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Defining Anomaly Detection
Data 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁, each 𝑥𝑥𝑖𝑖 ∈ ℜ𝑑𝑑

Mixture of “nominal” points and “anomaly” points
Anomaly points are generated by a different process 
than the nominal points
Anomaly detector: 𝐴𝐴 𝑥𝑥 = anomaly score
Goals:
Find all of the anomalies in the training data
Determine whether a new query point 𝑥𝑥𝑞𝑞 is an anomaly
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Three Settings
Supervised
Training data labeled with “nominal” or “anomaly”
Clean
Training data are all “nominal”, test data contaminated with 

“anomaly” points.
Unsupervised
Training and test data consist of mixture of “nominal” and 

“anomaly” points
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Well-Defined Anomaly Distribution 
Assumption
WDAD: the anomalies are drawn from a well-defined 
probability distribution
example: repeated instances of known machine failures

The WDAD assumption is often risky
adversarial situations (fraud, insider threats, cyber security)
diverse set of potential causes (novel device failure modes)
user’s notion of “anomaly” changes with time (e.g., anomaly 

== “interesting point”)
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Strategies for 
Unsupervised Anomaly Detection
Let 𝛼𝛼 be the fraction of training points that are anomalies
Case 1: 𝛼𝛼 is large (e.g., > 5%)
 Fit a 2-component mixture model
 Requires WDAD assumption
 Mixture components must be identifiable
 Mixture components cannot have large overlap in high density regions

Case 2: 𝛼𝛼 is small (e.g., 1%, 0.1%, 0.01%, 0.001%)
Anomaly detection via Outlier detection
 Does not require WDAD assumption
 Will fail if anomalies are not outliers (e.g., overlap with nominal density; 

tightly clustered anomaly density)
 Will fail if nominal distribution has heavy tails
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Benchmarking Study
[Andrew Emmott]

Most AD papers only evaluate 
on a few datasets
Often proprietary or very easy 
(e.g., KDD 1999)
Research community needs a 
large and growing collection 
of public anomaly 
benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013] 
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
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Benchmarking Methodology
Select 19 data sets from UC Irvine repository
Choose one or more classes to be “anomalies”; the 
rest are “nominals”
Manipulate
Relative frequency
Point difficulty 
 Irrelevant features
Clusteredness
20 replicates of each configuration
Result: 25,685 Benchmark Datasets
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Metrics
AUC (Area Under ROC Curve)
 ranking loss: probability that a randomly-chosen anomaly 

point is ranked above a randomly-chosen nominal point

 transformed value: log 𝐴𝐴𝐴𝐴𝐴𝐴
1−𝐴𝐴𝐴𝐴𝐴𝐴

AP (Average Precision)
area under the precision-recall curve
average of the precision computed at each ranked anomaly 

point

 transformed value: log 𝐴𝐴𝐴𝐴
𝔼𝔼 𝐴𝐴𝐴𝐴

= log 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
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Algorithms
Density-Based Approaches
RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
EGMM: Ensemble Gaussian Mixture Models (our group)
Quantile-Based Methods
OCSVM: One-class SVM (Schoelkopf, et al., 1999)
SVDD: Support Vector Data Description (Tax & Duin, 2004)
Neighbor-Based Methods
 LOF: Local Outlier Factor (Breunig, et al., 2000)
ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
Projection-Based Methods
 IFOR: Isolation Forest (Liu, et al., 2008)
 LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
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Isolation Forest [Liu, Ting, Zhou, 2011]

Construct a fully random 
binary tree
 choose attribute 𝑗𝑗 at random
 choose splitting threshold 𝜃𝜃1

uniformly from 
min 𝑥𝑥⋅𝑗𝑗 , max 𝑥𝑥⋅𝑗𝑗

 until every data point is in its 
own leaf
 let 𝑑𝑑(𝑥𝑥𝑖𝑖) be the depth of point 𝑥𝑥𝑖𝑖

