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Goal: Robust Artificial Intelligence

e Definition: System remains safe and successful in spite of
— Errors in the problem formulation
— Errors in authored or learned models
— Sensor failures
— Changes in the system and in the world
— Errors by human operators
— Breakdowns in human teams
— Cyberattack



High Reliability Organizations

Todd LaPorte, Gene Rochlin, and Karlene Roberts

e Studied several high reliability human teams
— Air Traffic Control
— Nuclear power plant operations
— Aircraft Carrier Flight Deck Operations

e Claim: Accidents can be prevented through organizational
design, culture, management, and human choices

* |mpact:
— Patient safety movement
— Cockpit resource management



Properties of High Reliability Organizations

Preoccupation with failure
— Fundamental belief that the system has unobserved failure modes

— Treat anomalies and near misses as symptoms of a problem with the
system

e Reluctance to simplify interpretations

— Comprehensively understand the situation
e Sensitivity to operations

— Maintain continuous situational awareness
e Commitment to resilience

— Develop the capability to detect, contain, and recover from errors.
Practice improvisational problem solving

e Deference to expertise

— During a crisis, authority migrates to the person who can solve the
problem, regardless of their rank



Principle: There are unknown failure modes
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Maintain situational awareness

Detect anomalies and near misses

Understand and explain anomalies and near misses

Find improvements and workarounds via improvisational problem solving

Final decision made by person with greatest expertise
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PART 1: AUTONOMOUS Al SYSTEMS



Maintain Situational Awareness

Sensor Model P(o;|s¢) Dynamics Model P(S¢41|St, at)

e Maintain a probability distribution P(s;) overthe « Methods:
state of the system

e Collect the observations o;
e Compute updated distribution:

— Kalman filter
— Particle filters

P(s¢|o;) «< P(o¢|ss)P(s;) — Expectation
e Choose the action a; propagation
* Predict next state distribution: — Variational
approximations
P(st41lor ar) = ZP(St+1|at' se)P(s¢lot) _ etc.

St
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Detect Anomalies and Near Misses

Detecting Anomalies
e Compute the “surprise” of the observed o, 1
e Predicted distribution of 04, 1:
P(o¢t1lot, ar) = z P(st41l0, ar)P(0p41lSe41)

St+1

e Anomaly Score:
—log P(0¢41l0g, a)

e Practical algorithms may require approximations



Anomaly Detection Benchmarking Study

e Goal: Compare published algorithms on a robust collection of
benchmarks

— Previous comparisons suffered from small size and/or proprietary data

sets
* Density-Based Approaches  Neighbor-Based Methods
— RKDE: Robust Kernel Density — LOF: Local Outlier Factor (Breunig, et al.,
Estimation (Kim & Scott, 2008) 2000)
— EGMM: Ensemble Gaussian — ABOD: kNN Angle-Based Outlier
Mixture Model (our group) Detector (Kriegel, et al., 2008)
e Quantile-Based Methods * Projection-Based Methods
— OCSVM: One-class SVM — |IFOR: Isolation Forest (Liu, et al., 2008)
(Schoelkopf, et al., 1999) — LODA: Lightweight Online Detector of
— SVDD: Support Vector Data Anomalies (Pevny, 2016)

Description (Tax & Duin, 2004)

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]




Anomaly Detection Benchmark Results
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iForest was best; quantile methods were worst; all others approximately equal
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Anomaly Detection Challenges

 High-dimensional spaces are inherently difficult

— Can we assume the true state s has much lower dimension?

 |mage and video data
— Need to discover the lower-dimensional space
— Discover the dynamics model P(s¢.41|S¢, a;)
— Discover the sensor model P(o;|s;)

e Promising directions

— Auto-encoders and generative models (VAE, RAE, BiGAN)
— Neural Rendering Model
— Extending existing methods to work with time series



Defining and Detecting Near Misses

v
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e Suppose we have a utility function U(s) over states
e Counterfactual Notion: Perturb s;_; and/or a;_;
* Near Miss:
U(st) < U(st)
e Detecting near misses is under-studied; requires causal model
* Should anticipate them and act to prevent them (ACAS-X)
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Explaining Anomalies and Near Misses:
Research Challenges

e Open-ended space of hypotheses
— Effects of exogenous variables / unknown external agents?

* what external agents might exist and why would they be affecting
our system?

— Sensor failures and/or inadequate sensors
* why didn’t we detect the anomaly or near miss earlier?
— Model failures (dynamics and sensor models)
e did the system structure change? (broken pipe? stuck valve?)

 Promising work

— Model-based diagnosis including performing information-gathering
actions



Finding Repairs and Workarounds

 Approaches

— Update dynamics and sensor models and then apply planning
algorithms?

— Mark aspects of the models as unreliable and seek a plan that does
not depend on those aspects?

