneWheel for automated
cars)

* New items (movies, books, songs,
restaurants, etc.) for recommender systems

 Novel hazards

* Change in system dynamics
e Flat tire
* Loss of power steering

[JCAI 2024 11



Insect Identification: There are = 76,000 species
of freshwater insects worldwide

* 1,200 species in US

* Field samples may contain other things

* |eaves
* trash

* Simple estimate of equal error rate for
novel classes vs. the 54 classes was

20% (in 2011)
* classifier is not usable without addressing
the novel class problem
* “Novel Category Problem” or “Open
Set Problem”




Novel Category Detection

Distance-based Failure-Based
Outlier Detection Novelty Detection




Distance-Based Outlier Detection

* Define a distance d(x;, xj)
° A(xq) = min d(xq; x)

X€D

* Can be made more robust by looking at the
average distance to the k-nearest points

* “k-nn anomaly detection”

e Can be normalized by dividing by the
distance of each neighbor to their k-nearest

neighbors

e “Local Outlier Factor (LOF)” Breunig, et al., 2000

* Efficient approximation: “Isolation Forest”

Liu, et al., 2012

mixture$y

ooooo

mixture$x




Reconstruction Failure

* Principle: Anomaly Detection through
Failure

Define a task on which the learned system
should fail for anomalies

* NavLab self-driving van (Pomerleau, 1992)

Primary head: Predict steering angle from input
image

Secondary head: Predict the input image (“auto-
encoder”)

A(xq) = ||lxq — 24]
If reconstruction is poor, this suggests that the
steering angle should not be trusted

[JCAI 2024

Pomerleau, NIPS 1992

15




Distance-based Anomaly Detection for Deep Learning
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Convolutional Neural Network Classifier v

32 10

—
32 .

—_—
28 — 28 - 4 22 7 — — | |= ply=klx
5x5 2x2 14 X . ully FC — PU=
Eany pool cony 14 P 7 connected —
+relu 14 +relu —_—

28

28

Z

e Let z = (24, ..., Z1924) be the features in the “penultimate” layer of the network.

* Logit score for class k is £}, (z) = ]1-234 Wik Zj

exp £ (z)
Zk, exp fk’ (Z)

* Probability for class kis p(y = k|x) =

 Strategy: Apply distance-based methods to the z vectors



Reconstruction Failure: Deep Autoencoders

* The basic auto-encoder trains an encoder E and decoder D such that D(E(x)) ~
x by minimizing the image reconstruction error

* The capacity of the bottleneck and of the decoder must be carefully controlled to
prevent the network from learning a general-purpose image compression

mapping
* Very few people can get this to work

. #but see Haoyang Liu, et al. Class-specific semantic generation and reconstruction
or open set recognition. |JCAI 2024]
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Experimental Evaluation of Outlier Detection Methods

* CIFAR-100: 80 known classes; 20 novel
classes

* Apply distance methods in z space
* Isolation Forest on z;

* Local Outlier Factor (nearest neighbor
method) on z;

* No better than random guessing

 Metrics based on “indecision”

* H(y|x): entropy of predicted
projlg)abilities P(y|x)

* Max softmax probability: max P(y|x)
y

* Max Binary Cross-Entropy
* Max logit: mlgxfk(x)

e Max logit is somewhat better than the
others
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Anomaly Measures on Latent Representations for

CIFAR-100
0.72
0.68 0.67
0.63
0.51
0.44
H (y|x) Max SoftMax- Max BCE-prob  Max-logit Iforest LOF

prob.

Garrepalli, 2020
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Max Logit Score: Experiments by Vaze, et al.

* Vaze, Han, Vedaldi, Zisserman (ICLR
2022): “Open Set Recognition: A
Good Classifier is All You Need”

* arXiv 2110.06207

* Cross-Entropy+: carefully train a
classifier using the latest tricks

e Standard cross-entropy combined with
the following:

* Cosine learning rate schedule
* Learning rate warmup

* RandAugment augmentations
* Label Smoothing

* Anomaly score: max logit
. mlflek(z)

 Small values = anomalous
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Protocol from Lawrence Neal et al. (2018)
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Vaze, et al.: Three Large Open Set Benchmarks

* Novel class difficulty based on
semantic distance
* CUB: Bird species
e Air: Aircraft
* ImageNet
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Why does Max Logit work?