 repeat 100 times
 let 𝑑̅𝑑(𝑥𝑥𝑖𝑖) be the average depth 

of 𝑥𝑥𝑖𝑖

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥𝑖𝑖 = 2
−

�𝑑𝑑 𝑥𝑥𝑖𝑖
𝑟𝑟 𝑥𝑥𝑖𝑖

 𝑟𝑟(𝑥𝑥𝑖𝑖) is the expected depth 

𝑥𝑥⋅𝑗𝑗𝑥𝑥⋅𝑗𝑗 > 𝜃𝜃1

𝑥𝑥⋅2 > 𝜃𝜃2 𝑥𝑥⋅8 > 𝜃𝜃3

𝑥𝑥⋅3 > 𝜃𝜃4 𝑥𝑥⋅1 > 𝜃𝜃5

𝑥𝑥𝑖𝑖
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Analysis
Linear ANOVA
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ~ 𝑟𝑟𝑟𝑟 + 𝑝𝑝𝑝𝑝 + 𝑐𝑐𝑐𝑐 + 𝑖𝑖𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 rf: relative frequency
 pd: point difficulty
 cl: normalized clusteredness
 ir: irrelevant features
 mset: “Mother” set
 algo: anomaly detection algorithm

Validate the effect of each factor
Assess the algo effect while controlling for all other 
factors
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What Matters the Most?

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Dataset Freq Algo Difficulty Irrelevant Cluster

C
ha

ng
e 

in
 E

xp
la

in
ed

 V
ar

ia
nc

e

AUC LIFT

• Problem and Relative Frequency!
• Choice of algorithm ranks third

CMU 2020 24



Algorithm Comparison
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iForest Advantages
Most robust to irrelevant features
 for both AUC and LIFT
Hypothesis: effect of irrelevant features can be averaged out 

by computing a large forest

Second most robust to clustered anomaly points
 for AUC
Why?
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Towards a Theory of Anomaly 
Detection [Siddiqui, et al.; UAI 2016]

Existing theory on sample complexity
Density Estimation Methods: 
 Exponential in the dimension 𝑑𝑑
Quantile Methods (OCSVM and SVDD):
 Polynomial sample complexity

Experimentally, many anomaly detection algorithms 
learn very quickly (e.g., 500-2000 examples)
New theory: Rare Pattern Anomaly Detection
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Pattern Spaces
A pattern ℎ:ℜ𝑑𝑑 → {0,1} is an indicator function for a 
measurable region in the input space
Examples:
 Half planes
 Axis-parallel hyper-rectangles in −1,1 𝑑𝑑

A pattern space ℋ is a set of patterns (countable or 
uncountable)
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Rare and Common Patterns
Let 𝜇𝜇 be a fixed measure over ℜ𝑑𝑑

 Typical choices: 
 uniform over −1, +1 𝑑𝑑

 standard Gaussian over ℜ𝑑𝑑

𝜇𝜇(ℎ) is the measure of the pattern defined by ℎ
Let 𝑝𝑝 be the “nominal” probability density defined on ℜ𝑑𝑑

(or on some subset)
𝑝𝑝(ℎ) is the probability of pattern ℎ
A pattern ℎ is 𝜏𝜏-rare if 

𝑓𝑓 ℎ =
𝑝𝑝 ℎ
𝜇𝜇 ℎ

≤ 𝜏𝜏

Otherwise it is 𝜏𝜏-common
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Rare and Common Points
A point 𝑥𝑥 is 𝜏𝜏-rare if there exists a 𝜏𝜏-rare ℎ such that 
ℎ 𝑥𝑥 = 1
Otherwise a point is 𝜏𝜏-common

Goal: An anomaly detection algorithm should output 
all 𝜏𝜏-rare points and not output any 𝜏𝜏-common points
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PAC-RPAD
Algorithm 𝒜𝒜 is PAC-RPAD for 
 pattern space ℋ, 
 measure 𝜇𝜇, 
 parameters 𝜏𝜏, 𝜖𝜖, 𝛿𝛿

if for any probability density 𝑝𝑝 and any 𝜏𝜏, 𝒜𝒜 draws a sample 
from 𝑝𝑝 and with probability 1 − 𝛿𝛿 detects all 𝜏𝜏-rare points and 
rejects all (𝜏𝜏 + 𝜖𝜖)-commons in the sample

