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• Data Cleaning
• Remove corrupted data from the training data
• Example: Typos in feature values, feature values interchanged, test results from two patients combined

• Fraud Detection, Cyber Attack, etc.
• At training or test time, illegal behavior creates anomalous data

• Open Category Detection
• At test time, the classifier is given an instance of a novel category 
• Example: Self-driving car (trained in Europe) encounters a kangaroo (in Australia)

• Novel Sub-category Detection
• At test time, the classifier is given a new kind of instance for a known category
• Example: Chihuahua shown to a classifier trained only on Beagle and Golden Retriever
• Example: New subtype of known disease

• Out-of-Distribution Detection
• At test time, the classifier is given an instance collected in a different way
• Example: Chest X-Ray classifier trained only on front views is shown a side view
• Example: Self-driving car trained in clear conditions must operate during rainy conditions

Anomaly Detection Use Cases
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Anomaly Detection
Definition of “anomaly”:
• A data point that is generated by a different process than the process that is generating the “nominal” points
• Examples: sensor failures, fraud, cyber-attack, etc.

Challenges:
• Little or no labeled data
• Anomalies are rare
• Anomalies may not come from a well-defined probability distribution (especially in adversarial settings)
• Nuisance Novelty: Not all anomalies are relevant to the task or use-case

• Irrelevant features in web site behavior or internet traffic
• Changes in image background or context

Strategy:
• Because anomalies are rare, the main strategy for detecting them is to look for outliers: points that are far 

away from most of the data
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Application Scenarios

Training Data Deployment Data Example

Mix of nominal and 
anomaly N/A Data cleaning, fraud 

detection

Mix of nominal and 
anomaly

Mix of nominal and 
anomaly

Fraud detection, cyber 
attacks

Nominal-only (“clean”) Mix of nominal and 
anomaly

Novel categories, novel 
cyber attacks, novel 
diseases
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Part 1: Anomaly Detection for Feature Vector 
Data
• Traditional machine learning representation
• Advantages:

• Meaningful features/attributes
• Can design an appropriate distance or similarity measure
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• Density Estimation Methods
• Model the joint distribution 𝑃𝑃𝐷𝐷(𝑥𝑥) of 

the input data points
• Quantile Methods

• Model the region of data space 
where 𝑃𝑃𝐷𝐷 𝑥𝑥 ≥ 𝜏𝜏

• Distance-Based Methods
• Compute distance of new point to its 
𝑘𝑘 nearest neighbors

• Projection Methods
• Project your data into a lower-

dimensional space and then apply 
any of the above methods

Technical Approaches
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John Sipple (ICML 2020)
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Method: Density Estimation via
Noise-Contrastive Estimation
• Idea:

• Label all points in our data set 𝐷𝐷 to belong to class 0
• Uniformly sample points from a “box” that contains 𝐷𝐷 and label those points 

as class 1
• Fit a flexible machine learning model 𝑓𝑓 to the data
• 𝑓𝑓 𝑥𝑥 = 𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) which is the probability that 𝑥𝑥 is an anomaly

• History
• “Well known statistical folklore” according to Hastie, Tibshirani & Friedman 

(2016) Elements of Statistical Learning 2nd edition
• Pihlaja, Guttman & Hyvarinen (2010) “A Family of Computationally Efficient 

and Simple Estimators for Unnormalized Statistical Models”. UAI 2010
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Example

• Training data 𝐷𝐷
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Example

• Training data 𝐷𝐷
• Random sample 𝑁𝑁
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Example

• Training data 𝐷𝐷
• Random sample 𝑁𝑁
• Fit a function 𝑓𝑓. I used R 

“gbm” method with the 
“logit” link function 

• Points 𝑥𝑥 where 𝑓𝑓 𝑥𝑥 >
0.5
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Approach 2: Quantile Methods

• We don’t really need to model the 
whole probability distribution

• One-class Support Vector Machine 
(OCSVM)

• Support Vector Data Description (SVDD)
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Approach 3: Distance-Based Methods

• k-nearest neighbor
• LOF: Local Outlier Factor
• ABOD: Angle-based Outlier Detector
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Approach 4: Projection Methods

