Advances In

Anomaly Detection

Tom Dietterich
Alan Fern
Weng-Keen Wong

Sharmodeep Battacharyya
Debashis Mondal

12/13/2021

Andrew Emmott
Shubhomoy Das
Risheek Garrepalli
Zoe Juozapaitis

Si Liu

Md. Amran Siddiqui
Tadesse Zemicheal

CMU 2020




Outline |.

=Defining the Anomaly Detection Problem

=Benchmarking Current Algorithms for Unsupervised
Anomaly Detection

*PAC Theory of Rare Pattern Anomaly Detection
=|ncorporating Analyst Feedback

= Applications
= Weather network anomaly detection
= Open Category detection
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Defining Anomaly Detection |

=Data x4, ..., xy, each x; € R
= Mixture of “nominal” points and “anomaly” points

=Anomaly points are generated by a different process
than the nominal points

= Anomaly detector: A(x) = anomaly score

=Goals:
= Find all of the anomalies in the training data
= Determine whether a new query point x, is an anomaly
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Three Settings |

=Supervised
= Training data labeled with “nominal” or “anomaly”

=Clean

= Training data are all “"nominal”, test data contaminated with
“anomaly” points.

=Unsupervised

= Training and test data consist of mixture of “nominal” and
“‘anomaly” points
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Well-Defined Anomaly Distribution
Assumption |.

=\WDAD: the anomalies are drawn from a well-defined
probability distribution

= example: repeated instances of known machine failures

=The WDAD assumption is often risky
= adversarial situations (fraud, insider threats, cyber security)
= diverse set of potential causes (novel device failure modes)

= user’s notion of “anomaly” changes with time (e.g., anomaly
== “interesting point”)
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Strategies for
Unsupervised Anomaly Detection |.

*Let a be the fraction of training points that are anomalies
=Case 1: a is large (e.g., > 5%)
= Fit a 2-component mixture model
= Requires WDAD assumption

= Mixture components must be identifiable
= Mixture components cannot have large overlap in high density regions

=Case 2: a is small (e.g., 1%, 0.1%, 0.01%, 0.001%)

= Anomaly detection via Outlier detection
= Does not require WDAD assumption

= Will fail if anomalies are not outliers (e.g., overlap with nominal density;
tightly clustered anomaly density)

= Will fail if nominal distribution has heavy tails
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Outline |.

=Benchmarking Current Algorithms for Unsupervised
Anomaly Detection

*PAC Theory of Rare Pattern Anomaly Detection
=|ncorporating Analyst Feedback

= Applications
= Weather network anomaly detection
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Benchmarking Study

[Andrew Emmott]

*Most AD papers only evaluate
on a few datasets

= Often proprietary or very easy
(e.g., KDD 1999)

=Research community needs a
large and growing collection
of public anomaly
benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]

12/13/2021 CMU 2020 8



Benchmarking Methodology |

=Select 19 data sets from UC Irvine repository

=Choose one or more classes to be “anomalies”; the
rest are “nominals”

*Manipulate
= Relative frequency
= Point difficulty
= [rrelevant features
= Clusteredness

=20 replicates of each configuration
=Result: 25,685 Benchmark Datasets
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Metrics |
*AUC (Area Under ROC Curve)

= ranking loss: probability that a randomly-chosen anomaly
point is ranked above a randomly-chosen nominal point

AUC
1-AUC

=AP (Average Precision)
= area under the precision-recall curve

= average of the precision computed at each ranked anomaly
point

= transformed value: log

= transformed value: logﬁ log LIFT
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Algorithms |

= Density-Based Approaches
= RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
= EGMM: Ensemble Gaussian Mixture Models (our group)

= Quantile-Based Methods
= OCSVM: One-class SVM (Schoelkopf, et al., 1999)
= SVDD: Support Vector Data Description (Tax & Duin, 2004)

= Neighbor-Based Methods
= LOF: Local Outlier Factor (Breunig, et al., 2000)
= ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)

= Projection-Based Methods
= [IFOR: Isolation Forest (Liu, et al., 2008)
= LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
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|Isolation Forest [Liu, Ting, Zhou, 2011]

= Construct a fully random
binary tree
= choose attribute j at random

= choose splitting threshold 6,
uniformly from

[min(x. j) ) max(x. ])]
= until every data pointis in its
own leaf

= let d(x;) be the depth of point x;
= repeat 100 times

= let d(x;) be the average depth
of X

_(a(xi))
= score(x;) = 2 \7(x)
= r(x;) is the expected depth
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Analysis |