 𝜖𝜖 allows the algorithm some margin for error
 If a point is between 𝜏𝜏-rare and 𝜏𝜏 + 𝜖𝜖 -common, the algorithm 

can treat it arbitrarily
Running time: polynomial in 1

𝜖𝜖
, 1
𝛿𝛿
, and 1

𝜏𝜏
, and some measure of 

the complexity of ℋ
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RAREPATTERNDETECT

Draw a sample of size 𝑁𝑁(𝜖𝜖, 𝛿𝛿) from 𝑝𝑝
Let 𝑝̂𝑝(ℎ) be the fraction of sample points that satisfy 
ℎ

Let 𝑓𝑓 ℎ = �𝑝𝑝 ℎ
𝜇𝜇 ℎ

be the estimated rareness of ℎ

A query point 𝑥𝑥𝑞𝑞 is declared to be an anomaly if there 
exists a pattern ℎ ∈ ℋ such that ℎ 𝑥𝑥𝑞𝑞 = 1 and 
𝑓𝑓 ℎ ≤ 𝜏𝜏.
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Results
Theorem 1: For any finite pattern space ℋ, 
RAREPATTERNDETECT is PAC-RPAD with sample 
complexity 

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

log ℋ + log
1
𝛿𝛿

Theorem 2: For any pattern space ℋ with finite VC 
dimension 𝒱𝒱ℋ, RAREPATTERNDETECT is PAC-RPAD 
with sample complexity 

𝑁𝑁 𝜖𝜖, 𝛿𝛿 = 𝑂𝑂
1
𝜖𝜖2

𝒱𝒱ℋ log
1
𝜖𝜖2

+ log
1
𝛿𝛿
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Examples of PAC-RPAD ℋ
Half spaces
Axis-aligned hyper-rectangles (related to iForest
leaves)
Stripes (equivalent to LODA’s histogram bins)
Ellipsoids
Ellipsoidal shells (difference of two ellipsoidal level 
sets)
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Isolation RPAD (aka Pattern Min)
Grow an isolation forest
Each tree is only grown to depth 𝑘𝑘
Each leaf defines a pattern ℎ
𝜇𝜇 is the volume (Lebesgue measure)
Compute 𝑓𝑓(ℎ) for each leaf
Details
Grow the tree using one sample
Estimate 𝑓𝑓 using a second sample
Score query point(s)

𝑥𝑥1 < 0.2

𝑥𝑥2 < 0.6

𝑥𝑥1 < 0.5

ℎ1

ℎ2

ℎ3 ℎ4
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Results: Covertype

PatternMin learns more slowly, but eventually beats 
IFOREST
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Results: Shuttle

PatternMin consistently beats iForest for 𝑘𝑘 > 1
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RPAD Conclusions
The PAC-RPAD theory seems to capture the 
qualitative behavior of algorithms such as IFOREST
It is easy to design practical RPAD algorithms
Theory needs further work to handle sample-
dependent pattern spaces ℋ
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Incorporating Analyst Feedback

Show top-ranked (unlabeled) 
candidate to the Analyst
Analyst labels candidate
Label is used to update the 
anomaly detector

Data

Anomaly
Detection

Best
Candidate

Analyst 

Launch Investigation

yes

no
[Das, et al, ICDM 2016] 
[Siddiqui, et al., KDD 2018]
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Analyst Feedback Yields Huge 
Improvements in Anomaly Discovery

59
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Method
Transform the Isolation Forest into a gigantic linear 
model
Each node in each tree becomes a Boolean feature that is 1 

if 𝑥𝑥𝑞𝑞 visits that node
 Initial weight of each feature is 1.0, so that the weighted 

sum == sum of isolation depths in the forest
Apply online convex optimization algorithms to learn 
from analyst feedback
Online Mirror Descent adjusts the weights to reduce the 

score of anomalies and increase the score of nominals
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TAHMO: Trans-Africa Hydro-
Meteorological Observatory
 Africa is very poorly sensed
 Only a few dozen weather stations reliably report 

data to WMO (blue points in map)
 Poor sensing No crop insurance Low 

agricultural productivity
 Goal: Make Africa the best-sensed continent & 

improve agriculture

 Project TAHMO (tahmo.org)
 TU-DELFT & Oregon State University
 Design low-cost weather station
 Deploy 20,000 such stations across Africa
 Create data products (e.g., drought assessments, 

inundation estimates)