• Isolation Forest [Liu, Ting, Zhou, 2011]
• LODA [Pevny, 2016] 
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Isolation Forest [Liu, Ting, Zhou, 2011]

• Construct a fully random binary tree
• choose attribute 𝑗𝑗 at random
• choose splitting threshold 𝜃𝜃 uniformly 

from min 𝑥𝑥⋅𝑗𝑗 , max 𝑥𝑥⋅𝑗𝑗
• until every data point is in its own leaf
• let 𝑑𝑑(𝑥𝑥𝑖𝑖) be the depth of point 𝑥𝑥𝑖𝑖

• repeat 𝐿𝐿 times
• let 𝑑̅𝑑(𝑥𝑥𝑖𝑖) be the average depth of 𝑥𝑥𝑖𝑖

• 𝐴𝐴 𝑥𝑥𝑖𝑖 = 2
−

�𝑑𝑑 𝑥𝑥𝑖𝑖
𝑟𝑟 𝑥𝑥𝑖𝑖

• 𝑟𝑟(𝑥𝑥𝑖𝑖) is the expected depth 
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𝑥𝑥⋅𝑗𝑗𝑥𝑥⋅𝑗𝑗 > 𝜃𝜃

𝑥𝑥⋅2 > 𝜃𝜃2 𝑥𝑥⋅8 > 𝜃𝜃3

𝑥𝑥⋅3 > 𝜃𝜃4 𝑥𝑥⋅1 > 𝜃𝜃5

𝑥𝑥𝑖𝑖
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LODA: Lightweight Online Detector of Anomalies
[Pevny, 2016]
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• Generate 𝐿𝐿 sparse random 
projections (projections 
onto 𝐿𝐿 lines in 𝑑𝑑-
dimensional space)

• Estimate the probability 
density for each project 
(easy)

• Anomaly score is the 
average of the anomaly 
scores in each projection
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Benchmarking Study
[Andrew Emmott]

• Most AD papers only evaluate on a few datasets
• Often proprietary or very easy (e.g., KDD Cup 1999)
• Research community needs a large and growing collection of 

public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013] 
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
[Emmott, MS Thesis. 2020]
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Benchmarking Methodology

• Select 19 data sets from UC Irvine repository
• Choose one or more classes to be “anomalies”; the rest are 

“nominals”
• Manipulate

• Relative frequency
• Point difficulty 
• Irrelevant features
• Clusteredness

• 20 replicates of each configuration
• Result: 11,888 Non-trivial Benchmark Datasets
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Nine Algorithms
• Density-Based Approaches

• RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
• EGMM: Ensemble Gaussian Mixture Model (our group)

• Quantile-Based Methods
• OCSVM: One-class SVM (Schoelkopf, et al., 1999)
• SVDD: Support Vector Data Description (Tax & Duin, 2004)

• Neighbor-Based Methods
• k-NN: Mean distance to 𝑘𝑘-nearest neighbors
• LOF: Local Outlier Factor (Breunig, et al., 2000)
• ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)

• Projection-Based Methods
• IFOR: Isolation Forest (Liu, et al., 2008)
• LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
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Analysis of Variance

• Linear ANOVA
• 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ~ 𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

• rf: relative frequency
• pd: point difficulty
• cl: normalized clusteredness
• ir: irrelevant features
• mset: “Mother” set
• algo: anomaly detection algorithm

• Validate the effect of each factor
• Assess the algo effect while controlling for all other factors
• 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚: area under the ROC curve for the nominal vs. anomaly binary 

decision
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• 19 UCI Datasets
• 8 Leading “feature-based” algorithms
• 11,888 non-trivial benchmark datasets
• Mean AUC effect for “nominal” vs. “anomaly” decisions

• Controlling for
• Parent data set
• Difficulty of individual queries
• Fraction of anomalies
• Irrelevant features
• Clusteredness of anomalies

• Baseline method: Distance to nominal mean (“tmd”)
• Best methods: K-nearest neighbors and Isolation Forest 