=Linear ANOVA

“metric ~rf + pd + cl + ir + mset + algo
= rf: relative frequency
= pd: point difficulty
= cl: normalized clusteredness
= ir: irrelevant features
= mset: “Mother” set
= algo: anomaly detection algorithm

=\/alidate the effect of each factor

= Assess the algo effect while controlling for all other
factors
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What Matters the Most?
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Algorithm Comparison
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IForest Advantages |

= Most robust to irrelevant features
= for both AUC and LIFT

= Hypothesis: effect of irrelevant features can be averaged out
by computing a large forest

=Second most robust to clustered anomaly points
=for AUC
= Why?
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Outline

*PAC Theory of Rare Pattern Anomaly Detection
=|ncorporating Analyst Feedback

= Applications
= Weather network anomaly detection
= Open Category Classification
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Towards a Theory of Anomaly
Detection [Siddiqui, et al.; UAI 2016]

= Existing theory on sample complexity - -~
= Density Estimation Methods:
= Exponential in the dimension d

= Quantile Methods (OCSVM and SVDD):

= Polynomial sample complexity

= Experimentally, many anomaly detection algorithms
learn very quickly (e.g., 500-2000 examples)

=New theory: Rare Pattern Anomaly Detection
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Pattern Spaces |

=A pattern h: R¢ - {0,1} is an indicator function for a
measurable region in the input space

= Examples:
= Half planes
= Axis-parallel hyper-rectangles in [—1,1]¢
= A pattern space H is a set of patterns (countable or
uncountable)
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Rare and Common Patterns |.

=Let u be a fixed measure over R

= Typical choices:
= uniform over [—1, +1]¢
= standard Gaussian over R¢

=u(h) is the measure of the pattern defined by h

=Let p be the “nominal” probability density defined on R¢
(or on some subset)

=p(h) is the probability of pattern h
= A pattern h is t-rare if
p(h)

f(h)_@_

= Otherwise it is T-common

12/13/2021 CMU 2020 32



Rare and Common Points |.

=A point x is t-rare if there exists a z-rare h such that
h(x) =1

=Otherwise a point is T-common

=Goal: An anomaly detection algorithm should output
all T-rare points and not output any t-common points
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PAC-RPAD |

= Algorithm A is PAC-RPAD for

= pattern space H,
= measure u,
= parameters 1, €, 0

if for any probability density p and any t, A draws a sample
from p and with probability 1 — § detects all T-rare points and
rejects all (r + €)-commons in the sample

= ¢ allows the algorithm some margin for error

= |f a point is between t-rare and (7 + €)-common, the algorithm
can treat it arbitrarily

= Running time: polynomial in ; E and ; and some measure of
the complexity of H
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RAREPATTERNDETECT |.

=Draw a sample of size N(¢, ) from p

*Let p(h) be the fraction of sample points that satisfy
h

=Let f(h) = PN he the estimated rareness of h
u(h)

=A query point x, is declared to be an anomaly if there
exists a pattern h € H such that h(x,) = 1 and

f(h) <.
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Results |.

=Theorem 1: For any finite pattern space H,
RAREPATTERNDETECT is PAC-RPAD with sample
complexity

1 1
N(e, 6) =0 (6_2 (logl}[l + log§>)

*Theorem 2: For any pattern space H with finite VC
dimension V,;, RAREPATTERNDETECT is PAC-RPAD
with sample complexity

1 1 1
N(e, 6) =0 =2 V}[log +log5
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Examples of PAC-RPAD # |

=Half spaces

= Axis-aligned hyper-rectangles (related to iForest
leaves)

= Stripes (equivalent to LODA's histogram bins)
=Ellipsoids

= Ellipsoidal shells (difference of two ellipsoidal level
sets)
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solation RPAD (aka Pattern Min) |1l

=Grow an isolation forest Xy < 0.2
= Each tree is only grown to depth k /\
= Each leaf defines a pattern h

= u is the volume (Lebesgue measure) X2 < 0.6

= Compute f(h) for each leaf hy

*Details
= Grow the tree using one sample

= Estimate f using a second sample /
= Score query point(s)

X1 < 0.5 hZ

h3 h4-
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Isolation Forest (Covertype) Pattern Min (Covertype)

1024 4096 16384 65536 1024 4096 16384 65536

Sample Size Sample Size

PatternMin learns more slowly, but eventually beats
IFOREST
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Isolation Forest (Shuttle)

256 1024 4096 16384

Sample Size

RPAD (Shuttle)

256 1024

Sample Size

4096

16384

PatternMin consistently beats iForest for k > 1
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RPAD Conclusions |.

