

Advances in Anomaly Detection

Tom Dietterich

Alan Fern

Weng-Keen Wong

Sharmodeep Bhattacharyya

Debashis Mondal

Andrew Emmott

Shubhomoy Das

Risheek Garrepalli

Zoe Juozapaitis

Si Liu

Md. Amran Siddiqui

Tadesse Zemicheal

Oregon State
University

Outline

- Defining the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised Anomaly Detection
- PAC Theory of Rare Pattern Anomaly Detection
- Incorporating Analyst Feedback
- Applications
 - Weather network anomaly detection
 - Open Category detection

Defining Anomaly Detection

- Data x_1, \dots, x_N , each $x_i \in \Re^d$
- Mixture of “nominal” points and “anomaly” points
- Anomaly points are generated by a different process than the nominal points
- Anomaly detector: $A(x) = \text{anomaly score}$
- Goals:
 - Find all of the anomalies in the training data
 - Determine whether a new query point x_q is an anomaly

Three Settings

- Supervised
 - Training data labeled with “nominal” or “anomaly”
- Clean
 - Training data are all “nominal”, test data contaminated with “anomaly” points.
- Unsupervised
 - Training and test data consist of mixture of “nominal” and “anomaly” points

Well-Defined Anomaly Distribution Assumption

- WDAD: the anomalies are drawn from a well-defined probability distribution
 - example: repeated instances of known machine failures
- The WDAD assumption is often risky
 - adversarial situations (fraud, insider threats, cyber security)
 - diverse set of potential causes (novel device failure modes)
 - user's notion of "anomaly" changes with time (e.g., anomaly == "interesting point")

Strategies for Unsupervised Anomaly Detection

- Let α be the fraction of training points that are anomalies
- Case 1: α is large (e.g., $> 5\%$)
 - Fit a 2-component mixture model
 - Requires WDAD assumption
 - Mixture components must be identifiable
 - Mixture components cannot have large overlap in high density regions
- Case 2: α is small (e.g., 1% , 0.1% , 0.01% , 0.001%)
 - Anomaly detection via Outlier detection
 - Does not require WDAD assumption
 - Will fail if anomalies are not outliers (e.g., overlap with nominal density; tightly clustered anomaly density)
 - Will fail if nominal distribution has heavy tails

Outline

- Defining the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised Anomaly Detection
- PAC Theory of Rare Pattern Anomaly Detection
- Incorporating Analyst Feedback
- Applications
 - Weather network anomaly detection
 - Open Category Classification

Benchmarking Study

[Andrew Emmott]

- Most AD papers only evaluate on a few datasets
- Often proprietary or very easy (e.g., KDD 1999)
- Research community needs a large and growing collection of public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]

[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]

Benchmarking Methodology

- Select 19 data sets from UC Irvine repository
- Choose one or more classes to be “anomalies”; the rest are “nominals”
- Manipulate
 - Relative frequency
 - Point difficulty
 - Irrelevant features
 - Clusteredness
- 20 replicates of each configuration
- Result: 25,685 Benchmark Datasets

Metrics

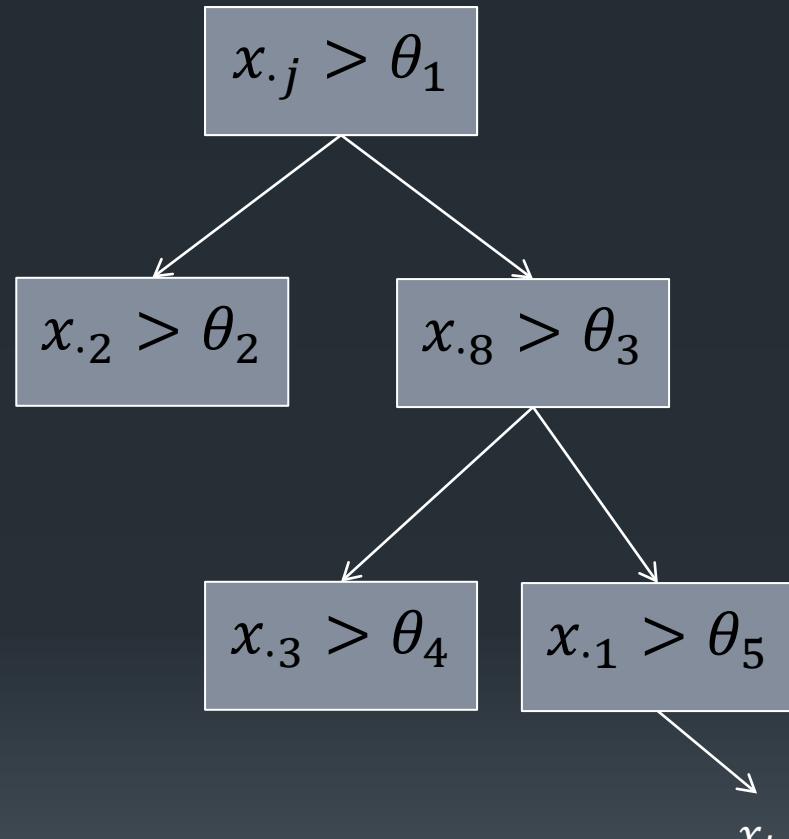
- AUC (Area Under ROC Curve)
 - ranking loss: probability that a randomly-chosen anomaly point is ranked above a randomly-chosen nominal point
 - transformed value: $\log \frac{AUC}{1-AUC}$
- AP (Average Precision)
 - area under the precision-recall curve
 - average of the precision computed at each ranked anomaly point
 - transformed value: $\log \frac{AP}{\mathbb{E}[AP]} = \log LIFT$

Algorithms

- Density-Based Approaches
 - RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
 - EGMM: Ensemble Gaussian Mixture Models (our group)
- Quantile-Based Methods
 - OCSVM: One-class SVM (Schoelkopf, et al., 1999)
 - SVDD: Support Vector Data Description (Tax & Duin, 2004)
- Neighbor-Based Methods
 - LOF: Local Outlier Factor (Breunig, et al., 2000)
 - ABOD: kNN Angle-Based Outlier Detector (Kriegel, et al., 2008)
- Projection-Based Methods
 - IFOR: Isolation Forest (Liu, et al., 2008)
 - LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)

Isolation Forest [Liu, Ting, Zhou, 2011]

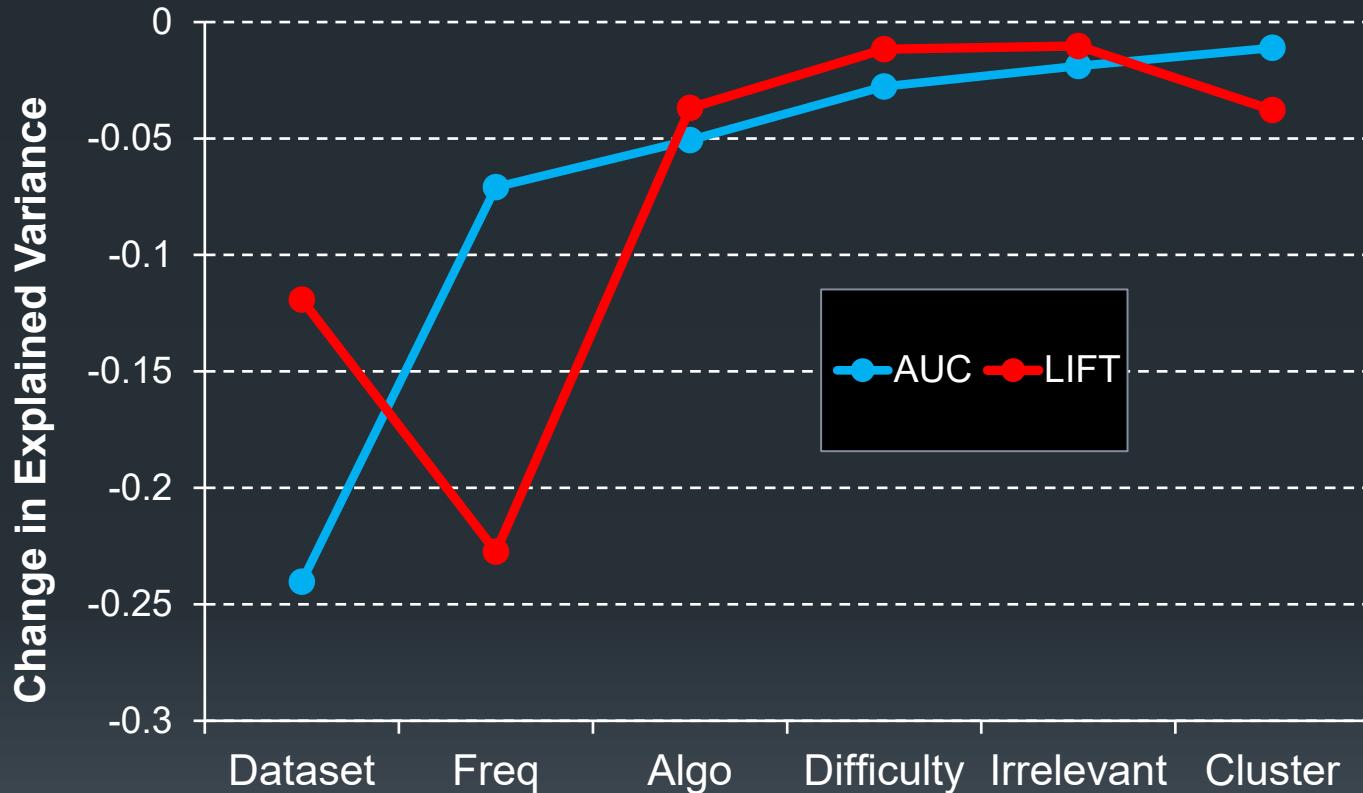
- Construct a fully random binary tree
 - choose attribute j at random
 - choose splitting threshold θ_1 uniformly from $[\min(x_j), \max(x_j)]$
 - until every data point is in its own leaf
 - let $d(x_i)$ be the depth of point x_i
- repeat 100 times
 - let $\bar{d}(x_i)$ be the average depth of x_i
 - $score(x_i) = 2^{-\left(\frac{\bar{d}(x_i)}{r(x_i)}\right)}$
 - $r(x_i)$ is the expected depth



