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AI in Open Worlds
• Eric Horvitz: “Artificial Intelligence in the Open World”

• (AAAI Presidential Address 2008)
• The open world is a complex world
• Requires combining sensing, learning, and reasoning

• Tom Dietterich: “Steps Toward Robust AI”
• (AAAI Presidential Address 2016)
• The open world contains unknown failure modes, novel categories and behaviors
• Methods:

• Robust optimization for known and unknown model failures
• Risk-sensitive objectives
• Anomaly detection

• Today’s talk: What we’ve learned since 2016
• ML for safety-critical applications
• Deep anomaly detection
• Near miss detection

• Future Directions
• Distribution-Independent Machine Learning
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The Open World

• Possible Universe: 
(presumably unbounded) 
space of additional 
possibilities

• Known Universe: Space that is 
known to the designer

• Modeled Universe: Space that 
is representable by the 
system’s ontology/features

• Task: Problem space needed 
to perform the task
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Possible Universe

Known 
Universe

Narrow AI Systems

• Modeled Universe = Task 
Problem Space

• Representation can only 
capture the task problem 
space

• Reasoning is only performed 
over the task problem space
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Closed-World Design

• Closed task description
• Closed set of diseases and symptoms
• Fixed goal language (e.g., PDDL over fixed ontology)

• Optimize a problem solver
• Machine learning approach

• Collect data
• Train a classifier or a decision making policy

• Planning/reasoning approach
• Customize a general inference engine
• Optimize heuristics to guide the reasoning
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Example: 
Automated Counting of Freshwater Macroinvertebrates

• Goal: Assess the health of 
freshwater streams

• Method: 
• Collect specimens via kicknet
• Photograph in the lab
• Classify to genus and species
• Histogram of species tells us 

what pollutants have been in 
the water
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Data Collection 
and Training

• Entomologists collected 100 specimens 
each from 54 taxa

• Trained a computer vision classifier
• accuracy ≈ 90%
• Larios, N., Soran, B., Shapiro, L., Martínez-Muños, 

G., Lin, J., Dietterich, T. G. (2010). Haar Random 
Forest Features and SVM Spatial Matching Kernel 
for Stonefly Species Identification. IEEE 
International Conference on Pattern Recognition 
(ICPR-2010). 

• Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., 
Shapiro, L., Todorovic, S., Dietterich, T. (2011). Fine-
Grained Recognition for Arthropod Field Surveys: 
Three Image Collections. First Workshop on Fine-
Grained Visual Categorization (CVPR-2011)

• Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, 
N., Shapiro, L., Paasch, R., Moldenke, A., 
Mortensen, E. A., Todorovic, S., Dietterich, T. G. 
(2010). Automated processing and identification of 
benthic invertebrate samples. Journal of the North 
American Benthological Society, 29(3), 867-874.
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Possible Universe

Known 
Universe

Result: Narrow AI System

• Supervised deep learning only 
learns features sufficient to 
separate the known classes

• Modeled Universe = Task 
Problem Space
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Closed-World Safety-Critical Design

• Define task and Operational 
Design Domain (ODD)

• Enumerate known hazards
• Hazard = a region of state 

space likely to lead to a harm 

• Introduce margins of safety 
around each known hazard

• Design optimal control 
policy that respects margins 
of safety
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Key Challenge of Open Worlds: Novelty

• New diseases (e.g., COVID in chest x-rays)
• New objects (e.g., OneWheel for automated 

cars)
• New items (movies, books, songs, 

restaurants, etc.) for recommender systems
• Novel hazards 
• Change in system dynamics

• Flat tire
• Loss of power steering
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Insect Identification: There are ≈ 76,000 species 
of freshwater insects worldwide
• 1,200 species in US
• Field samples may contain other things

• leaves
• trash

• Simple estimate of equal error rate for 
novel classes vs. the 54 classes was 
20% (in 2011)

• classifier is not usable without addressing 
the novel class problem

• “Novel Category Problem” or “Open 
Set Problem”
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Novel Category Detection
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Distance-Based Outlier Detection
• Define a distance 𝑑𝑑(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗)
• 𝐴𝐴 𝑥𝑥𝑞𝑞 = min