(projection method)
• Worst methods: Kernel-based OCSVM and SVDD

Benchmarking Study Results

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Mean AUC Effect

Employs a distance
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Application to Cyber Security and Fraud Detection

• In most applications, anomaly detection has a significant false alarm 
rate

• This means that a human needs to examine each anomaly alarm and 
decide whether it is a true alarm or a false alarm

• This provides us with a source of feedback for reducing false alarms
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Incorporating Analyst Feedback into Anomaly Detection

• Show top-ranked (unlabeled) 
candidate to the Analyst

• Analyst labels candidate
• Label is used to update the 

anomaly detector

Data

Anomaly
Detection

Best
Candidate

Analyst 

Launch Investigation

yes

no

[Das, et al, ICDM 2016] 
[Siddiqui, et al., KDD 2018]
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Analyst Feedback Yields Huge Improvements 
in Anomaly Discovery
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Part 2: Anomaly Detection in Computer Vision

• Challenges:
• No easy distance metrics
• Very high dimension
• High degree of nuisance novelty in 

natural images

• State-of-the-art methods have 
difficulty deciding that SVHN 
house numbers are anomalies 
compared to CelebA!

Faces from CelebA

House Number from SVHN
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Central Challenge: Learned Representations
• Train a deep network to perform a 

classification task
• Learned representation 𝑧𝑧 = 𝐸𝐸(𝑥𝑥)

• E is called the “Encoder”
• This representation is trained to 

separate the classes
• It loses information needed to detect 

outliers
• Outliers 𝑥𝑥𝑥 are often mapped close to 

the known classes
• 𝐸𝐸 𝑥𝑥 ≈ 𝐸𝐸(𝑥𝑥′)

• No method can detect the outlier if it 
is not an outlier in the 𝑧𝑧 space

• We have little or no control over the 
topology of 𝑧𝑧 space (e.g., is Euclidean 
distance valid?)
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Convolutional Neural Network Classifier

Image
𝑥𝑥 Penultimate Layer 𝑧𝑧
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Three Main Approaches
• Method 0: Train CNN classifier

• Extract anomaly signal from the 𝑧𝑧 space

• Method 1: Modify training so that 𝑧𝑧 can represent “open space”
• Introduce “simulated anomalies” and hope the network generalizes

• Method 2: Anomaly Detection via Failure:
• Train the network on a task so that the network will fail when given outliers

• There are many many other ad hoc methods, but these are the only 
approaches that have a principled justification
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Method 0: Research Questions

• Q1: How well do existing anomaly scoring methods extract the 
anomaly information that is captured in the latent representation 𝑧𝑧?

• Approach: Compare to an oracle anomaly detector
• Q2: How well could any network with this architecture perform the 

anomaly detection task
• Approach: Supervised training on both nominal and anomalous classes

• Definition of anomalies: Classes not seen during training
• “Open Category” or “Open Set” problem
• We claim this is harder and more realistic than classic Out-Of-Distribution 

tasks
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Methods:
• CIFAR-10: 6 “nominal” classes and 4 “anomaly” classes
• CIFAR-100: 80 “nominal” classes and 20 “anomaly” classes

• Train Classifier
• Divide data into train (60%), validate (20%), test (20%)
• Remove anomaly classes from the training and validation data
• Train ResNet34; use validation set accuracy to determine stopping point
• Compute test set anomaly scores using various metrics; measure AUC

• Oracle Anomaly Detection
• Take all validation data and label the nominal classes as “nominal” and the anomaly classes as 

“anomaly”
• Train a binary classifier that takes 𝑧𝑧 as input and predicts “nominal” vs. “anomaly” 
• Compute test set anomaly scores using this classifier; measure AUC

• Oracle Representation
• Train a binary classifier on “nominal” vs “anomaly” using data from all classes
• Measure “nominal” vs “anomaly” AUC on the test data; measure AUC
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Results AUC CIFAR 10 CIFAR 100

AD 0.776 ± 0.008 0.717 ± 0.008
Oracle AD 0.905 ± 0.015 0.789 ± 0.011
Oracle Classifier 0.987 ± 0.003 0.809 ± 0.011