Analysis

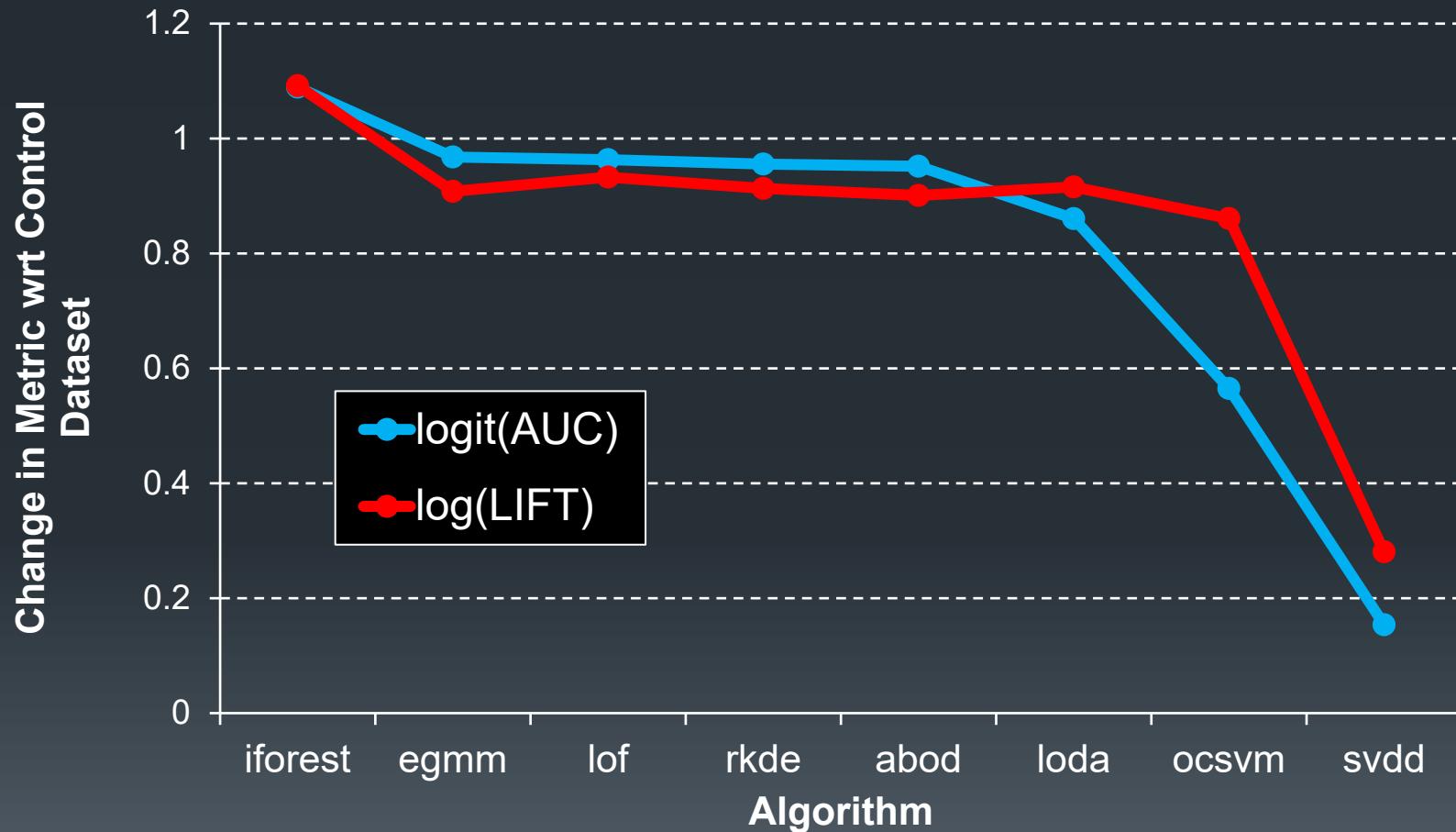
- Linear ANOVA
 - $metric \sim rf + pd + cl + ir + mset + algo$
 - rf: relative frequency
 - pd: point difficulty
 - cl: normalized clusteredness
 - ir: irrelevant features
 - mset: “Mother” set
 - algo: anomaly detection algorithm
- Validate the effect of each factor
- Assess the *algo* effect while controlling for all other factors

What Matters the Most?



- Problem and Relative Frequency!
- Choice of algorithm ranks third

Algorithm Comparison



iForest Advantages

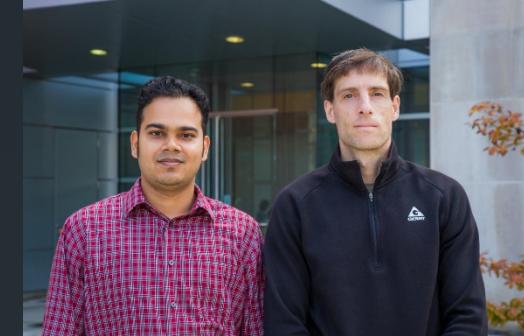
- Most robust to irrelevant features
 - for both AUC and LIFT
 - Hypothesis: effect of irrelevant features can be averaged out by computing a large forest
- Second most robust to clustered anomaly points
 - for AUC
 - Why?

Outline

- Defining the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised Anomaly Detection
- PAC Theory of Rare Pattern Anomaly Detection
- Incorporating Analyst Feedback
- Applications
 - Weather network anomaly detection
 - Open Category Classification

Towards a Theory of Anomaly Detection [Siddiqui, et al.; UAI 2016]

- Existing theory on sample complexity
 - Density Estimation Methods:
 - Exponential in the dimension d
 - Quantile Methods (OCSVM and SVDD):
 - Polynomial sample complexity
- Experimentally, many anomaly detection algorithms learn very quickly (e.g., 500-2000 examples)
- New theory: Rare Pattern Anomaly Detection



Pattern Spaces

- A pattern $h: \mathbb{R}^d \rightarrow \{0,1\}$ is an indicator function for a measurable region in the input space
 - Examples:
 - Half planes
 - Axis-parallel hyper-rectangles in $[-1,1]^d$
- A pattern space \mathcal{H} is a set of patterns (countable or uncountable)

Rare and Common Patterns

- Let μ be a fixed measure over \Re^d
 - Typical choices:
 - uniform over $[-1, +1]^d$
 - standard Gaussian over \Re^d
- $\mu(h)$ is the measure of the pattern defined by h
- Let p be the “nominal” probability density defined on \Re^d (or on some subset)
- $p(h)$ is the probability of pattern h
- A pattern h is τ -rare if
$$f(h) = \frac{p(h)}{\mu(h)} \leq \tau$$
- Otherwise it is τ -common

Rare and Common Points

- A point x is τ -rare if there exists a τ -rare h such that $h(x) = 1$
- Otherwise a point is τ -common
- Goal: An anomaly detection algorithm should output all τ -rare points and not output any τ -common points

PAC-RPAD

- Algorithm \mathcal{A} is PAC-RPAD for

- pattern space \mathcal{H} ,
 - measure μ ,
 - parameters τ, ϵ, δ

if for any probability density p and any τ , \mathcal{A} draws a sample from p and with probability $1 - \delta$ detects all τ -rare points and rejects all $(\tau + \epsilon)$ -commons in the sample

- ϵ allows the algorithm some margin for error
- If a point is between τ -rare and $(\tau + \epsilon)$ -common, the algorithm can treat it arbitrarily
- Running time: polynomial in $\frac{1}{\epsilon}$, $\frac{1}{\delta}$, and $\frac{1}{\tau}$, and some measure of the complexity of \mathcal{H}

RAREPATTERNDTECT

- Draw a sample of size $N(\epsilon, \delta)$ from p
- Let $\hat{p}(h)$ be the fraction of sample points that satisfy h
- Let $\hat{f}(h) = \frac{\hat{p}(h)}{\mu(h)}$ be the estimated rareness of h
- A query point x_q is declared to be an anomaly if there exists a pattern $h \in \mathcal{H}$ such that $h(x_q) = 1$ and $\hat{f}(h) \leq \tau$.

Results

- Theorem 1: For any finite pattern space \mathcal{H} , RAREPATTERNDTECT is PAC-RPAD with sample complexity

$$N(\epsilon, \delta) = O\left(\frac{1}{\epsilon^2} \left(\log |\mathcal{H}| + \log \frac{1}{\delta} \right)\right)$$

- Theorem 2: For any pattern space \mathcal{H} with finite VC dimension $\mathcal{V}_{\mathcal{H}}$, RAREPATTERNDTECT is PAC-RPAD with sample complexity

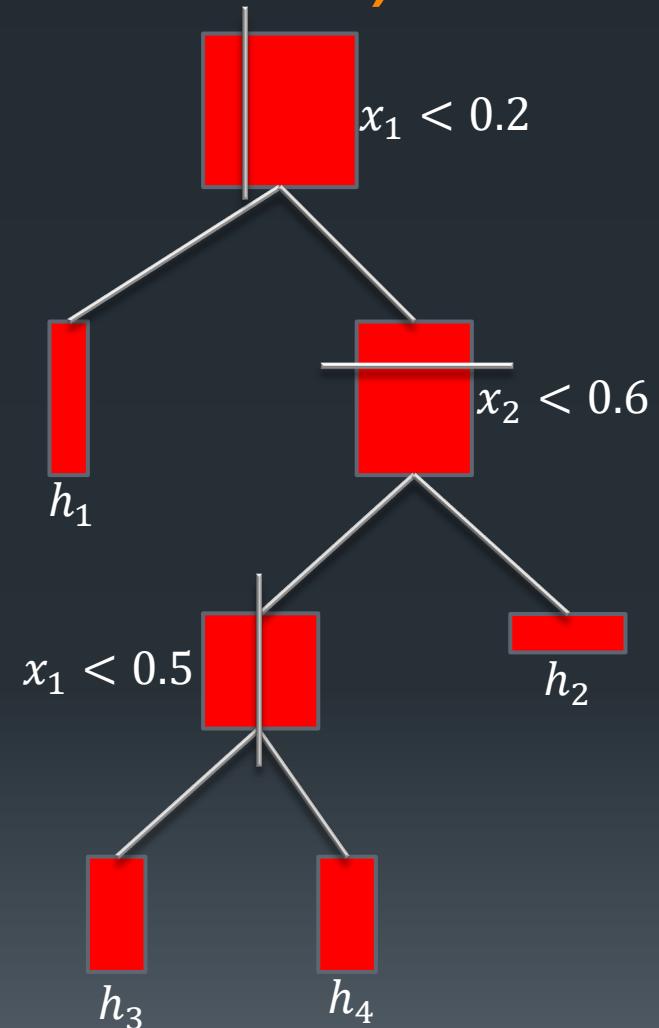
$$N(\epsilon, \delta) = O\left(\frac{1}{\epsilon^2} \left(\mathcal{V}_{\mathcal{H}} \log \frac{1}{\epsilon^2} + \log \frac{1}{\delta} \right)\right)$$