𝑥𝑥∈𝐷𝐷
𝑑𝑑(𝑥𝑥𝑞𝑞, 𝑥𝑥)

• Can be made more robust by looking at the 
average distance to the 𝑘𝑘-nearest points

• “k-nn anomaly detection”

• Can be normalized by dividing by the 
distance of each neighbor to their 𝑘𝑘-nearest 
neighbors

• “Local Outlier Factor (LOF)” Breunig, et al., 2000

• Efficient approximation: “Isolation Forest” 
Liu, et al., 2012

𝑥𝑥𝑞𝑞
𝑥𝑥𝑞𝑞
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Reconstruction Failure

• Principle: Anomaly Detection through 
Failure

• Define a task on which the learned system 
should fail for anomalies

• NavLab self-driving van (Pomerleau, 1992)
• Primary head: Predict steering angle from input 

image
• Secondary head: Predict the input image (“auto-

encoder”)
• 𝐴𝐴 𝑥𝑥𝑞𝑞 = 𝑥𝑥𝑞𝑞 − �𝑥𝑥𝑞𝑞
• If reconstruction is poor, this suggests that the 

steering angle should not be trusted

15

Pomerleau, NIPS 1992
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Distance-based Anomaly Detection for Deep Learning

• Let z = 𝑧𝑧1, … , 𝑧𝑧1024 be the features in the “penultimate” layer of the network. 

• Logit score for class 𝑘𝑘 is ℓ𝑘𝑘 𝑧𝑧 = ∑𝑗𝑗=11024𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑗𝑗

• Probability for class 𝑘𝑘 is 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 = exp ℓ𝑘𝑘(𝑧𝑧)
∑𝑘𝑘′ exp ℓ𝑘𝑘′(𝑧𝑧)

• Strategy: Apply distance-based methods to the 𝑧𝑧 vectors
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Reconstruction Failure: Deep Autoencoders

• The basic auto-encoder trains an encoder 𝐸𝐸 and decoder 𝐷𝐷 such that 𝐷𝐷 𝐸𝐸 𝑥𝑥 ≈
𝑥𝑥 by minimizing the image reconstruction error

• The capacity of the bottleneck and of the decoder must be carefully controlled to 
prevent the network from learning a general-purpose image compression 
mapping

• Very few people can get this to work
• [but see Haoyang Liu, et al. Class-specific semantic generation and reconstruction 

for open set recognition. IJCAI 2024]

Encoder𝑥𝑥 Decoder �𝑥𝑥
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Experimental Evaluation of Outlier Detection Methods

• CIFAR-100: 80 known classes; 20 novel 
classes

• Apply distance methods in 𝑧𝑧 space
• Isolation Forest on 𝑧𝑧𝑖𝑖
• Local Outlier Factor (nearest neighbor 

method) on 𝑧𝑧𝑖𝑖
• No better than random guessing

• Metrics based on “indecision”
• 𝐻𝐻 𝑦𝑦 𝑥𝑥 : entropy of predicted 

probabilities 𝑃𝑃 𝑦𝑦 𝑥𝑥
• Max softmax probability: max

𝑦𝑦
𝑃𝑃(𝑦𝑦|𝑥𝑥)

• Max Binary Cross-Entropy
• Max logit: max

𝑘𝑘
ℓ𝑘𝑘 𝑥𝑥

• Max logit is somewhat better than the 
others
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Max Logit Score: Experiments by Vaze, et al.
• Vaze, Han, Vedaldi, Zisserman (ICLR 

2022): “Open Set Recognition: A 
Good Classifier is All You Need” 

• arXiv 2110.06207
• Cross-Entropy+: carefully train a 

classifier using the latest tricks
• Standard cross-entropy combined with 

the following:
• Cosine learning rate schedule
• Learning rate warmup
• RandAugment augmentations
• Label Smoothing

• Anomaly score: max logit
• max

𝑘𝑘
ℓ𝑘𝑘(𝑧𝑧)

• Small values  anomalous
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Vaze, et al.: Three Large Open Set Benchmarks