— Always plan conservatively to be robust to model errors?

e Existing Work
— Optimizing Against an Adversary (robust optimization)
e Robust Optimization
— Ben-Tal, Bertsimas, etc.
— Optimizing Conditional Value at Risk (CVaR)
e Acting conservatively provides robustness to model error



Summary: Autonomous Al

Situational Awareness A mature methods
Detect Anomalies and Near Misses B high-dimension, dynamics
Explain Anomalies and Near Misses D only basic techniques

Improvise Solutions F
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PART 2: Al + HUMAN TEAMS



Al and Human Teams

 Even very powerful Al systems will be surrounded by
a human team that will determine
— What goals to give it
— What degree of autonomy to permit it
— When to trust it
— What degree of learning/adaptation to allow

e How can the combined Al + Human Team be safe and
robust?

— Reconsider each aspect of high-reliability organizations
from an interactive perspective



Situational Awareness: Past Failures

Autopilot Tunnel Vision: Aircraft autopilot not aware of air traffic control
instructions

— Co-pilot must continually update the autopilot’s waypoints based on ATC
interactions

— This load increases in high-traffic/high-risk situations
— Co-pilot loses awareness of other aspects of the system

Autopilot Fails to Communicate Situation
— Colgan Air 3407 crash near Buffalo
— Autopilot was compensating for aircraft icing, but pilots were not aware of this
— Eventually autopilot was forced to hand control back to pilots
— Their lack of situational awareness led to crash (“decompensation failure”)

Autopilot Over-Communicates
— Hundreds of unimportant alarms
— Complex displays that bury important information
Humans Misunderstand Internal State of Autonomous System

— USS John McCain collision: team thought single slider was controlling both engines,
but it was controlling only one

— Caused ship to turn into the course of an oncoming ship



Requirements for Robust Situational
Awareness

e Al system should have sufficient sensing

state of world including other agents
state of the system being controlled
state of its human team

e Human team and Al system should establish and maintain a
shared mental model

Al system should reason about what the users know and do not know
and communicate strategically

Humans need a good mental model of the Al system’s beliefs about
the situation

Al system needs to be able to explain its beliefs to humans
Careful design of user interface is critical



Anomaly and Near Miss Detection

e Existing methods are highly local

— sensor readings out of standard range

— violations of minimum separation (air-to-air, air-to-ground, car-to-car)
* Need more and better anticipation of problems

— model the behavior of other agents (including team members)
— project system state many steps into the future and evaluate

* |ncorporate interactive anomaly detection



Explaining Anomalies and Near Misses

e Existing anomaly explanations are purely statistical
— “This credit card transaction is anomalous because it was very large
compared to this customer’s normal behavior”
e Root cause analysis
— “Customer just purchased a house and is buying furniture for it”

— Must consider a broader set of hypotheses than in normal state
updating
— May lack dynamics and observation models for this broader space



Example: Root Cause Analysis in TAHMO

e TAHMO: Trans-Africa Hydro-
Meteorological Observatory

— 500+ automated weather stations in East
and West Africa

— Data quality control: Detect broken
sensors

Decision Theory & the Future of Artificial
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Detect Anomalies from
Violated Correlations

e Joint distribution of
temperature and relative
humidity P(T, RH)

 Anomaly has high
—log P(T,RH)

e But how do we know which

sensor (thermometer vs.
humidity) is broken?

45

Air Temperature (degrees C}

e Solution: probabilistic
inference over multiple views
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Joint Anomaly Detection

A(Tempy, Relh;) A(Temp;, 1, Relh;, 1)
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SENSOR-DX: Multiple View Approach

e Views capture joint distribution over time and space
— Single sensor over K time steps
o A(Xi_g+1)Xt—K+1, - » Xt—1, X¢) Captures this distribution
— Pair of sensors at one time step
e A(x,y:) such as temperature and relative humidity

— Difference between value at station £ and the value predicted from
spatial neighbors #7, ..., £},

e A (xt(f) — f(xt(f’l), ...,xt(ﬂ{)))



Diagnostic Model

Which sensor states best explain the observed anomaly scores?
Thermo
Temperature @ @ @ @ e
.‘ ‘ r‘ /ll states
51(0) s1(1) 51(2) s1(3) s1(4)

e @((D) @@ @@ (13(3)) @(4)) @(5))

s2(0) s2(1) ' S2 ((3) . S2(4) s2(5) ﬂ
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Probabilistic Root Cause Analysis

e Assemble incoming data into view tuples
e Compute anomaly score for each view tuple

e Perform probabilistic inference to determine which sensor
states best explain the observed anomaly scores:
arg max P(S|A(V))

e Challenge: How to explain the inferred root causes?

— “If (temperature, relative humidity) combination is anomalous but
temperature time series looks nominal, then the relative humidity
sensor must be broken”



Improvisational Problem Solving

e Human users and Al system collaborate to find solutions
e Humans “think outside the box” to enlarge the problem space

e How can the Al system help humans reason about this larger
problem space?