Examples of PAC-RPAD \mathcal{H}

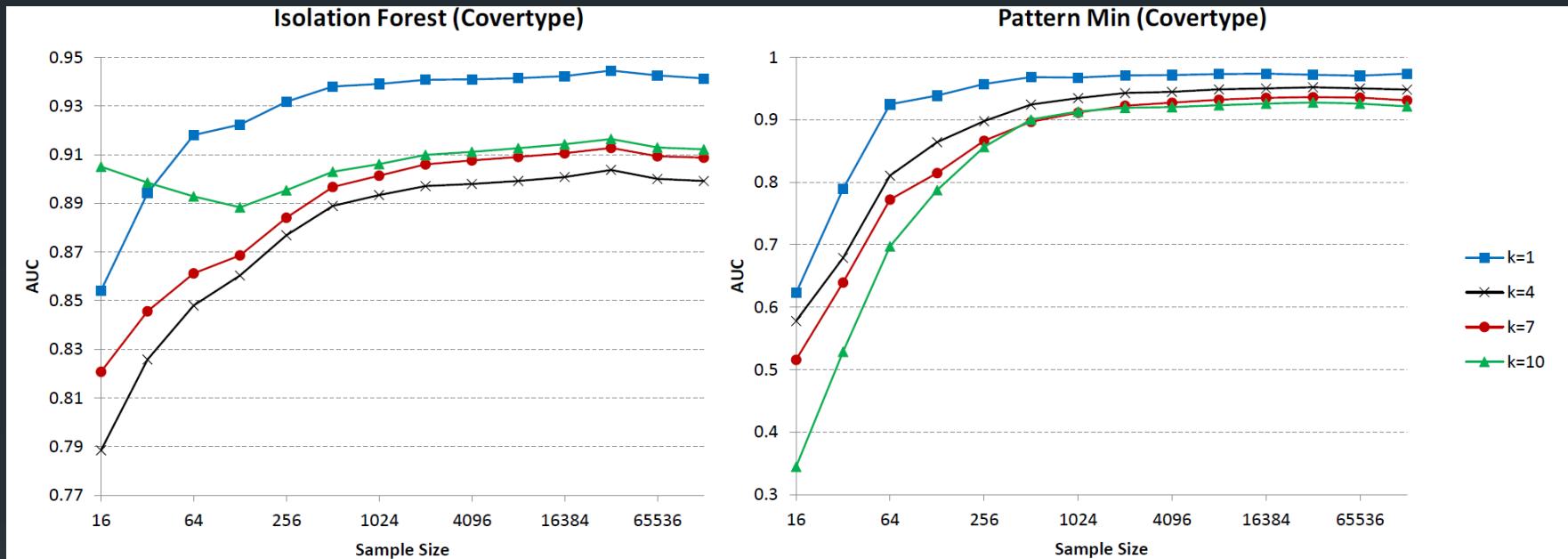
- Half spaces
- Axis-aligned hyper-rectangles (related to iForest leaves)
- Stripes (equivalent to LODA's histogram bins)
- Ellipsoids
- Ellipsoidal shells (difference of two ellipsoidal level sets)

Isolation RPAD (aka Pattern Min)

- Grow an isolation forest
 - Each tree is only grown to depth k
 - Each leaf defines a pattern h
 - μ is the volume (Lebesgue measure)
 - Compute $\hat{f}(h)$ for each leaf
- Details
 - Grow the tree using one sample
 - Estimate \hat{f} using a second sample
 - Score query point(s)

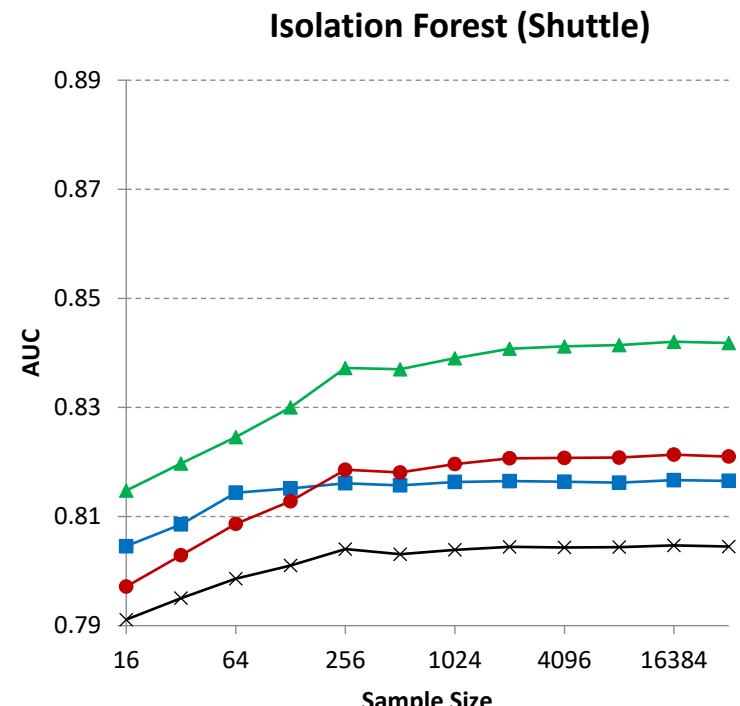
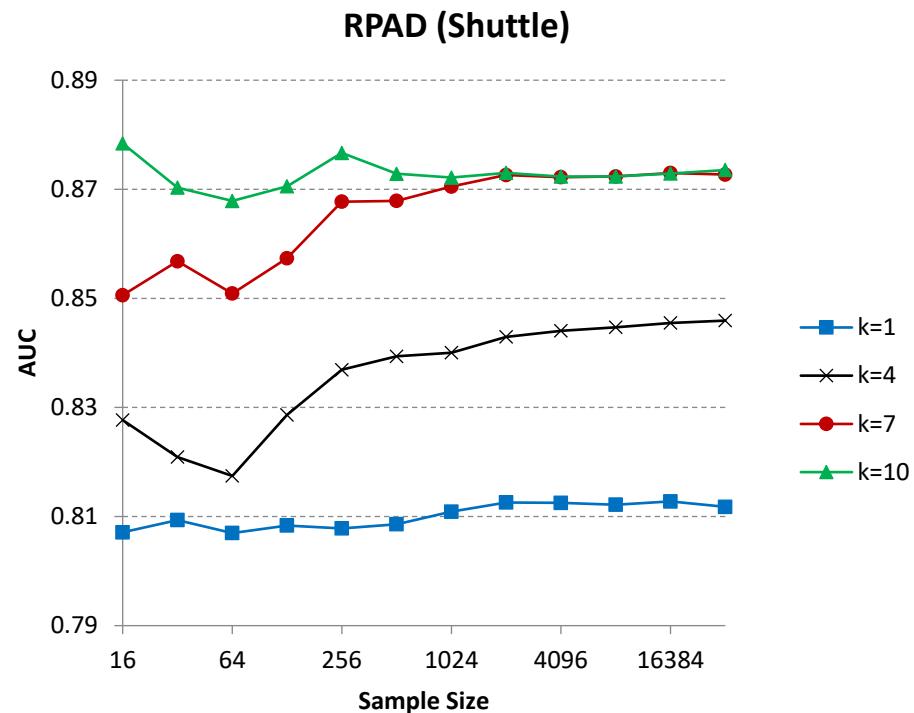


Results: Covertype



- PatternMin learns more slowly, but eventually beats IFOREST

Results: Shuttle



- PatternMin consistently beats iForest for $k > 1$

RPAD Conclusions

- The PAC-RPAD theory seems to capture the qualitative behavior of algorithms such as IFOREST
- It is easy to design practical RPAD algorithms
- Theory needs further work to handle sample-dependent pattern spaces \mathcal{H}

Outline

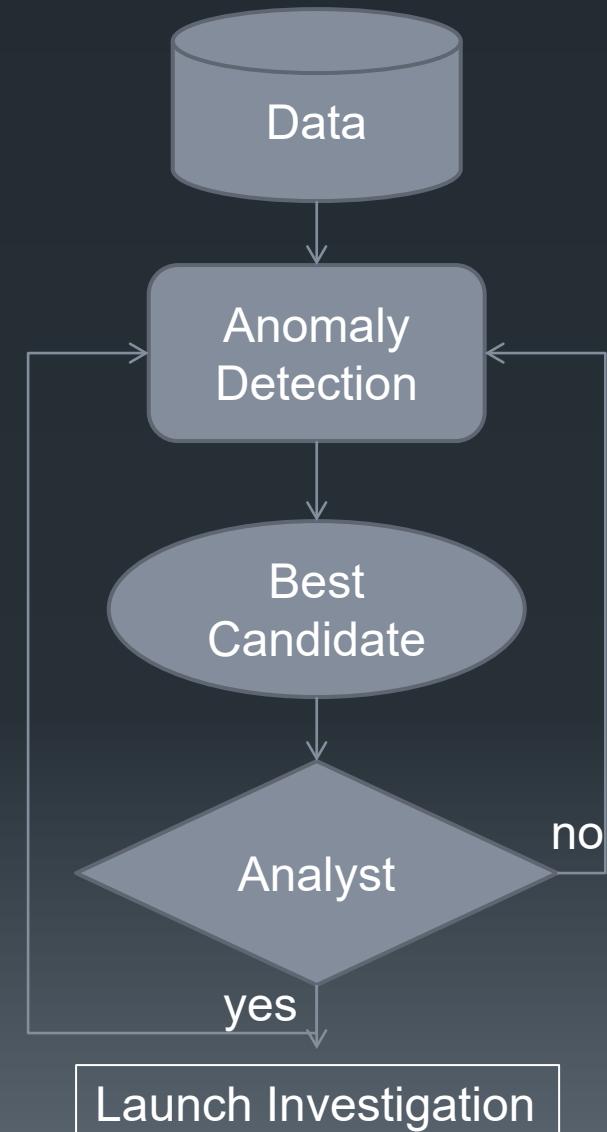
- Defining the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised Anomaly Detection
- PAC Theory of Rare Pattern Anomaly Detection
- Incorporating Analyst Feedback
- Applications
 - Weather network anomaly detection
 - Open Category Classification