• Novel class difficulty based on 
semantic distance

• CUB: Bird species
• Air: Aircraft
• ImageNet
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Why does Max Logit work?
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Experiment: 
Deep Learned Features in Computer Vision
• DenseNet with 384-dimensional 

latent space.  
• CIFAR-10: 6 known classes, 4 novel 

classes

• Light green: novel classes
• Darker greens: known classes

• Images from known classes are 
“pulled out” from the center of the 
space

• Most novel-class images stay 
toward the center of the space; 
others overlap with known classes

• Novel images are “inliers” 
22

Dietterich & Guyer, 2022
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Similar Results from Other Groups
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[Tack, et al. NeurIPS 2020] [Vaze, et al. arXiv 2110.06207]



The Familiarity Hypothesis

• Convolutional neural network learns “features” 
that detect image patches relevant to the 
classification task

• The logit layer weights these features to make 
the classification decision

• Novel classes activate fewer of these features, 
so their activation vectors are smaller

• Hypothesis: The networks don’t detect that an 
elephant is novel because of trunk and tusks but 
because its head doesn’t activate known 
features

24

The network doesn’t detect 
novelty, it detects the 
absence of familiarity
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Which features are responsible for the 
drop in activation?
Are they features “on” the object vs. the 
background?
• Strategy: blur the object and see how the 

feature activations change
• activations that change must be on the object

• Details:
• PASCAL VOC Segmented Images
• Blur the original image (31x31 kernel; sd=31)
• Form composite image where blurred region 

replaces the segmented region

25

https://www.peko-step.com/en/tool/blur.html
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Four Types of Features

• Logit score for class 𝑘𝑘 is ℓ𝑘𝑘 𝑧𝑧 = ∑𝑗𝑗=11024𝑤𝑤𝑗𝑗𝑗𝑗𝑧𝑧𝑗𝑗
• 𝑧𝑧𝑗𝑗 ≥ 0 for all node functions in common use

• Presence features: Blurring causes their activation to 
drop

• Absence features: Blurring causes their activation to rise
• Positive features: 𝑤𝑤𝑗𝑗𝑗𝑗 > 0
• Negative features: 𝑤𝑤𝑗𝑗𝑗𝑗 < 0
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Convolutional Neural Network Classifier

𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥)

𝑧𝑧
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Absence positive 
absence

negative 
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Familiarity Hypothesis: 
Most features are positive presence



Contribution to max logit score

• Four points plotted for each 
novel image

• Their sum is the max logit 
score

• Positive Presence features 
dominate the max logit score

• This confirms the familiarity 
hypothesis

• Similar results for ViT
networks
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Advantages and Disadvantages of Familiarity-
Based Novelty Detection
Advantages:
• Each class defines its own 

“distance” based on its positive-
presence features

• Avoids the need to define a global 
distance metric

Disadvantages
• Extra features are not detected as

anomalous
• Example: An elephant with wings

will still be recognized as an
elephant – the wings will be 
ignored by the elephant classifier

• Occlusions that hide familiar 
features will cause false novelty 
detections
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The Learned Representation is Promising
But Not a Complete Solution

• Many novel-class images are  
mapped onto clusters of known-
class images

• The learned representation can’t 
detect all of the anomalies

• Max Logit AUROCs range from 0.73 
to 0.91 
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How can we learn better features?

• Foundation Model Approach: 
• Train on all the data we can find
• Artificially introduce variation through augmentations

• Rotations, flips, simulated snow, rain, pixel noise, etc.
• Synthetic data

• The deep representation learns to “see” (represent) the 
known world

• A Onewheel will still be novel, but the model should have the 
right features to represent it and thereby separate it from all 
known objects
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Novel Hazards and Robust-yet-Fragile Systems

• Engineered systems are “robust 
yet fragile”

• Robust to the known hazards
• Vulnerable to novel failure modes

• Optimization for cost, weight, etc. 
results in designs near the edge 
of the feasible region

• Highly Optimized Tolerances (HOT) 
theory. Carlson & Doyle (2002)

• Small change in operating 
conditions leads to novel failure
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Systems View of Safety
[Leveson 2011: Engineering a Safer World]

• A system (including the human organizations 
that build, use, and operate it) can be 
decomposed into a hierarchy of subsystems, 
each with its own controller