Experiment:
Deep Learned Features in Computer Vision

DenseNet with 384-dimensional
latent space.

CIFAR-10: 6 known classes, 4 novel
classes

Light green: novel classes

Darker greens: known classes

Images from known classes are
“pulled out” from the center of the
space

Most novel-class images stay
toward the center of the space;
others overlap with known classes

Novel images are “inliers”

20 -

6 Known
Classes

15

10 4

Dietterich & Guyer, 2022
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t-SNE axis 2

Similar Results from Other Groups

t-SNE visualization of features
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[Tack, et al. NeurlPS 2020]
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[Vaze, et al. arXiv 2110.06207]
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The Familiarity Hypothesis

The network doesn’t detect
novelty, it detects the
absence of familiarity

Convolutional neural network learns “features”
that detect image patches relevant to the
classification task

The logit layer weights these features to make
the classification decision

Novel classes activate fewer of these features,
so their activation vectors are smaller

Hypothesis: The networks don’t detect that an
elephant is novel because of trunk and tusks but
because its head doesn’t activate known
features

[JCAI 2024 24



Which features are responsible for the
drop in activation?

Are they features “on” the object vs. the
background?

 Strategy: blur the object and see how the
feature activations change

 activations that change must be on the object

* Details:
* PASCAL VOC Segmented Images
e Blur the original image (31x31 kernel; sd=31)

* Form composite image where blurred region
replaces the segmented region

[JCAI 2024

https://www.peko-step.com/en/tool/blur.html
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Four Types of Features

Convolutional Neural Network Classifier v
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Contribution to max logit score

* Four points plotted for each

novel image )
* Their sum is the max logit
score .
* Positive Presence features z
dominate the max logit score g o-
* This confirms the familiarity g
hypothesis : "
+ | e positive presence
® positive absence
* Similar results for ViT | < negative absence
networks -

0 200 400 600 800
Novel category images

IICAI 2024 (sorted by ascending max logit score) 57



Advantages and Disadvantages of Familiarity-
Based Novelty Detection

Advantages: Disadvantages

* Each class defines its own e Extra features are not detected as
“distance” based on its positive- anomalous
presence features * Example: An elephant with wings

* Avoids the need to define a global will still be recognized as an
distance metric elephant —the wings will be

ignored by the elephant classifier

* Occlusions that hide familiar
features will cause false novelty
detections

Conclusion: Distances or Joint Distributions are necessary to detect novelty




The Learned Representation is Promising
But Not a Complete Solution

* Many novel-class images are
mapped onto clusters of known-
class images 15 -

20 -

10 4

* The learned representation can’t
detect all of the anomalies 3

* Max Logit AUROCs range from 0.73 0
to 0.91 s ]

[JCAI 2024



How can we learn better features?

* Foundation Model Approach:
* Train on all the data we can find

* Artificially introduce variation through augmentations
* Rotations, flips, simulated snow, rain, pixel noise, etc.

e Synthetic data

* The deep representation learns to “see” (represent) the
known world
A Onewheel will still be novel, but the model should have the

right features to represent it and thereby separate it from all
known objects



Novel Hazards and Robust-yet-Fragile Systems

————————————————————————————————————————————

* Engineered systems are “robust
yet fragile”
* Robust to the known hazards
* Vulnerable to novel failure modes

Known
Universe

* Optimization for cost, weight, etc.
results in designs near the edge
of the feasible region

* Highly Optimized Tolerances (HOT)
theory. Carlson & Doyle (2002)

Modeled
Universe

Optimized

. . Design
* Small change in operating

conditions leads to novel failure

Unknown
Hazard

-

[JCAI 2024 31



Systems View of Safety

[Leveson 2011: Engineering a Safer World]

* A system (including the human organizations
that build, use, and operate it) can be
decomposed into a hierarchy of subsystems,
each with its own controller

* These systems are subject to many
disturbances

* Environmental Novelty
* New regulations

e Budget cuts and staff reductions
* Systems tend to migrate toward the edges of safety

e A safe controller must detect and compensate
for these disturbances

* Today: It is the exclusively the humans who do this

[JCAI 2024
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High Reliability Human Organizations

