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Anomaly Detection Use Cases

* Data Cleaning
* Remove corrupted data from the training data
* Example: Typos in feature values, feature values interchanged, test results from two patients combined

* Fraud Detection, Cyber Attack, etc.
* At training or test time, illegal behavior creates anomalous data

* Open Category Detection
* At test time, the classifier is given an instance of a novel category
* Example: Self-driving car (trained in Europe) encounters a kangaroo (in Australia)

* Novel Sub-category Detection
* At test time, the classifier is given a new kind of instance for a known category
* Example: Chihuahua shown to a classifier trained only on Beagle and Golden Retriever
* Example: New subtype of known disease

* OQut-of-Distribution Detection
* At test time, the classifier is given an instance collected in a different way
* Example: Chest X-Ray classifier trained only on front views is shown a side view
* Example: Self-driving car trained in clear conditions must operate during rainy conditions



Anomaly Detection

Definition of “anomaly”:
* A data point that is generated by a different process than the process that is generating the “nomina
* Examples: sensor failures, fraud, cyber-attack, etc.

|”

points

Challenges:

Little or no labeled data

Anomalies are rare

Anomalies may not come from a well-defined probability distribution (especially in adversarial settings)

Nuisance Novelty: Not all anomalies are relevant to the task or use-case
* Irrelevant features in web site behavior or internet traffic
e Changes in image background or context

Strategy:

* Because anomalies are rare, the main strategy for detecting them is to look for outliers: points that are far
away from most of the data



Application Scenarios

Mix of nominal and N/A Data cleaning, fraud
anomaly detection

Mix of nominal and Mix of nominal and Fraud detection, cyber
anomaly anomaly attacks

Novel categories, novel
cyber attacks, novel
diseases

Mix of nominal and

Nominal-only (“clean”)
anomaly
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Part 1: Anomaly Detection for Feature Vector
Data

* Traditional machine learning representation

* Advantages:
* Meaningful features/attributes
* Can design an appropriate distance or similarity measure



echnical Approaches

* Density Estimation Methods
* Model the joint distribution Pp(x) of “ ]
the input data points
* Quantile Methods
* Model the region of data space
where Pp(x) > 1
* Distance-Based Methods

 Compute distance of new point to its
k nearest neighbors

* Projection Methods e <+ 2 o 2

* Project your data into a lower- x
dimensional space and then apply
any of the above methods
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echnical Approaches

* Density Estimation Methods
* Model the joint distribution Pp(x) of
the input data points

 Quantile Methods

* Model the region of data space
where Pp(x) > 1

* Distance-Based Methods

 Compute distance of new point to its
k nearest neighbors

* Projection Methods

* Project your data into a lower-
dimensional space and then apply
any of the above methods




Case Study: Smart Buildings

John Sipple (ICML 2020)

Objective: Make buildings smarter, secure and
reduce energy use! Improve occupant comfort |
and productivity while also improving facilities’ o=t

operation efficiencies.

Owwaces n the Cohon

120 million measurements daily, generated by
over 15,000 climate control devices, in 145
Google buildings

Aromgians Scores

Since going live in June 2019, FDD has
created 458 facilities technician work ~————
orders, with a 44% True Positive rate
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Method: Density Estimation via
Noilse-Contrastive Estimation

* |dea:
* Label all points in our data set D to belong to class O

* Uniformly sample points from a “box” that contains D and label those points
as class 1

* Fit a flexible machine learning model f to the data
* f(x) = P(y = 1|x) which is the probability that x is an anomaly

* History
* “Well known statistical folklore” according to Hastie, Tibshirani & Friedman
(2016) Elements of Statistical Learning 2" edition

e Pihlaja, Guttman & Hyvarinen (2010) “A Family of Computationally Efficient
and Simple Estimators for Unnormalized Statistical Models”. UAI 2010



Example

* Training data D

mixture$y
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Example

* Training data D

e Random sample N
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Example

Training data D
Random sample N

Fit a function f. | used R
“ebm” method with the
“logit” link function

Points x where f(x) >
0.5

mixture$y

mixture$x
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Approach 2: Quantile Methods

* We don’t really need to model the .
whole probability distribution

* One-class Support Vector Machine
(OCSVM) o

* Support Vector Data Description (SVDD)




Approach 3: Distance-Based Methods

* k-nearest neighbor
e LOF: Local Outlier Factor
 ABOD: Angle-based Outlier Detector



Approach 4: Projection Methods

* |solation Forest [Liu, Ting, Zhou, 2011]
* LODA [Pevny, 2016]



Isolation Forest [Liu, Ting, Zhou, 2011]

* Construct a fully random binary tree
* choose attribute j at random
* choose splitting threshold 6 uniformly
from [min(x.j) , max(x.j)]
* until every data pointis in its own leaf
* let d(x;) be the depth of point x;

* repeat L times

* let d(x;) be the average depth of x;
(d(xl))
« A(x;)) =2 V=)