Outline

- Defining the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised Anomaly Detection
- PAC Theory of Rare Pattern Anomaly Detection
- Incorporating Analyst Feedback
- Applications
 - Weather network anomaly detection
 - Open Category Classification

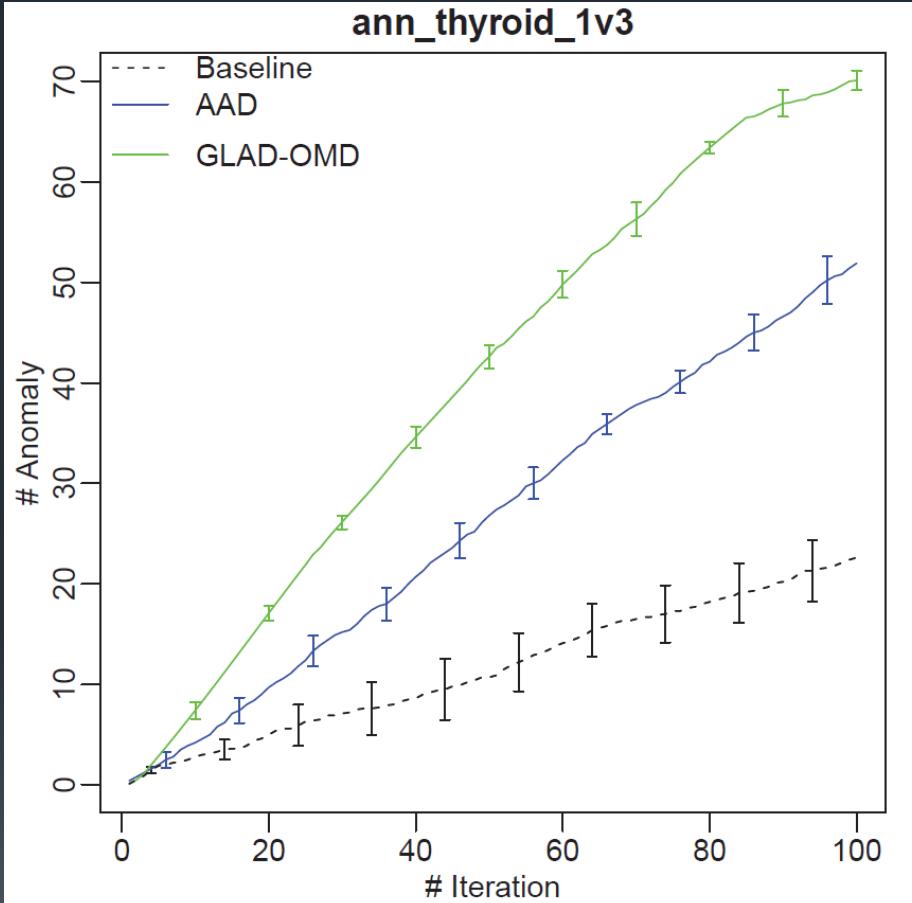
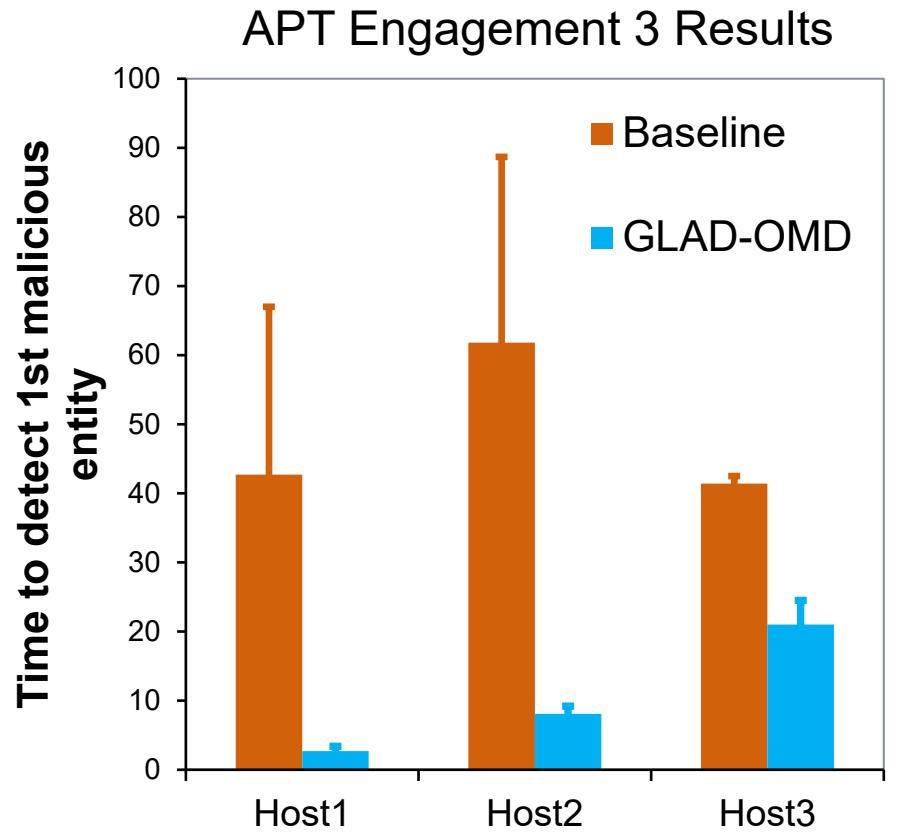
Incorporating Analyst Feedback

- Show top-ranked (unlabeled) candidate to the Analyst
- Analyst labels candidate
- Label is used to update the anomaly detector



[Das, et al, ICDM 2016]
[Siddiqui, et al., KDD 2018]

Analyst Feedback Yields Huge Improvements in Anomaly Discovery



Method

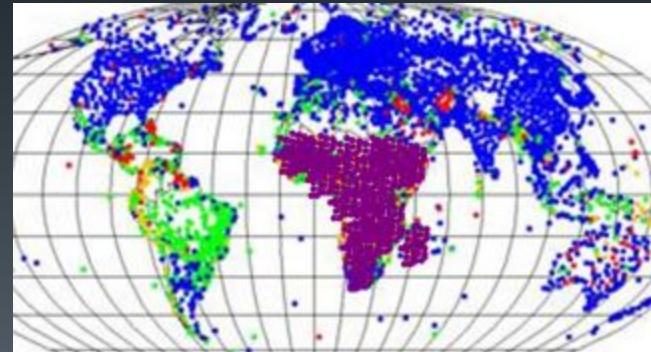
- Transform the Isolation Forest into a gigantic linear model
 - Each node in each tree becomes a Boolean feature that is 1 if x_q visits that node
 - Initial weight of each feature is 1.0, so that the weighted sum == sum of isolation depths in the forest
- Apply online convex optimization algorithms to learn from analyst feedback
 - Online Mirror Descent adjusts the weights to reduce the score of anomalies and increase the score of nominals

Outline

- Defining the Anomaly Detection Problem
- Benchmarking Current Algorithms for Unsupervised Anomaly Detection
- PAC Theory of Rare Pattern Anomaly Detection
- Incorporating Analyst Feedback
- Applications
 - Weather network anomaly detection
 - Open Category Classification

TAHMO: Trans-Africa Hydro-Meteorological Observatory

- Africa is very poorly sensed
 - Only a few dozen weather stations reliably report data to WMO (blue points in map)
 - Poor sensing → No crop insurance → Low agricultural productivity
 - Goal: Make Africa the best-sensed continent & improve agriculture
- Project TAHMO (tahmo.org)
 - TU-DELFT & Oregon State University
 - Design low-cost weather station
 - Deploy 20,000 such stations across Africa
 - Create data products (e.g., drought assessments, inundation estimates)
- Automated Data Quality Control
 - Detect broken sensors as anomalies



SENSOR-DX Architecture: Design and Training

- Define a set of views of the TAHMO data
 - A view involves 1 or more sensors from 1 or more stations over 1 or more time points
 - Each view defines a set of view tuples ν
- Fit an anomaly detector to the view tuples
- Introduce a state variable s for each sensor at each station and time point
- Fit probabilistic models $P(A(\nu)|\text{parents}(\nu))$
- Hypothesis: It is easier to model the anomaly score distribution than it is to model the sensor readings