Automated Data Quality Control
 Detect broken sensors as anomalies
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SENSOR-DX Architecture:
Design and Training
Define a set of views of the TAHMO data
A view involves 1 or more sensors from 1 or more stations 

over 1 or more time points
Each view defines a set of view tuples 𝑣𝑣
Fit an anomaly detector to the view tuples
Introduce a state variable 𝑠𝑠 for each sensor at each 
station and time point
Fit probabilistic models 𝑃𝑃(𝐴𝐴(𝑣𝑣)|𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣 )
Hypothesis: It is easier to model the anomaly score 
distribution than it is to model the sensor readings
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Example View
Temperature 𝑇𝑇 at times 𝑡𝑡 − 2, 𝑡𝑡 − 1, 𝑡𝑡

View tuples

65

0 1 2 3 4
15 15.5 16.2 17 16.5

𝒕𝒕 − 𝟐𝟐 𝒕𝒕 − 𝟏𝟏 𝒕𝒕
𝑣𝑣1(0: 2) 15 15.5 16.2
𝑣𝑣1(1: 3) 15.5 16.2 17
𝑣𝑣1(2: 4) 16.2 17 16.5
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Diagnostic Model

66

𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Temperature

Relative Hum

Temp &
RelH

Thermo
meter 
states

RELH
states
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Diagnostic Model
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Temperature

Relative Hum

Temp &
RelH

Thermo
meter 
states

RELH
states
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Diagnostic Model

68

𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)
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𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)
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Run Time Quality Control
Assemble incoming data into view tuples
Compute anomaly score for each view tuple
Perform probabilistic inference to determine which 
sensor states best explain the observed anomaly 
scores:

arg max
𝑆𝑆

𝑃𝑃 𝑆𝑆 𝐴𝐴 𝑉𝑉
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Experimental Evaluation
[Tadesse Zemicheal]
Data: Oklahoma Mesonet
 1 year for training, 1 year for testing
 5 minute reporting interval; 20-day blocks
 Hourly sensor state variable
 Sensors:
 Temperature (TAIR), relative humidity (RELH), atmospheric 

pressure (PRES), and Solar Radiation (SRAD)
 Stations:
 OKCE, OKCN, OKCW, NRMN

 Synthetic faults
 spike noise, flatline, offset

 Isolation Forest
Baseline:
 Single sensor view

 SENSOR-DX:
 Four views

Metrics:
 Precision and recall
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Result: SENSOR-DX improves 
precision

71

Difference in precision of multi-view method versus single-view baseline

95% two-sided 
paired differences 
bootstrap confidence 
intervals
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Precision at Matching Recall Level

72

Pr
ec

is
io

n

95% confidence intervals

Sensor-DX 
improves precision, 
but the false alarm 
rate will still be quite 
high
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Status
Deployment on TAHMO network is in progress
Integrated with
Network Manager dashboard
Trouble ticket system
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Open Category Classification
[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

Training data for classes {1,…,K}
Test data may contain queries 
corresponding to additional 
classes
Can we detect them?
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Prediction with Anomaly Detection

75CMU 2020

𝑥𝑥

Anomaly 
Detector

𝐴𝐴 𝑥𝑥 > 𝜏𝜏?