* r(x;) is the expected depth
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LODA: Lightweight Online Detector of Anomalies

[Pevny, 2016]

* Generate L sparse random
projections (projections
onto L lines in d-
dimensional space)

e Estimate the probability

density for each project
(easy)

* Anomaly score is the
average of the anomaly
scores in each projection




Benchmarking Study

[Andrew Emmott]

* Most AD papers only evaluate on a few datasets
* Often proprietary or very easy (e.g., KDD Cup 1999)

* Research community needs a large and growing collection of
public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
[Emmott, MS Thesis. 2020]



Benchmarking Methodology

 Select 19 data sets from UC Irvine repository

 Choose one or more classes to be “anomalies”; the rest are
“nominals”

* Manipulate
* Relative frequency
e Point difficulty
* Irrelevant features
* Clusteredness

» 20 replicates of each configuration
e Result: 11,888 Non-trivial Benchmark Datasets



Nine Algorithms

* Density-Based Approaches
e RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
e EGMM: Ensemble Gaussian Mixture Model (our group)

* Quantile-Based Methods
 OCSVM: One-class SVM (Schoelkopf, et al., 1999)
e SVDD: Support Vector Data Description (Tax & Duin, 2004)

* Neighbor-Based Methods
* k-NN: Mean distance to k-nearest neighbors
e LOF: Local Outlier Factor (Breunig, et al., 2000)
« ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)

* Projection-Based Methods
* IFOR: Isolation Forest (Liu, et al., 2008)
 LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)



Analysis of Variance

* Linear ANOVA

* metric ~rf +pd + cl + ir + mset + algo
 rf: relative frequency
e pd: point difficulty
e cl: normalized clusteredness
* ir:irrelevant features
* mset: “Mother” set
* algo: anomaly detection algorithm

* Validate the effect of each factor
* Assess the algo effect while controlling for all other factors

* metric: area under the ROC curve for the nominal vs. anomaly binary
decision



Benchmarking Study Results

19 UCI Datasets

8 Leading “feature-based” algorithms Mean AUC Effect
11,888 non-trivial benchmark datasets

0.78
Mean AUC effect for “nominal” vs. “anomaly” decisions 0.76
* Controlling for ’

* Parent data set 0.74

Difficulty of individual queries
Fraction of anomalies 0.72
Irrelevant features 0.70

Clusteredness of anomalies
Baseline method: Distance to nominal mean (“tmd”) 0.68
Best methods: K-nearest neighbors and Isolation Forest 0-66
(projection method) 0.64
Worst methods: Kernel-based OCSVM and SVDD 0.62
Q< a} 3 b ’b >

crploys 2 ditance 1 1 1 1 1 t t t t
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Application to Cyber Security and Fraud Detection

* In most applications, anomaly detection has a significant false alarm
rate

* This means that a human needs to examine each anomaly alarm and
decide whether it is a true alarm or a false alarm

* This provides us with a source of feedback for reducing false alarms



Incorporating Analyst Feedback into Anomaly Detection

* Show top-ranked (unlabeled)
candidate to the Analyst

* Analyst labels candidate Anomaly
Detection

* Label is used to update the

anomaly detector
Best
Candidate

[Das, et al, ICDM 2016]
[Siddiqui, et al., KDD 2018]

Analyst

v

Launch Investigation

Booking.com 26




# Anomaly

Analyst Feedback Yields Huge Improvements
in Anomaly Discovery

ann_thyroid_1v3

o[-+ Baseline 100
T AAD -~ W Baseline
— GLAD-OMD
=
80 -
®m GLAD-OMD

50
3

[e)]
o
1

10 20 30 40
Time to detect 1st malicious entity
S & & &

[any
o
I

0
|
o

0 20 40 60 80 100 Host1l Host2 Host3

Booking.com

27



Part 2: Anomaly Detection in Computer Vision

Faces from CelebA

* Challenges:
* No easy distance metrics
* Very high dimension

* High degree of nuisance novelty in

natural images
House Number from SVHN

e State-of-the-art methods have
difficulty deciding that SVHN
house numbers are anomalies
compared to CelebAl

Booking.com
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Central Challenge:

Train a deep network to perform a
classification task

Learned representation z = E(x)
* Eis called the “Encoder”

This representation is trained to
separate the classes

It loses information needed to detect
outliers

Outliers x’ are often mapped close to
the known classes

« E(x) = E(x")

No method can detect the outlier if it
is not an outlier in the z space

We have little or no control over the
topology of z space (e.g., is Euclidean
distance vaIid?F

Learned Representations

3z 10

5x5 2x2 14 5x5 nool Fully FC

cany pool 1 cony 14 7 connected

- 64 64 —
—_—

: 4 22 7 —_—
—_—

—_—

—

—_—

Penultimate Layer z
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hree Main Approaches

* Method 0: Train CNN classifier
* Extract anomaly signal from the z space

 Method 1: Modify training so that z can represent “open space”
* Introduce “simulated anomalies” and hope the network generalizes

 Method 2: Anomaly Detection via Failure:
* Train the network on a task so that the network will fail when given outliers

* There are many many other ad hoc methods, but these are the only
approaches that have a principled justification



Method O: Research Questions

* Q1: How well do existing anomaly scoring methods extract the
anomaly information that is captured in the latent representation z?