Example View

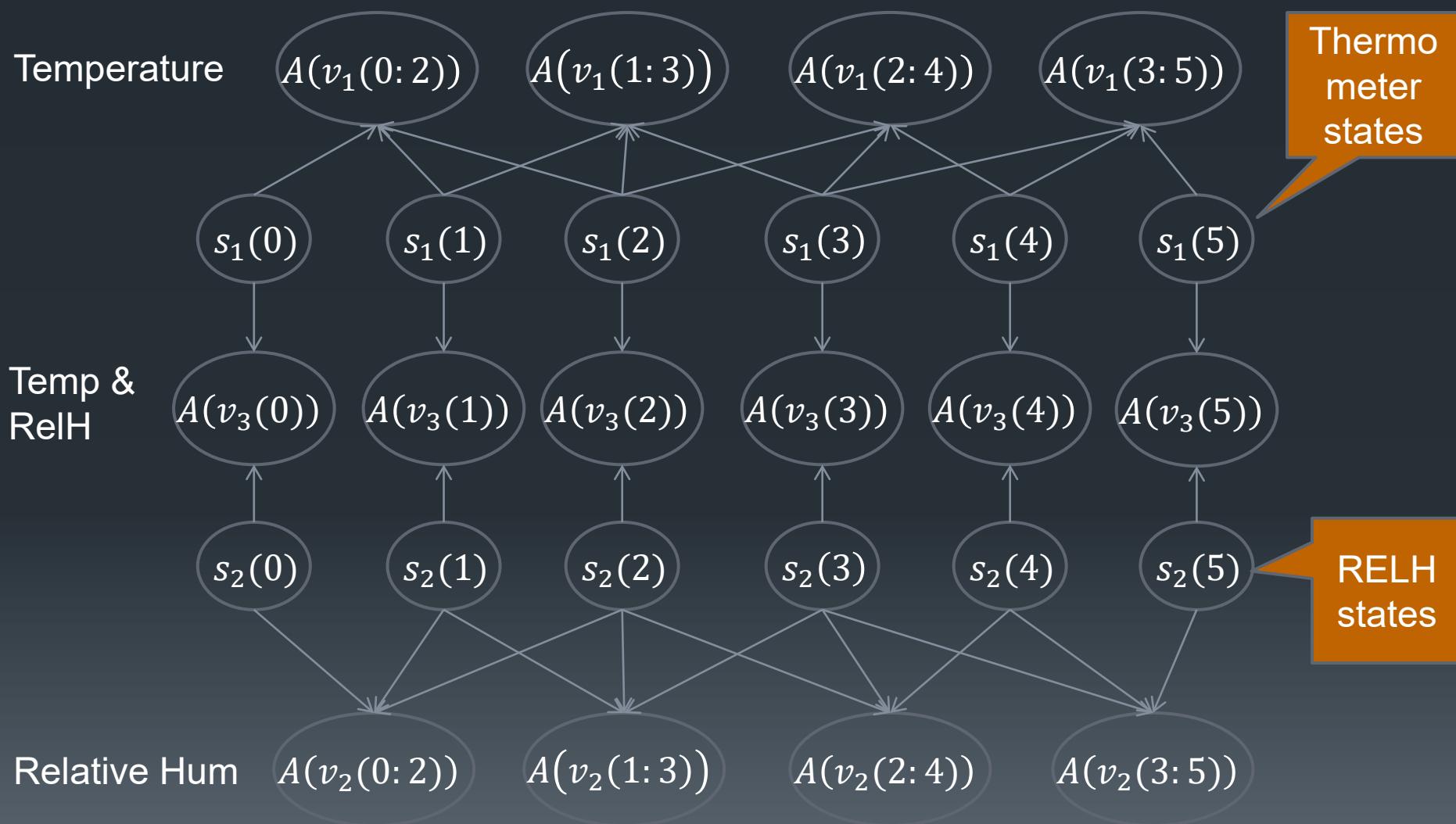
- Temperature T at times $t - 2, t - 1, t$

0	1	2	3	4
15	15.5	16.2	17	16.5

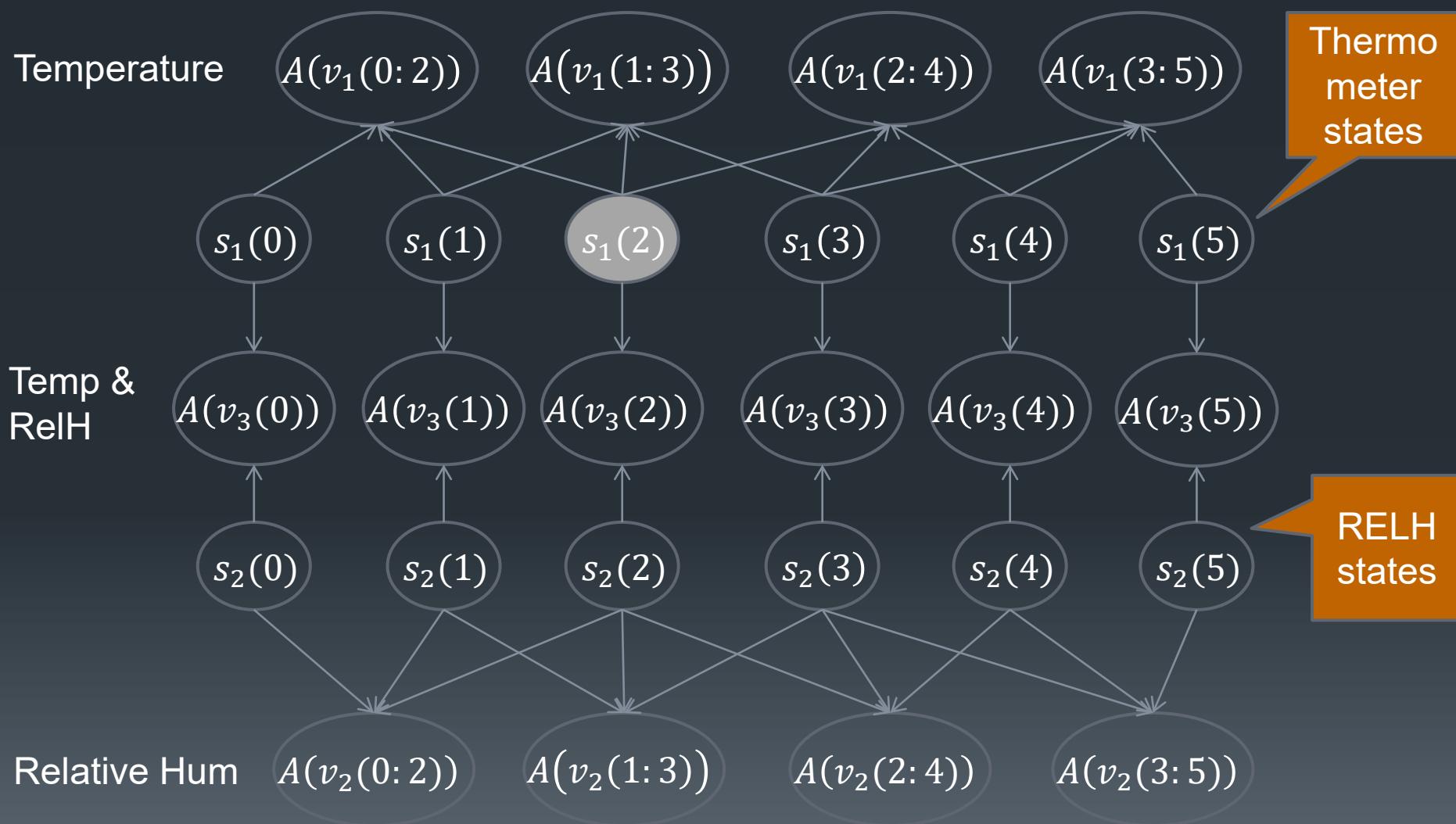
- View tuples

	$t - 2$	$t - 1$	t
$v_1(0: 2)$	15	15.5	16.2
$v_1(1: 3)$	15.5	16.2	17
$v_1(2: 4)$	16.2	17	16.5

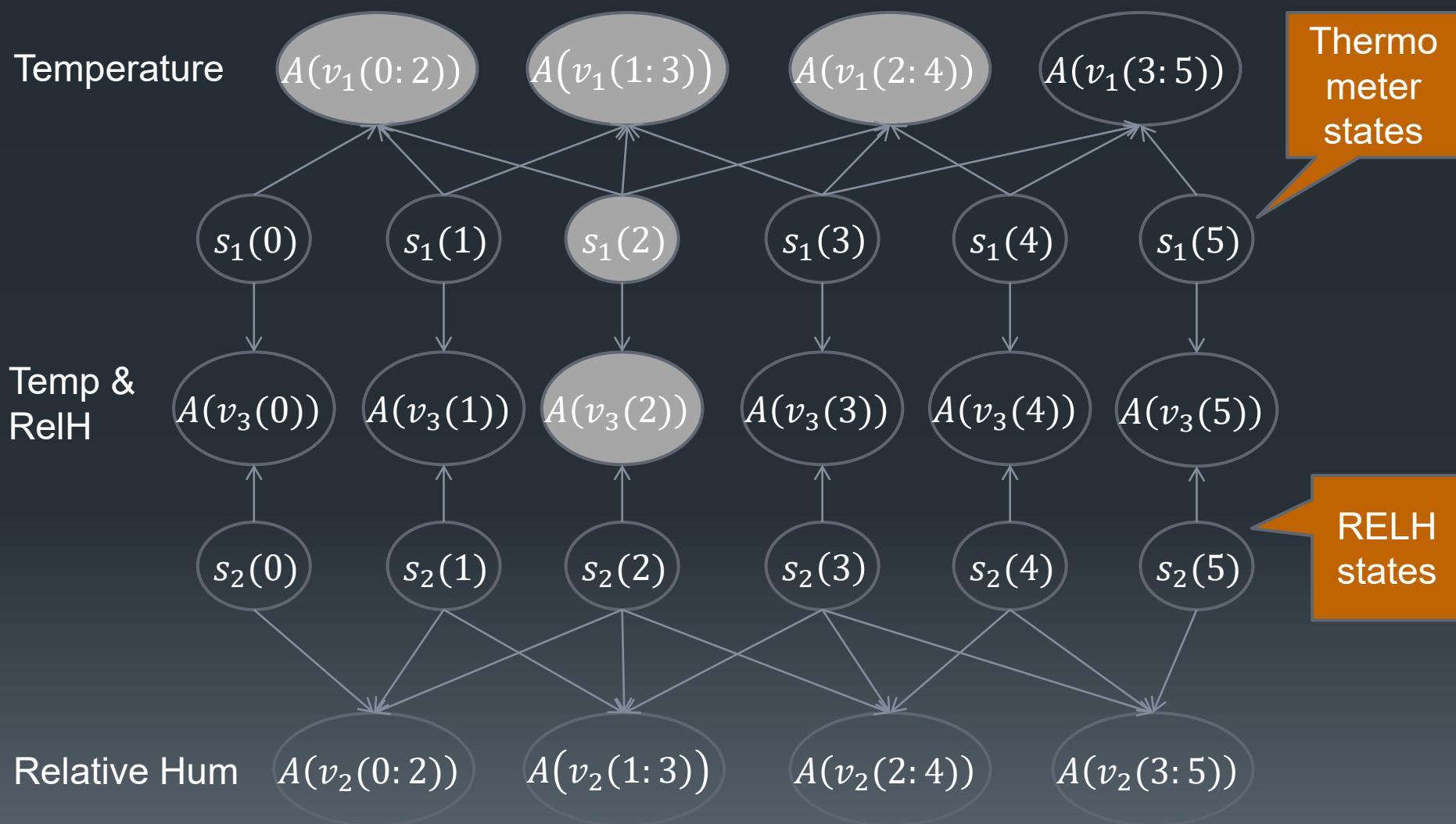
Diagnostic Model



Diagnostic Model



Diagnostic Model



Run Time Quality Control

- Assemble incoming data into view tuples
- Compute anomaly score for each view tuple
- Perform probabilistic inference to determine which sensor states best explain the observed anomaly scores:

$$\arg \max_S P(S|A(V))$$

Experimental Evaluation

[Tadesse Zemicheal]