Todd LaPorte, Gene Rochlin, and Karlene Roberts (weick, et al., 1999)

* Preoccupation with failure
* Fundamental belief that the system has unobserved failure modes
* Treat anomalies and near misses as symptoms of a problem with the system

Reluctance to simplify interpretations
* Comprehensively understand the situation

Sensitivity to operations
 Maintain continuous situational awareness

e Commitment to resilience

* Develop the capability to detect, contain, and recover from errors. Practice improvisational
problem solving

* David Woods: A resilient organization is “poised to adapt”

* Deference to expertise

. Dhuring a ISriSiS' authority migrates to the person who can solve the problem, regardless of
their ran



How can Al Help?

* Maintain Situational Awareness
 Anomaly Detection (already discussed)
* Near Miss Detection

* Novelty Diagnosis

* Automated or Suggested Repairs



Near Miss Detection

e Case 1: Near Miss for Known Hazard

» System violates the margin of safety
region near a known hazard

[JCAIl 2024

Known
Universe

Modeled
Universe




Case 2: Counterfactual Near Misses

* Automatic Vehicle safety conditions

* At least 2m separation between vehicle
and pedestrians, cyclists, stationary
obstacles

* Pedestrian sees car coming and jumps
out of the way

* Car determines that it met the required
2m separation =» “no problem”

 Counterfactual: There would have been
a safety violation if the pedestrian had
not taken evasive action

=

| [

U115




Novelty Diaghosis and Repair

* Easy Cases:
 Anomaly caused by novel category
* Repair: Collect training data for the novel category and retrain the detector/classifier

* Near miss caused by controller failure
* Repair: Generate additional training trajectories for the controller

e Harder Cases:

* Perceptual failure caused by novel type of occlusion

* Repair: Improve context-dependent uncertainty quantification. Controller will be more
cautious under high uncertainty

* Repair: Add sensors that do not suffer from the occlusion
e Characterize novel hazard. Under what conditions will the hazard occur?
* Repair: Define new hazard region; retrain the controller
* May require defining new state variables, adding sensors, and improving state estimation



Creating Resilient Systems

 David Woods: A resilient system is one that is Design Space

“poised to adapt”

e Surprises are often not visible through standard
sensors/communication paths

* Organizations must practice communicating and Design Path
adapting to confront novelty

* An Al perspective:
* The entire design process should be regarded as

one path through a design space initial  Revised
» Adaptation requires following new paths through Design  Design
that space

* The design space and design process should be
“kept on standby” so that they can be invoked
whenever adaptation is required

[JCAI 2024 38



What is the Role of LLMs (and Foundation
Models, more generally)?

————————————————————————————————————————————

Known
Universe

R T EIEIEEeSSwea———————

[JCAIl 2024

 Modeled Universe is nearly
identical to the Known Universe

e Greatly improves learned
representations

e Supports improved anomaly
detection and diagnosis

* Improves situational awareness
by expanding the context

 However, learned knowledge
may be unreliable

39



Future Directions



Beyond Statistical Learning

* Distribution-Independent Machine
Learning

* We need more than statistical guarantees of 10
correctness 08

e Can we verify that our learned models are well- ~ 06
behaved? g

training data

* Smoothness
* Bounded curvature
* Bounded Lipschitz constant 0o 0.2 0.4 0.6 08 1.0
* Bounded distance from linear interpolation X

 Can we verify that our uncertainty
quantification is correct?

* Can we prove that there are no spurious
correlations?

* Learned relationships are causal; no hidden
confounders

0.2 ——Ilearned network




Summary

Functional and safety engineering address the known sources of variation and the known hazards

* This makes them robust yet fragile
* Deep Learning representations only capture the variation necessary to perform the task

Key challenge #1 of open worlds: novel categories
* Novel categories of objects, behaviors, etc.
* Existing novelty detection methods perform poorly with deep learning

* Familiarity-based max logit score works better, but only if the representation separates novelties from the
known categories

Key challenge #2 of open worlds: novel hazards
* Counter-factual near misses

Resilient Systems
* Design space “on standby”

Foundation Models
* Revolutionary improvements in learned representations

Future Directions
* Research on counter-factual hazards
* Distribution-independent machine learning
* Verifiable uncertainty quantification
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