Classifier 𝑓𝑓

Training 
Examples

(𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖) no

𝑦𝑦 = 𝑓𝑓(𝑥𝑥)

yes reject
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𝑆𝑆0

𝑆𝑆𝑚𝑚

Nominal Distribution Mixture Distribution

Proportion of Aliens = 𝛼𝛼

𝑃𝑃𝑚𝑚 = 1 − 𝛼𝛼 𝑃𝑃0 + 𝛼𝛼𝑃𝑃𝑎𝑎

Training Data
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CDF of Alien Anomaly Scores: 𝐹𝐹𝑎𝑎

79

𝐹𝐹 𝑎𝑎
(𝑥𝑥

) Want to have 
recall = 1 − 𝑞𝑞
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Choosing 𝜏𝜏 for target quantile 𝑞𝑞

80

𝐹𝐹 𝑎𝑎
(𝑥𝑥

) 𝑞𝑞 = 0.05
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𝑃𝑃𝑚𝑚 = 1 − 𝛼𝛼 𝑃𝑃0 + 𝛼𝛼𝑃𝑃𝑎𝑎

implies that

𝐹𝐹𝑚𝑚 𝑥𝑥 = (1 − 𝛼𝛼)𝐹𝐹0 𝑥𝑥 + 𝛼𝛼𝐹𝐹𝑎𝑎 𝑥𝑥
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CDFs of Nominal, Mixture, and Alien 
Anomaly Scores
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𝐹𝐹0

𝐹𝐹𝑚𝑚

𝐹𝐹𝑎𝑎

𝐹𝐹𝑎𝑎 𝑥𝑥 =
𝐹𝐹𝑚𝑚 𝑥𝑥 − 1 − 𝛼𝛼 𝐹𝐹0 𝑥𝑥

𝛼𝛼
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What We Have Are Empirical CDFs

�𝐹𝐹0

�𝐹𝐹𝑚𝑚
�𝐹𝐹𝑎𝑎

�𝐹𝐹𝑎𝑎 𝑥𝑥 =
�𝐹𝐹𝑚𝑚 𝑥𝑥 − 1 − 𝛼𝛼 �𝐹𝐹0 𝑥𝑥

𝛼𝛼
CMU 2020 83



We Use the Empirical Estimate 𝜏̂𝜏0.05
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�𝐹𝐹𝑎𝑎
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EstimateTau(𝑺𝑺𝟎𝟎,𝑺𝑺𝒎𝒎,𝒒𝒒,𝜶𝜶)
1:  Anomaly scores of 𝑆𝑆0: 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑘𝑘
2:  Anomaly scores of 𝑆𝑆𝑚𝑚: 𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑚𝑚
3: Compute empirical CDFs �𝐹𝐹0 and �𝐹𝐹𝑚𝑚. 
4: Calculate �𝐹𝐹𝑎𝑎 using

�𝐹𝐹𝑎𝑎 𝑥𝑥 =
�𝐹𝐹𝑚𝑚 𝑥𝑥 − 1−𝛼𝛼 �𝐹𝐹0 𝑥𝑥

𝛼𝛼
.

5: Output detection threshold
𝜏̂𝜏𝑞𝑞 = max

𝑢𝑢∈𝑆𝑆
�𝐹𝐹𝑎𝑎(𝑢𝑢) ≤ 𝑞𝑞,

where 𝑆𝑆 = 𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑘𝑘,𝑦𝑦1,𝑦𝑦2,⋯ ,𝑦𝑦𝑚𝑚 . 
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Theoretical Guarantee
[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

Theorem: If 

𝑛𝑛 >
1
2

ln
2

1 − 1 − 𝛿𝛿
1
𝜖𝜖

2 2 − 𝛼𝛼
𝛼𝛼

2

then with probability 1 − 𝛿𝛿 the alien detection rate will be at 
least 1 − 𝑞𝑞 + 𝜖𝜖

Proof based on Massart (1990) concentration bound for 
empirical CDFs
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Summary
 Outlier Detection can perform unsupervised or clean anomaly detection 

when the relative frequency of anomalies, 𝛼𝛼 is small
 Algorithm Benchmarking
 The Isolation Forest is a robust, high-performing algorithm
 The OCSVM and SVDD methods do not perform well on AUC and AP. Why not?
 The other methods (ABOD, LODA, LOF, EGMM, RKDE) are very similar to each 

other
 PAC-RPAD theory may account for the rapid learning of many anomaly 

detection algorithms
 Expert Feedback can double or triple the efficiency of detecting anomalies
 Anomaly detection can help find broken IoT sensors
 Anomaly detection can provide guarantees for open category detection
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