- Data: Oklahoma Mesonet

- 1 year for training, 1 year for testing
- 5 minute reporting interval; 20-day blocks
- Hourly sensor state variable
- Sensors:
 - Temperature (TAIR), relative humidity (RELH), atmospheric pressure (PRES), and Solar Radiation (SRAD)
- Stations:
 - OKCE, OKCN, OKCW, NRMN

- Synthetic faults

- spike noise, flatline, offset

- Isolation Forest

- Baseline:

- Single sensor view

- SENSOR-DX:

- Four views

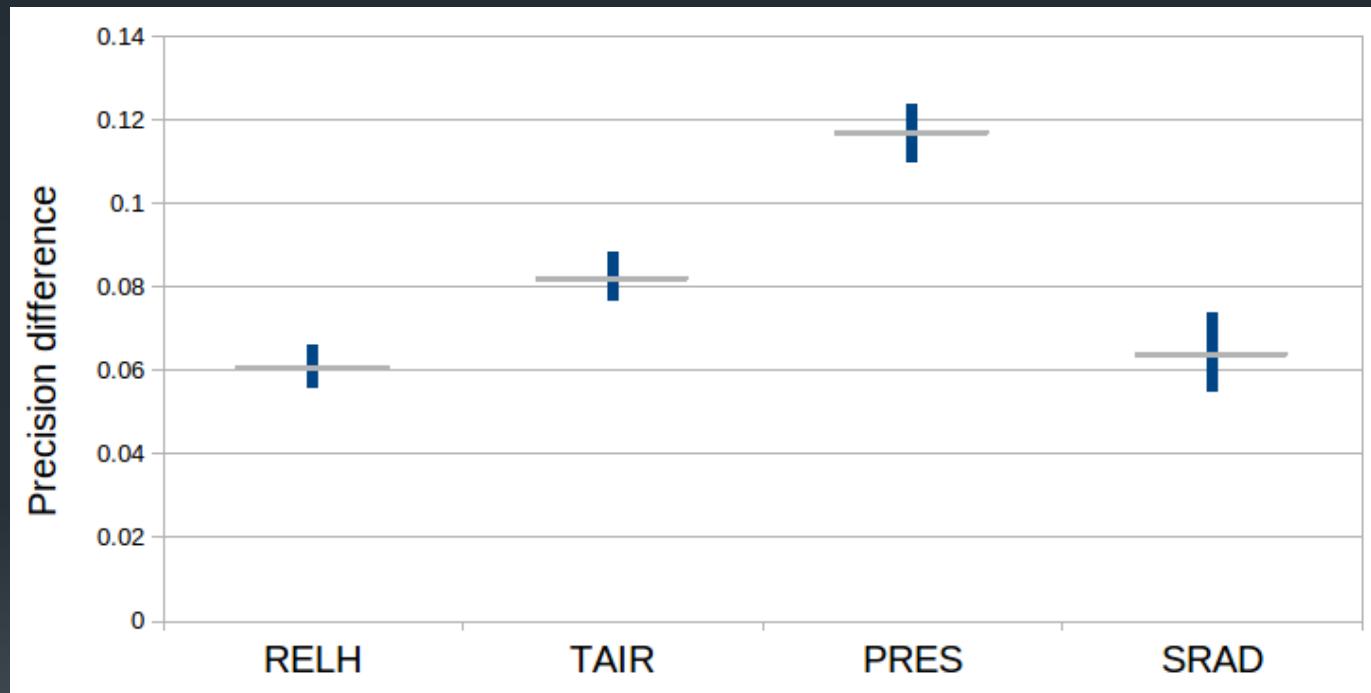
- Metrics:

- Precision and recall

View type	State/period	Total #views
Single sensor view	1	16
Same sensor two station view	2	24
Two sensor single station view	2	24
Single sensor three hour view	3	14
Total views per block		80

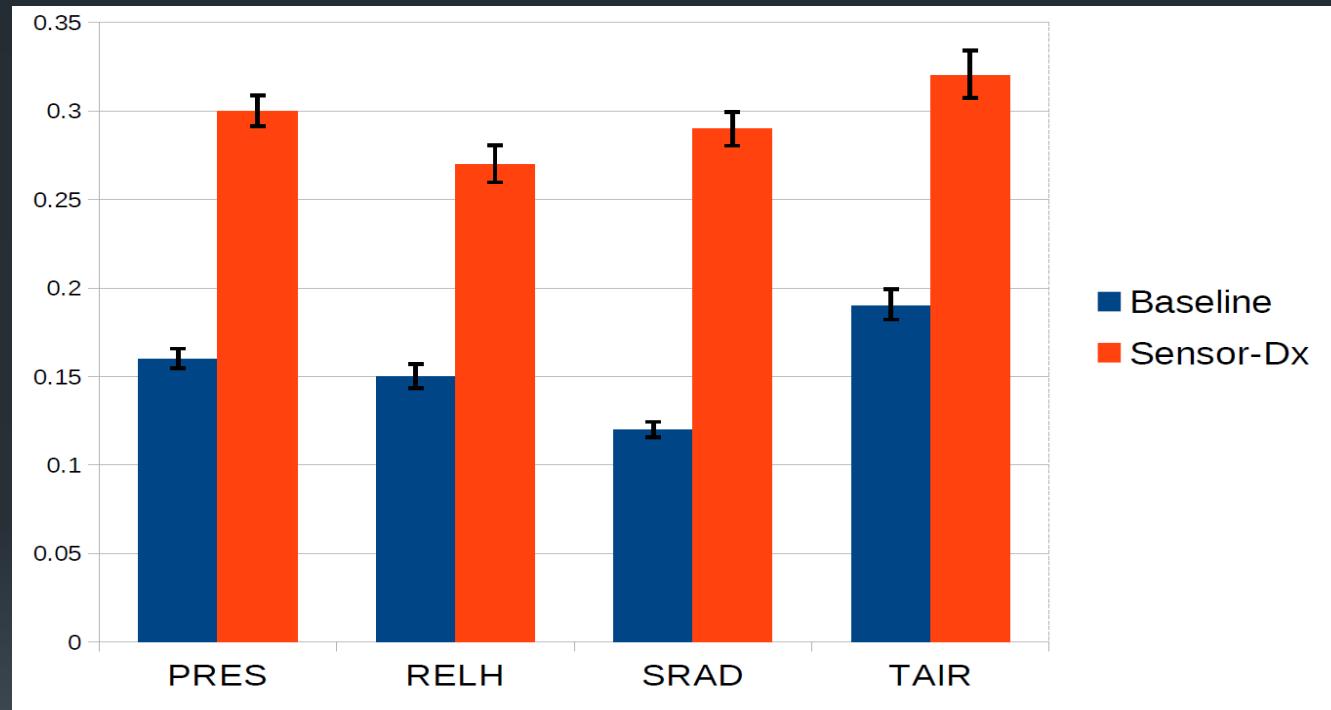
Result: SENSOR-DX improves precision

Difference in precision of multi-view method versus single-view baseline



95% two-sided
paired differences
bootstrap confidence
intervals

Precision at Matching Recall Level



95% confidence intervals

Sensor-DX
improves precision,
but the false alarm
rate will still be quite
high

Status

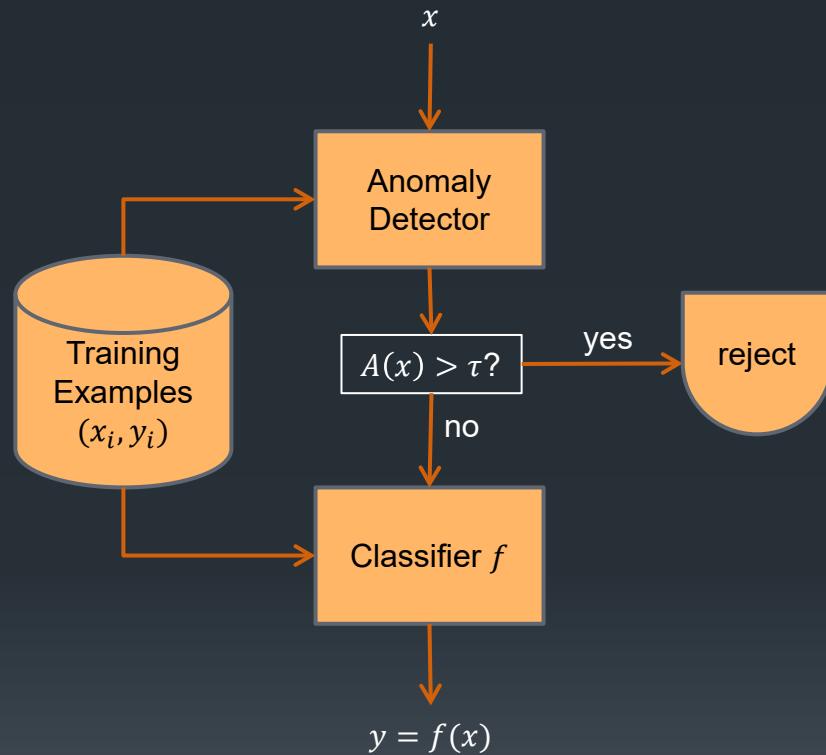
- Deployment on TAHMO network is in progress
- Integrated with
 - Network Manager dashboard
 - Trouble ticket system

Open Category Classification

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

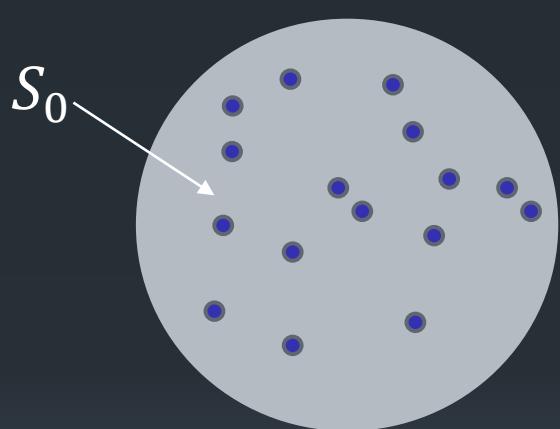
- Training data for classes $\{1, \dots, K\}$
- Test data may contain queries corresponding to additional classes
- Can we detect them?