• These systems are subject to many 
disturbances

• Environmental Novelty
• New regulations
• Budget cuts and staff reductions

• Systems tend to migrate toward the edges of safety

• A safe controller must detect and compensate 
for these disturbances

• Today: It is the exclusively the humans who do this
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High Reliability Human Organizations
Todd LaPorte, Gene Rochlin, and Karlene Roberts (Weick, et al., 1999)

• Preoccupation with failure
• Fundamental belief that the system has unobserved failure modes  
• Treat anomalies and near misses as symptoms of a problem with the system

• Reluctance to simplify interpretations
• Comprehensively understand the situation

• Sensitivity to operations
• Maintain continuous situational awareness

• Commitment to resilience
• Develop the capability to detect, contain, and recover from errors. Practice improvisational 

problem solving
• David Woods: A resilient organization is “poised to adapt”

• Deference to expertise
• During a crisis, authority migrates to the person who can solve the problem, regardless of 

their rank
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How can AI Help?

• Maintain Situational Awareness
• Anomaly Detection (already discussed)
• Near Miss Detection
• Novelty Diagnosis
• Automated or Suggested Repairs
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Near Miss Detection

• Case 1: Near Miss for Known Hazard
• System violates the margin of safety 

region near a known hazard
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Case 2: Counterfactual Near Misses

• Automatic Vehicle safety conditions
• At least 2m separation between vehicle 

and pedestrians, cyclists, stationary 
obstacles

• Pedestrian sees car coming and jumps 
out of the way

• Car determines that it met the required 
2m separation  “no problem”

• Counterfactual: There would have been 
a safety violation if the pedestrian had 
not taken evasive action
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Novelty Diagnosis and Repair
• Easy Cases:

• Anomaly caused by novel category
• Repair: Collect training data for the novel category and retrain the detector/classifier

• Near miss caused by controller failure
• Repair: Generate additional training trajectories for the controller

• Harder Cases:
• Perceptual failure caused by novel type of occlusion

• Repair: Improve context-dependent uncertainty quantification. Controller will be more 
cautious under high uncertainty

• Repair: Add sensors that do not suffer from the occlusion
• Characterize novel hazard. Under what conditions will the hazard occur? 

• Repair: Define new hazard region; retrain the controller
• May require defining new state variables, adding sensors, and improving state estimation
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Creating Resilient Systems
• David Woods: A resilient system is one that is 

“poised to adapt”
• Surprises are often not visible through standard 

sensors/communication paths
• Organizations must practice communicating and 

adapting to confront novelty
• An AI perspective:

• The entire design process should be regarded as 
one path through a design space

• Adaptation requires following new paths through 
that space

• The design space and design process should be 
“kept on standby” so that they can be invoked 
whenever adaptation is required
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What is the Role of LLMs (and Foundation 
Models, more generally)?
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• Modeled Universe is nearly 
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• Greatly improves learned 
representations

• Supports improved anomaly 
detection and diagnosis
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may be unreliable
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Future Directions
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Beyond Statistical Learning
• Distribution-Independent Machine 

Learning
• We need more than statistical guarantees of 

correctness
• Can we verify that our learned models are well-

behaved?
• Smoothness

• Bounded curvature
• Bounded Lipschitz constant
• Bounded distance from linear interpolation

• Can we verify that our uncertainty 
quantification is correct?

• Can we prove that there are no spurious 
correlations?

• Learned relationships are causal; no hidden 
confounders
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Summary
• Functional and safety engineering address the known sources of variation and the known hazards

• This makes them robust yet fragile
• Deep Learning representations only capture the variation necessary to perform the task

• Key challenge #1 of open worlds: novel categories
• Novel categories of objects, behaviors, etc.
• Existing novelty detection methods perform poorly with deep learning
• Familiarity-based max logit score works better, but only if the representation separates novelties from the 

known categories
• Key challenge #2 of open worlds: novel hazards

• Counter-factual near misses
• Resilient Systems

• Design space “on standby”
• Foundation Models

• Revolutionary improvements in learned representations
• Future Directions

• Research on counter-factual hazards
• Distribution-independent machine learning
• Verifiable uncertainty quantification
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