— Verify that proposed plan does not violate any known system limits or
lead to bad system states within the Al’s narrow problem space?

— Can humans communicate the larger space to the Al system so that it
can reason about it?

— Explain to humans how the Al system would behave if permitted
autonomy

e Existing work:

— Mixed-initiative Planning



Mixed-Initiative Planning

Agenda of activities that need to be planned
User-invoked planning operators

Plan all: fully automated planning

Plan selected goals: incrementally add one or more
activities to the emerging plan

Expand selected subgoal

Create a plan sketch (commit to some activities,
possibly at different levels of abstraction)

User plan editing

Move an activity to a different time while disturbing
existing steps as little as possible

Add/delete activity
Delete or relax a constraint

Tentatively fix a decision but note that if additional
information arrives (e.g., weather forecast) then this
decision should be revisited

System continually checks that all constraints are

satisfied and makes changes to satisfy resource
constraints and mutual exclusion constraints

Decision Theory & the Future of Artificial
Intelligence
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Decision Making

e Person with the relevant expertise should make the final
decision
— Course of action
— Decision to delegate actions to Al system



Past Failures

e Al capabilities and limitations are unclear to humans
— Humans trust Al autonomy when they should not

e Gulf War Patriot Missile Fratricide
— New crew operating unfamiliar equipment
— Broken radio communication with other teams

— Patriot missile system incorrectly interpreted returning
British fighter jet as incoming ballistic missile

— Crew trusted the system, launched defensive missile: 2
killed

* Iran-lraqg War AEGIS autonomous ship defense system

— AEGIS and crew misinterpreted civilian aircraft as
incoming attacker despite IFF transponder signal

— Armed AEGIS which then shot down the aircraft: 290
killed

e Al current and future behavior is difficult for humans
to predict

— Symptom: Humans continually monitor Al system behavior
and prepare to intervene at any moment

Decision Theory & the Future of Artificial
Intelligence
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Past Failures (2)

e Teamwork failures lead to accidents
— USS Fitzgerald collision with ACX Crystal

e Poor communications including failure
to use advanced navigation aides led to
loss of situational awareness

e Collision killed 7

Decision Theory & the Future of Artificial
Intelligence
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Requirements for Human + Al Teams

e Al System needs to monitor functioning of human team
— Detect communication failures
— Detect misunderstandings (failures of shared mental model)

e Al System needs to know when to defer to human expertise
— Model the expertise of each team member

— Know whom to engage to obtain information or make a decision

e |f human teamwork is breaking down, Al system should abort
mission and switch to a safe backup plan



Summary: Human + Al Teams

Situational Awareness C poor Ul, poor communication
Detect Anomalies and Near Misses C user feedback to anomaly detection

Explain Anomalies and Near Misses D only basic techniques

Improvise Solutions D mixed-initiative planning
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CONCLUSIONS



Pure Al Research Needs

e Learning and modeling of complex, partially-sensed systems

— latent dynamical models

e Anomaly detection for high-dimensional and latent dynamical
systems

 Near miss prediction and detection
e Root cause diagnosis of near misses and anomalies
e Robust planning for incompletely-understood systems



Human + Al Research Needs

e Joint situational awareness — Shared Mental Models

— Learning and reasoning about what other agents (human and Al) know
and believe

* Interactive anomaly detection
e Interactive near miss detection
e Joint improvisational planning

e Joint expertise model
— Al has model of expertise of each team member

— Team members can accurately predict the behavior of the Al system
and known when to trust it (and when not)

e Explanation and visualization methods to support all of the
above



Granting Autonomy is a Form of Trust

 Being trustworthy is more than being predictable and reliable

e Trust carries with it several obligations
— To act on behalf of the team’s goals and interests
— To keep the team well-informed
— To return control to the team when it cannot meet these obligations



QUESTIONS?



“Normal Accidents”
Charles Perrow (1984)

e Response to Three-Mile Island
failures

e (Claims:

— Accidents are inevitable
“normal”) in extremely complex
systems

— If system also has catastrophic
potential, these accidents will
lead to catastrophe

Decision Theory & the Future of Artificial
Intelligence
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Impact: Patient Safety Movement

e @Goal: Zero Preventable Deaths in Health Care
e Checklists in the operating room

e Empowering all members of the surgical team to halt the
surgery if a problem is noticed

Culture of Safety Healthcare-associated Medication Safety
Infections (HAISs)

Monitoring for Patient Blood Hand-off

Respiratory Depression Management Communications

Neonatal Safety Airway Safety Early detection and

treatment of Sepsis

Prevention/Resuscitation Obstetric Safety Embolic Events
of Cardiac Arrest

Mental Health Fall Prevention Nasogastric Tube
Placement & Verification

Person & Family Patient Safety Curriculum Post-operative Delerium
Engagement in older adults



HRO Desideratum for Al Deployment

We should not deploy Al unless we can
ensure that the human organization is
highly reliable
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