* Approach: Compare to an oracle anomaly detector

* Q2: How well could any network with this architecture perform the
anomaly detection task

* Approach: Supervised training on both nominal and anomalous classes

* Definition of anomalies: Classes not seen during training
e “Open Category” or “Open Set” problem

 We claim this is harder and more realistic than classic Out-Of-Distribution
tasks



Methods:

e CIFAR-10: 6 “nominal” classes and 4 “anomaly” classes
CIFAR-100: 80 “nominal” classes and 20 “anomaly” classes

Train Classifier
* Divide data into train (60%), validate (20%), test (20%)
* Remove anomaly classes from the training and validation data
* Train ResNet34; use validation set accuracy to determine stopping point
* Compute test set anomaly scores using various metrics; measure AUC

Oracle Anomaly Detection

. Iake all Yaﬂlidation data and label the nominal classes as “nominal” and the anomaly classes as
anomaly

* Train a binary classifier that takes z as input and predicts “nomina
* Compute test set anomaly scores using this classifier; measure AUC

Oracle Representation
* Train a binary classifier on “nominal” vs “anomaly” using data from all classes
* Measure “nominal” vs “anomaly” AUC on the test data; measure AUC

IH

vs. “anomaly”

I”



Results T

0776+0008 0.717 £ 0.008

0905i0015 0.789 + 0.011
0.987 + 0.003 0.809 + 0.011

Conclusions
 Q1: The latent space contains much more anomaly information
than is extracted by current anomaly scores
* 0.776>0.905 =0.129; 0.717—>0.789 = 0.072
* Q2: There is additional anomaly information in the images that is
not represented by the latent space
* 0.905->0.987 =0.082; 0.789 =>0.809 = 0.020
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Method 1: Training to Open Up Space

* Define image of transformations
* Transformations that preserve the class label T
* horizontal flip, Sobel, Noise, Blur, change color map, zoom in or out

* Transformations that change the class label S
* permute, rotate

(a) Original (b) Cutout (c) Sobel (d) Noise (e) Blur (f) Perm (g) Rotate

Iy T T3 Ty 51 52

Tack, Mo, Jeong, Shin: CSI. NeurlPS 2020

Booking.com
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Instance-Level Contrastive Learning

* Choose Tj(x) and S

(x) at
random from T ano(

* Send x, T;(x) and 5;(x) X E(x)
through the network to
compute their encoded T;(x) E(T;(x))

representations

« Update the network weights S; (x) E(Sj(x)

to make E(x) = E(T (x)) and
make E(x) # E (S (x))

* The S transformations
simulate outliers and force the
network to represent them as
points far away from the
inliers
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Experiment: Train on ImageNet-30 (unlabeled)
Predict on mix of ImageNet-30 and an “anomaly” dataset
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Remarks

* No personal experience with this yet
* No theoretical guarantee that this will work



Method 2: Anomaly Detection via Failure

* Train network on a

reconstruction task
* z is a “bottleneck” that

requires the network to

learn a compact code X 7 Decoder x'
* Train network to make

x =~ x' for nominals
* Hope that the

reconstruction fails on
anomalies
* Make the bottleneck as
small as possible

e Other tricks
(regularization for
sparsity, etc.)
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Results?

* For low-dimensional problems, we can replace the
network with Principal Component Analysis (PCA)
and measure the reconstruction error

* This has worked well in many applications (e.g., Wagstaff,
et al. 2013)

* However, experiments with deep networks have
failed to achieve strong results

* |ssues:
* Hard to define how to measure similarity: x =~ x'

* Networks can learn very general image compression
schemes =2 they don’t fail on anomalies!



Summary

* General Anomaly Detection * Anomaly Detection in Computer
Methods Vision
* Density Estimation * Challenge: learned
« Quantile Methods (OCSVM, SVDD) representations are task-specific
« Distance-Based Methods (KNN) e Standard CNNs retain a surprising

* Projection Methods (Isolation amount of anomaly information
Forest) * Open up “empty space” with
simulated outliers

* Application to Cybersecurity and . Solve reconstruction tasks

Fraud Detection



Concluding Remarks

* Anomaly detection is important
 Critical for robust Al systems
* Practical applications

* Anomaly detection is difficult
* Moderately mature for tabular data sets
 Fundamentally relies on some notion of distance
* Very challenging for images where we need a notion of semantic distance

* Research in this area is advancing rapidly with little theoretical understanding
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