Prediction with Anomaly Detection

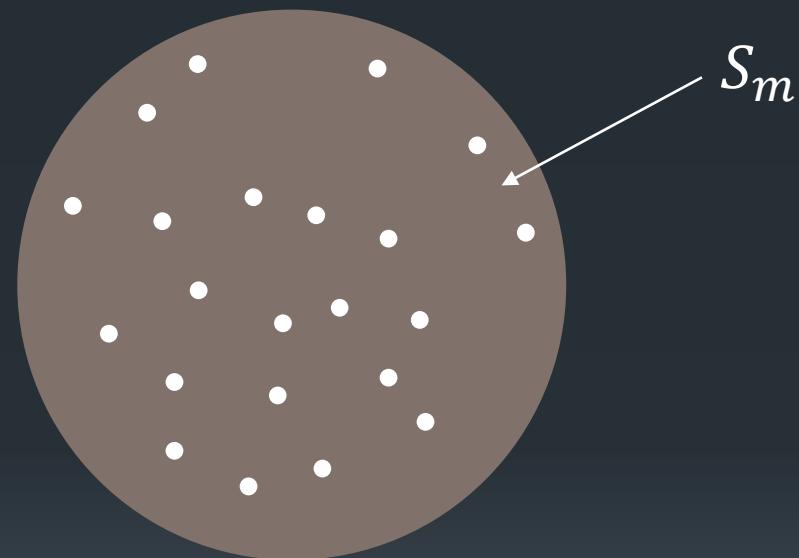


Training Data

P_0
Nominal Distribution



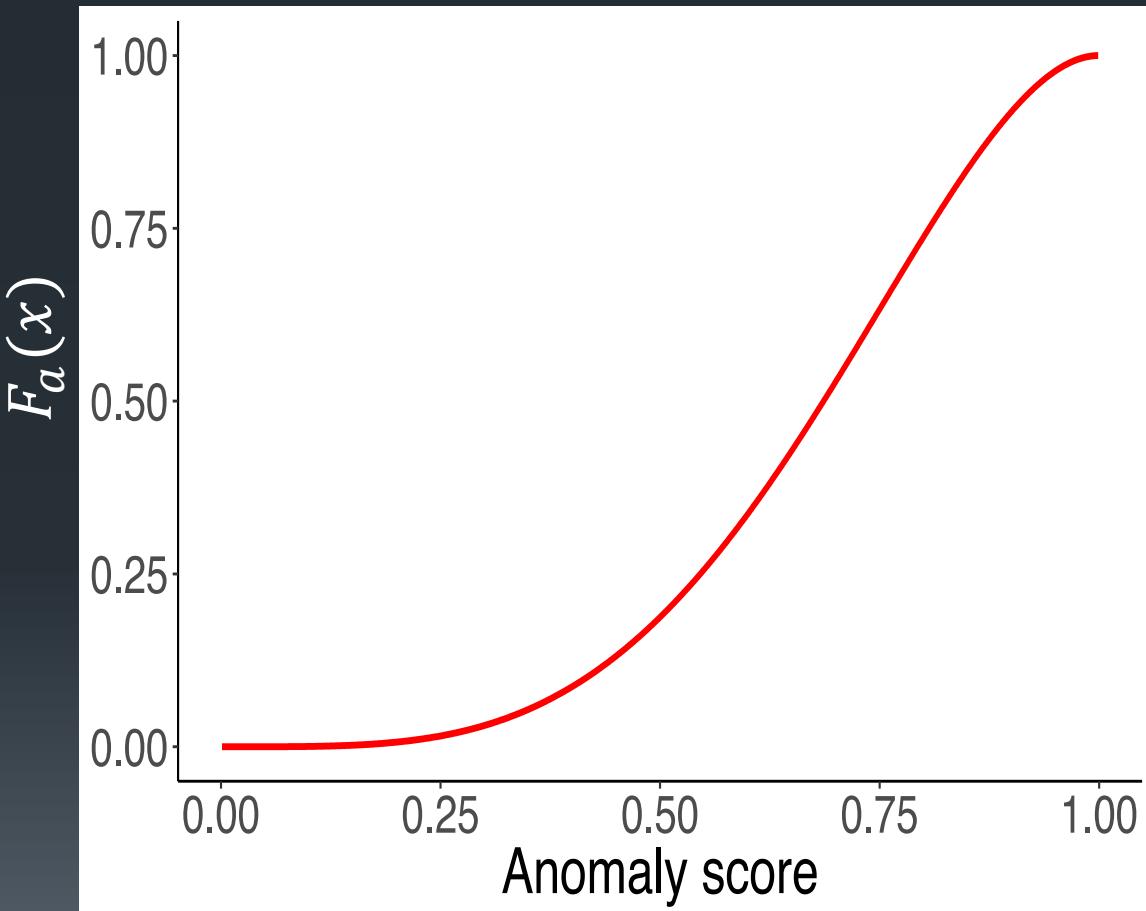
P_m
Mixture Distribution



Proportion of Aliens = α

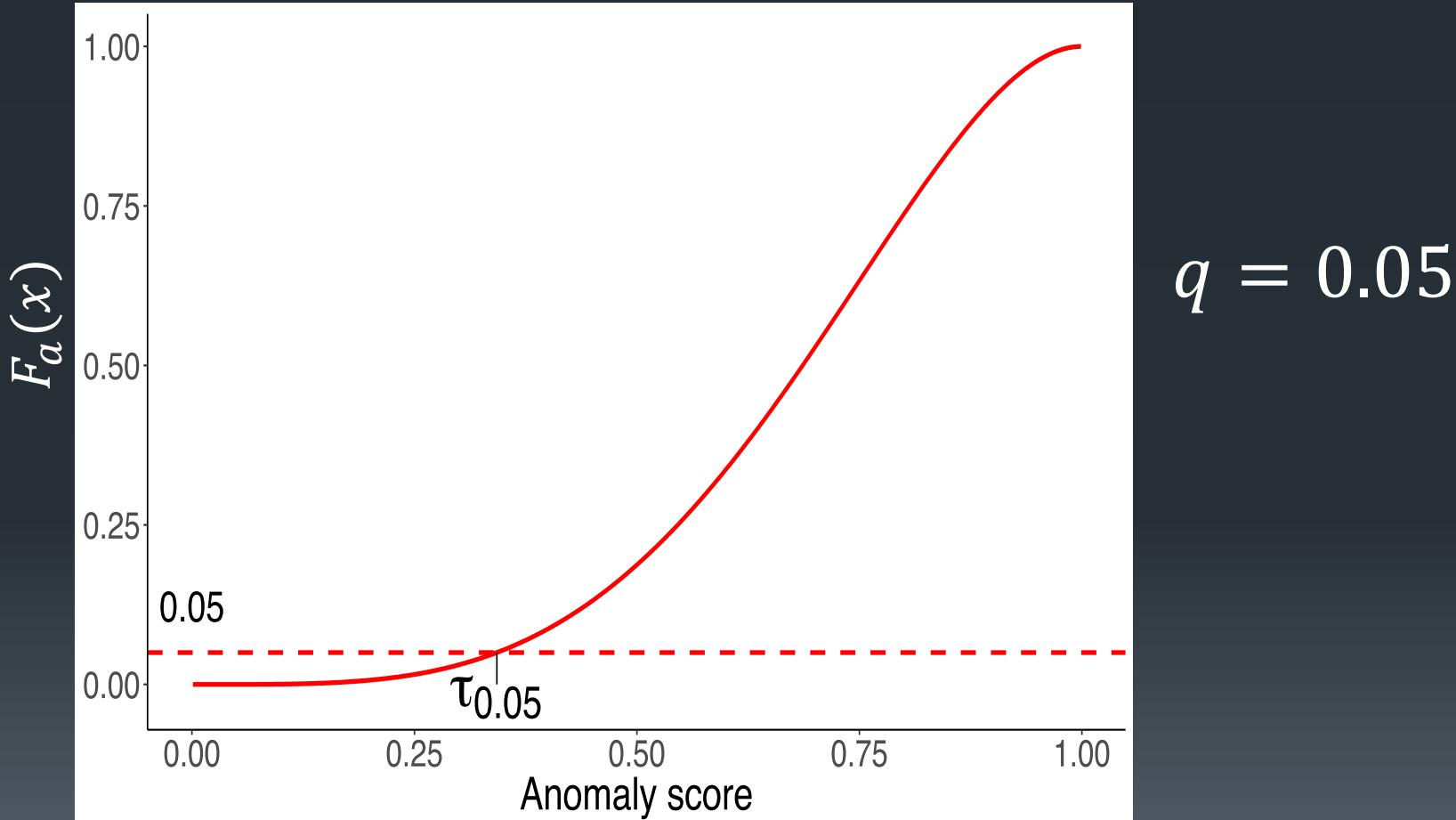
$$P_m = (1 - \alpha)P_0 + \alpha P_a$$

CDF of Alien Anomaly Scores: F_a



Want to have
recall = $1 - q$

Choosing τ for target quantile q

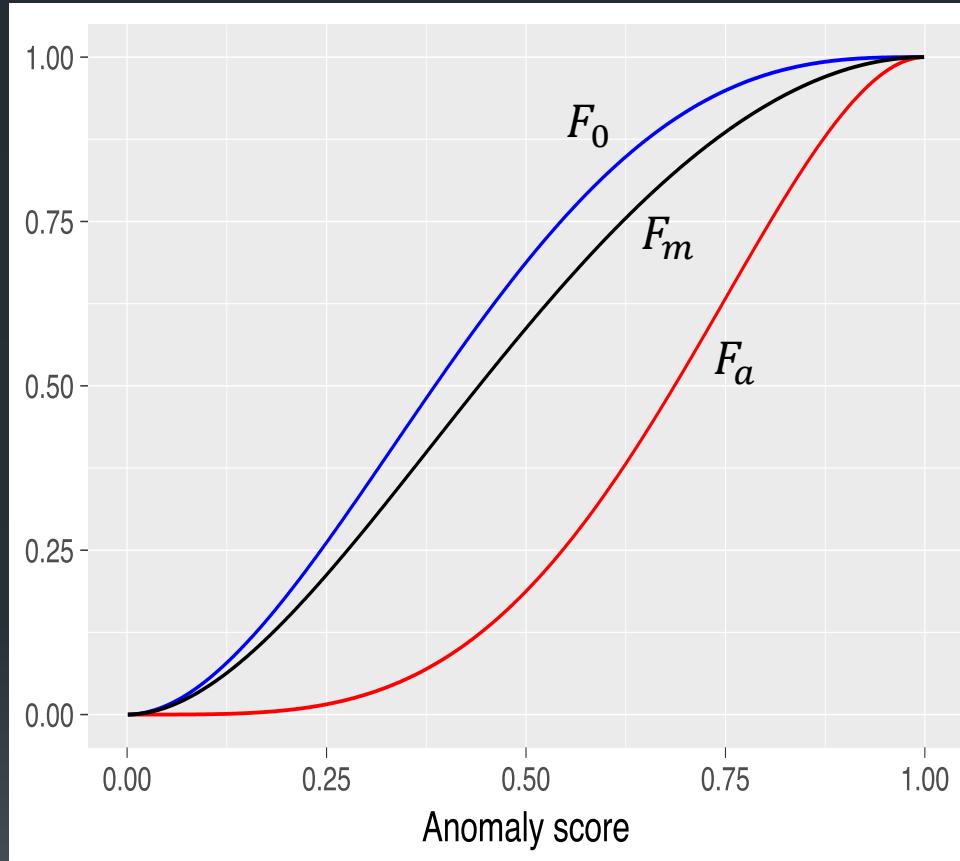


$$P_m = (1 - \alpha)P_0 + \alpha P_a$$

implies that

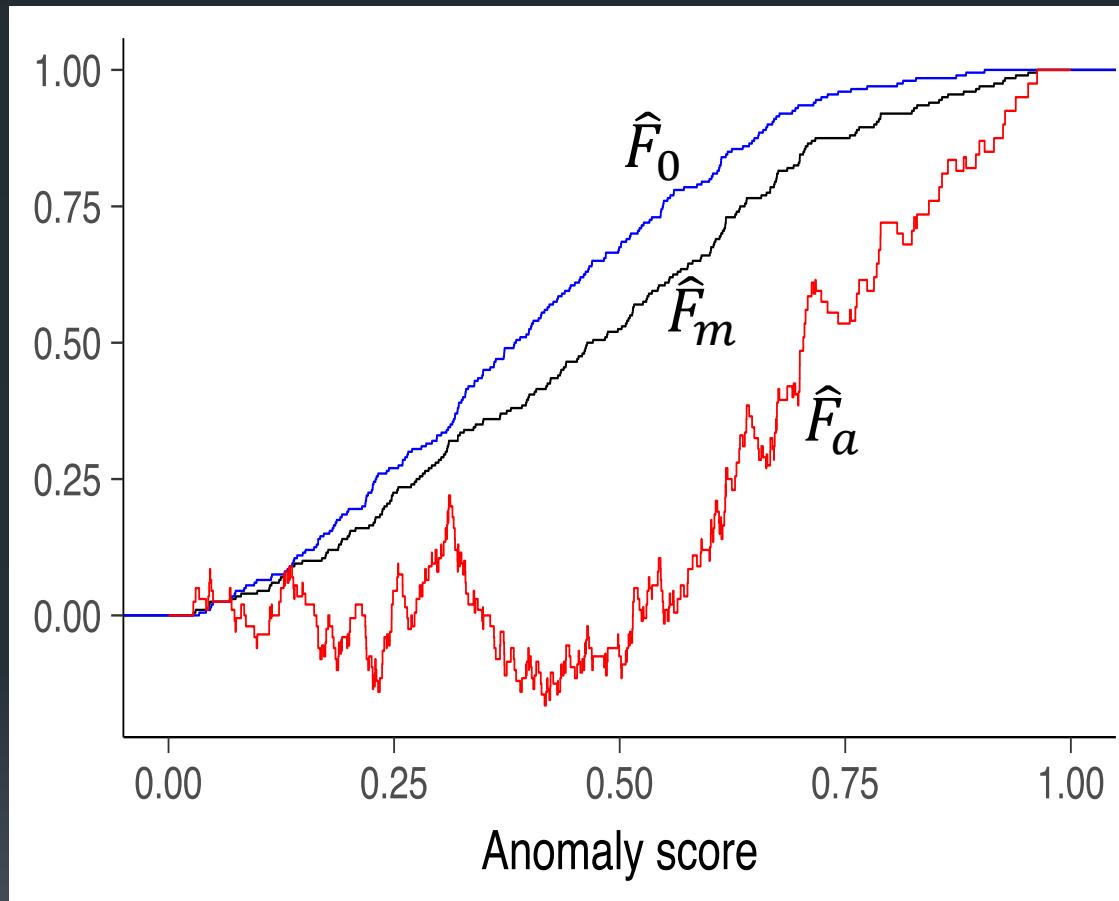
$$F_m(x) = (1 - \alpha)F_0(x) + \alpha F_a(x)$$

CDFs of Nominal, Mixture, and Alien Anomaly Scores



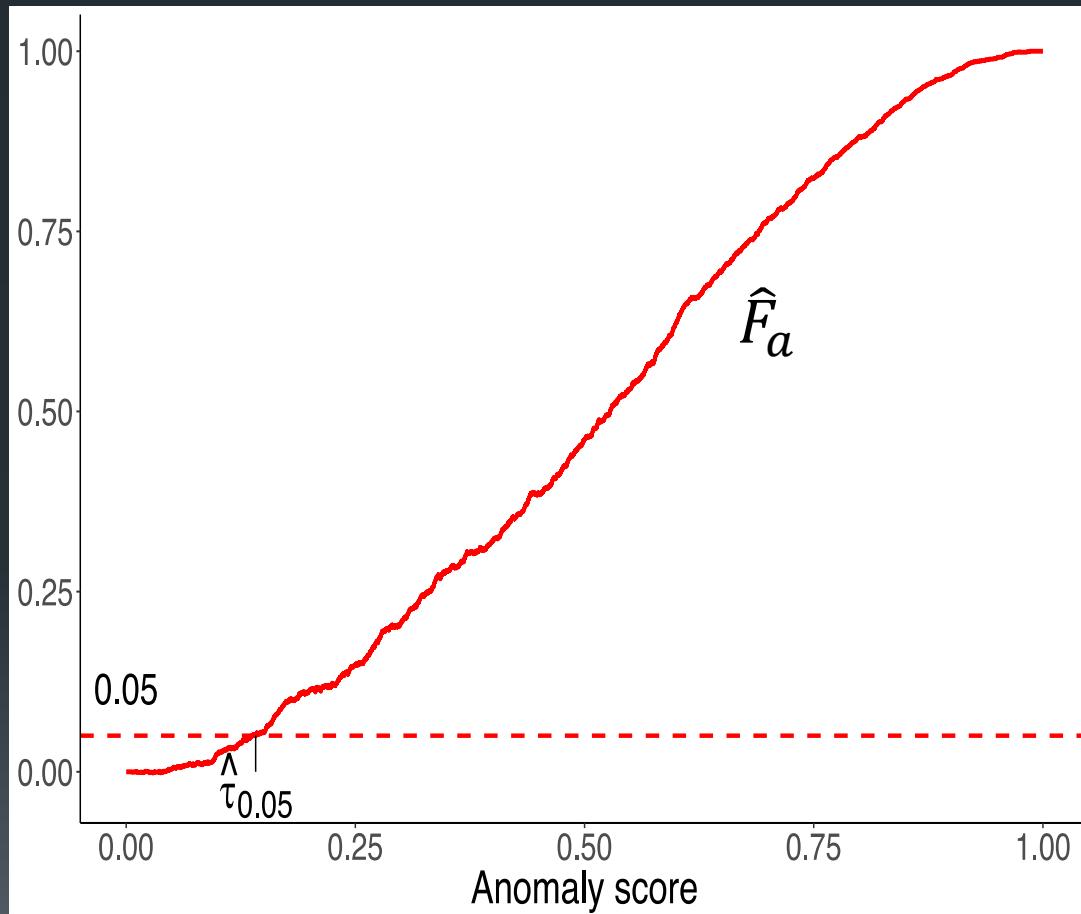
$$F_a(x) = \frac{F_m(x) - (1 - \alpha)F_0(x)}{\alpha}$$

What We Have Are Empirical CDFs



$$\hat{F}_a(x) = \frac{\hat{F}_m(x) - (1 - \alpha)\hat{F}_0(x)}{\alpha}$$

We Use the Empirical Estimate $\hat{\tau}_{0.05}$



EstimateTau(S_0, S_m, q, α)

- 1: Anomaly scores of S_0 : x_1, x_2, \dots, x_k
- 2: Anomaly scores of S_m : y_1, y_2, \dots, y_m
- 3: Compute empirical CDFs \hat{F}_0 and \hat{F}_m .
- 4: Calculate \hat{F}_a using

$$\hat{F}_a(x) = \frac{\hat{F}_m(x) - (1 - \alpha)\hat{F}_0(x)}{\alpha}.$$

- 5: Output detection threshold

$$\hat{\tau}_q = \max_{u \in S} \hat{F}_a(u) \leq q,$$

where $S = \{x_1, x_2, \dots, x_k, y_1, y_2, \dots, y_m\}$.