= The PAC-RPAD theory seems to capture the
qualitative behavior of algorithms such as IFOREST

=|t is easy to design practical RPAD algorithms

*Theory needs further work to handle sample-
dependent pattern spaces H
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Outline |.

= Defining the Anomaly Detection Problem

» Benchmarking Current Algorithms for Unsupervised
Anomaly Detection

= PAC Theory of Rare Pattern Anomaly Detection
*|ncorporating Analyst Feedback

= Applications
= Weather network anomaly detection
= Open Category Classification
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Incorporating Analyst Feedback |

=Show top-ranked (unlabeled)
candidate to the Analyst

= Analyst labels candidate — .«

=|_abel is used to update the
anomaly detector

[Das, et al, ICDM 2016] _
[Siddiqui, et al., KDD 2018]

yesl

Launch Investigation
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Method |.

= Transform the Isolation Forest into a gigantic linear
model

= Each node in each tree becomes a Boolean feature that is 1
If Xq visits that node

= |nitial weight of each feature is 1.0, so that the weighted
sum == sum of isolation depths in the forest

* Apply online convex optimization algorithms to learn
from analyst feedback

= Online Mirror Descent adjusts the weights to reduce the
score of anomalies and increase the score of nominals

12/13/2021 CMU 2020 60



Outline |.
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TAHMO: Trans-Africa Hydro-
Meteorological Observatory

= Africa is very poorly sensed

= Only a few dozen weather stations reliably report
data to WMO (blue points in map)

= Poor sensing =»No crop insurance =»Low
agricultural productivity

= Goal: Make Africa the best-sensed continent &
improve agriculture

= Project TAHMO (tahmo.org)
= TU-DELFT & Oregon State University
= Design low-cost weather station
= Deploy 20,000 such stations across Africa

= Create data products (e.g., drought assessments,
inundation estimates)

= Automated Data Quality Control

= Detect broken sensors as anomalies
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SENSOR-DX Architecture:
Design and Training I.

=Define a set of views of the TAHMO data

= A view involves 1 or more sensors from 1 or more stations
over 1 or more time points

= Each view defines a set of view tuples v
*Fit an anomaly detector to the view tuples

=|ntroduce a state variable s for each sensor at each
station and time point

=Fit probabilistic models P(A(v)|parents(v))

=Hypothesis: It is easier to model the anomaly score
distribution than it is to model the sensor readings
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Example View

“Temperature T attimest — 2,t — 1,t

15

*View tuples
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Diagnostic Model |
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Diagnostic Model |
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Run Time Quality Control |

= Assemble incoming data into view tuples
=Compute anomaly score for each view tuple

= Perform probabilistic inference to determine which
sensor states best explain the observed anomaly
SCores:
arg max P(S|A(V))
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Experimental Evaluation

[Tadesse Zemicheal]

= Data: Oklahoma Mesonet

= 1 year for training, 1 year for testing
5 minute reporting interval; 20-day blocks
Hourly sensor state variable

Sensors:

= Temperature (TAIR), relative humidity (RELH), atmospheric
pressure (PRES), and Solar Radiation (SRAD)

Stations:
= OKCE, OKCN, OKCW, NRMN

= Synthetic faults
= spike noise, flatline, offset

= |solation Forest

= Baseline: View type
= Single sensor view Single sensor view

= SENSOR-DX: Same sensor two station view
= Four views Two sensor single station view

= Metrics: Single sensor three hour view
= Precision and recall Total views per block
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Result: SENSOR-DX improves

precision |.

Difference in precision of multi-view method versus single-view baseline

95% two-sided
paired differences
bootstrap confidence
intervals
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Precision

12/13/2021

T

PRES

RELH

SRAD

TAIR

CMU 2020

MW Baseline
M Sensor-Dx

95% confidence intervals

Sensor-DX
improves precision,
but the false alarm
rate will still be quite
high
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Status |.

=Deployment on TAHMO network is in progress

=|ntegrated with
= Network Manager dashboard
= Trouble ticket system
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Open Category Classification |

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

= Training data for classes {1,...,K}

= Test data may contain queries
corresponding to additional
classes

=Can we detect them?
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Prediction with Anomaly Detection |

X

- Anomaly
@ Detector

VT 4@ > |—=

>T

Examples
(X3, ¥1) no
fier

| >

12/13/2021 CMU 2020 75



Training Data [

PO Pm
Nominal Distribution Mixture Distribution

Proportion of Aliens = «

Pm=(1—a)P0+aPa
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CDF of Alien Anomaly Scores: E, |

Want to have
recall = 1 —gq

0.00 0.25 0.50 0.75 1.00
Anomaly score
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Choosing t for target quantile g |

qg = 0.05

0.75

Anomaly score
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Pm = (1—a)P0+aPa
implies that

Fn(x) = (1 — a)Fp(x) + aFy(x)



CDFs of Nominal, Mixture, and Alien
Anomaly Scores I.