Booking.com 34

Conclusions
• Q1: The latent space contains much more anomaly information 

than is extracted by current anomaly scores
• 0.7760.905 = 0.129; 0.7170.789 = 0.072

• Q2: There is additional anomaly information in the images that is 
not represented by the latent space
• 0.9050.987 = 0.082; 0.789 0.809 = 0.020



Method 1: Training to Open Up Space
• Define image of transformations

• Transformations that preserve the class label 𝑇𝑇
• horizontal flip, Sobel, Noise, Blur, change color map, zoom in or out

• Transformations that change the class label 𝑆𝑆
• permute, rotate

35
Tack, Mo, Jeong, Shin: CSI. NeurIPS 2020

𝑇𝑇1 𝑇𝑇2 𝑇𝑇3 𝑇𝑇4 𝑆𝑆1 𝑆𝑆2
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Instance-Level Contrastive Learning
• Choose 𝑇𝑇𝑖𝑖(𝑥𝑥) and 𝑆𝑆𝑗𝑗(𝑥𝑥) at 

random from 𝑇𝑇 and 𝑆𝑆
• Send 𝑥𝑥, 𝑇𝑇𝑖𝑖(𝑥𝑥) and 𝑆𝑆𝑗𝑗 𝑥𝑥

through the network to 
compute their encoded 
representations

• Update the network weights 
to make 𝐸𝐸 𝑥𝑥 ≈ 𝐸𝐸 𝑇𝑇𝑖𝑖 𝑥𝑥 and 
make 𝐸𝐸 𝑥𝑥 ≠ 𝐸𝐸 𝑆𝑆𝑗𝑗 𝑥𝑥

• The 𝑆𝑆 transformations 
simulate outliers and force the 
network to represent them as 
points far away from the 
inliers
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Encoder

𝑥𝑥

𝑇𝑇𝑖𝑖(𝑥𝑥)

𝑆𝑆𝑗𝑗(𝑥𝑥)

𝐸𝐸 𝑥𝑥

𝐸𝐸 𝑇𝑇𝑖𝑖(𝑥𝑥)

𝐸𝐸 𝑆𝑆𝑗𝑗(𝑥𝑥)
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Remarks

• No personal experience with this yet
• No theoretical guarantee that this will work
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Method 2: Anomaly Detection via Failure
• Train network on a 

reconstruction task
• 𝑧𝑧 is a “bottleneck” that 

requires the network to 
learn a compact code

• Train network to make 
𝑥𝑥 ≈ 𝑥𝑥′ for nominals

• Hope that the 
reconstruction fails on 
anomalies

• Make the bottleneck as 
small as possible 

• Other tricks 
(regularization for 
sparsity, etc.)
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Encoder Decoder𝑧𝑧𝑥𝑥 𝑥𝑥′
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Results?

• For low-dimensional problems, we can replace the 
network with Principal Component Analysis (PCA) 
and measure the reconstruction error

• This has worked well in many applications (e.g., Wagstaff, 
et al. 2013)

• However, experiments with deep networks have 
failed to achieve strong results

• Issues:
• Hard to define how to measure similarity: 𝑥𝑥 ≈ 𝑥𝑥𝑥
• Networks can learn very general image compression 

schemes  they don’t fail on anomalies!
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Summary

• General Anomaly Detection 
Methods

• Density Estimation
• Quantile Methods (OCSVM, SVDD)
• Distance-Based Methods (KNN)
• Projection Methods (Isolation 

Forest)

• Application to Cybersecurity and 
Fraud Detection

• Anomaly Detection in Computer 
Vision

• Challenge: learned 
representations are task-specific

• Standard CNNs retain a surprising 
amount of anomaly information

• Open up “empty space” with 
simulated outliers

• Solve reconstruction tasks
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• Anomaly detection is important
• Critical for robust AI systems
• Practical applications

• Anomaly detection is difficult
• Moderately mature for tabular data sets
• Fundamentally relies on some notion of distance
• Very challenging for images where we need a notion of semantic distance

• Research in this area is advancing rapidly with little theoretical understanding

Concluding Remarks
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