Theoretical Guarantee

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

- Theorem: If

$$n > \frac{1}{2} \ln \frac{2}{1 - \sqrt{1 - \delta}} \left(\frac{1}{\epsilon} \right)^2 \left(\frac{2 - \alpha}{\alpha} \right)^2$$

then with probability $1 - \delta$ the alien detection rate will be at least $1 - (q + \epsilon)$

Proof based on Massart (1990) concentration bound for empirical CDFs

Summary

- Outlier Detection can perform unsupervised or clean anomaly detection when the relative frequency of anomalies, α is small
- Algorithm Benchmarking
 - The Isolation Forest is a robust, high-performing algorithm
 - The OCSVM and SVDD methods do not perform well on AUC and AP. Why not?
 - The other methods (ABOD, LODA, LOF, EGMM, RKDE) are very similar to each other
- PAC-RPAD theory may account for the rapid learning of many anomaly detection algorithms
- Expert Feedback can double or triple the efficiency of detecting anomalies
- Anomaly detection can help find broken IoT sensors
- Anomaly detection can provide guarantees for open category detection

Acknowledgements

- Partially supported by
 - DARPA Contract W911NF-11-C-0088
 - DARPA Contract FA8650-15-C-7557
 - DARPA Contract FA8750-19-C-0092
 - US NSF Grants 1514550 & 1521687
 - FLI program FLI-RFP-AI1, grant number 2015-145014
 - Gift from Huawei, Inc.