0.50 0.75
Anomaly score

Fue) = P = (L= o)
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0.25

ﬁa(x) —

0.50 0.75
Anomaly score

Fn(x) — (1 — a)Fo(x)
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We Use the Empirical Estimate 7 s I.

0.50 0.75
Anomaly score
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EstimateTau(s,, S,,, q, a)

1. Anomaly scores of Sy: xq, x5, -+, X,
2: Anomaly scores of S,..: V1, V9, ", Ym
3: Compute empirical CDFs F, and F,,,.

4: Calculate E, using

ﬁa (.X') —_ Fm(x)_(tx_“)FO (x)

5: Output detection threshold

T =max F,(u) < g,
¢ =maxF(u) =q

where S = {x1»x2; XKk Y1, Y2, JYm}

85
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Theoretical Guarantee |.

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

=Theorem: If

ot (3 (157
n Il1 \/_

then with probability 1 — 6 the alien detection rate will be at
least 1 — (g + €)

Proof based on Massart (1990) concentration bound for
empirical CDFs
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Summary |

= Qutlier Detection can perform unsupervised or clean anomaly detection
when the relative frequency of anomalies, a is small

= Algorithm Benchmarking

= The Isolation Forest is a robust, high-performing algorithm
= The OCSVM and SVDD methods do not perform well on AUC and AP. Why not?

= The other methods (ABOD, LODA, LOF, EGMM, RKDE) are very similar to each
other

= PAC-RPAD theory may account for the rapid learning of many anomaly
detection algorithms

= Expert Feedback can double or triple the efficiency of detecting anomalies
= Anomaly detection can help find broken loT sensors
= Anomaly detection can provide guarantees for open category detection

12/13/2021 CMU 2020 87



Acknowledgements

=Partially supported by
= DARPA Contract W911NF-11-C-0088
= DARPA Contract FA8650-15-C-7557
= DARPA Contract FA8750-19-C-0092
= US NSF Grants 1514550 & 1521687
= FLI program FLI-RFP-AI1, grant number 2015-145014
= Gift from Huawei, Inc.

12/13/2021 CMU 2020 88



	Advances in �Anomaly Detection
	Outline
	Defining Anomaly Detection
	Three Settings
	Well-Defined Anomaly Distribution Assumption
	Strategies for �Unsupervised Anomaly Detection
	Outline
	Benchmarking Study�[Andrew Emmott]
	Benchmarking Methodology
	Metrics
	Algorithms
	Isolation Forest [Liu, Ting, Zhou, 2011]
	Analysis
	What Matters the Most?
	Algorithm Comparison
	iForest Advantages
	Outline
	Towards a Theory of Anomaly Detection [Siddiqui, et al.; UAI 2016]
	Pattern Spaces
	Rare and Common Patterns
	Rare and Common Points
	PAC-RPAD
	RarePatternDetect
	Results
	Examples of PAC-RPAD ℋ
	Isolation RPAD (aka Pattern Min)
	Results: Covertype
	Results: Shuttle
	RPAD Conclusions
	Outline
	Outline
	Incorporating Analyst Feedback
	Analyst Feedback Yields Huge Improvements in Anomaly Discovery
	Method
	Outline
	TAHMO: Trans-Africa Hydro-Meteorological Observatory
	SENSOR-DX Architecture:�Design and Training
	Example View
	Diagnostic Model
	Diagnostic Model
	Diagnostic Model
	Run Time Quality Control
	Experimental Evaluation�[Tadesse Zemicheal]
	Result: SENSOR-DX improves precision
	Precision at Matching Recall Level
	Status
	Open Category Classification�[Liu, Garrepalli, Fern, Dietterich, ICML 2018]
	Prediction with Anomaly Detection
	 
	CDF of Alien Anomaly Scores:  𝐹 𝑎 
	Choosing 𝜏 for target quantile 𝑞
	Slide Number 81
	CDFs of Nominal, Mixture, and Alien Anomaly Scores
	What We Have Are Empirical CDFs
	We Use the Empirical Estimate   𝜏  0.05 
	EstimateTau( 𝑺 𝟎 , 𝑺 𝒎 ,𝒒,𝜶)
	Theoretical Guarantee�[Liu, Garrepalli, Fern, Dietterich, ICML 2018]
	Summary
	Acknowledgements

