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The Class So Far

• Lecture 1: Calibrated Probabilities (Closed World)
• Lecture 2: Rejection and Prediction Sets (Closed World)
• Lecture 3: Anomaly Detection for Out‐of‐Distribution and Novel 
Category Detection (Open World)
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Reminder: Threats to Competent Classifiers

3

𝑥௤ is near a decision boundary (the 
features of 𝑥௤ are ambiguous)
𝑥௤ is in a region with high labeling noise
𝑥௤ is in a region with little training data

𝑥௤ belongs to a class that was not present in 
the training data: “novel category problem”

Today we focus on case 3 where 𝑥௤ is an 
outlier or anomaly
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Two Problem Formulations: 
OOD and Open Category
Out‐of‐Distribution Problem
• Training:

• Data:  𝑥ଵ,𝑦ଵ , … , ሺ𝑥ே ,𝑦ேሻ drawn from 𝐷଴
• 𝑦௜ ∈ 1, … ,𝐾

• Testing:
• Data: Mixture 𝐷௠ of data from 𝐷଴ and 𝐷௔
• 𝑥,𝑦 ∼ 𝐷௔ belong to a different data set

• Goal:
• Given a query 𝑥௤, does it belong to 𝐷௔ or 
𝐷଴?

• If from 𝐷௔, REJECT as alien
• Else classify using a classifier trained on 𝐷଴
data

Novel Category / Open Set Problem
• Training:

• Data:  𝑥ଵ,𝑦ଵ , … , ሺ𝑥ே ,𝑦ேሻ drawn from 𝐷଴
• 𝑦௜ ∈ 1, … ,𝐾

• Testing:
• Data: Mixture 𝐷௠ of data from 𝐷଴ and 𝐷௔
• 𝑥,𝑦 ∼ 𝐷௔ belong to new classes not seen 
during training (“alien categories”)

• Goal:
• Given a query 𝑥௤, does it belong to 𝐷௔ or 
𝐷଴?

• If from 𝐷௔, REJECT as alien
• Else classify using a classifier trained on 𝐷଴
data
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Key Difference: Evaluation Protocol
Out‐of‐Distribution
• Train on data from domain A
• Test on data from a mix of 
domain A and domain B

• Example:
• Train on MNIST
• Test on MNIST + Fashion‐MNIST

Novel Category

5

• Divide the classes of domain A 
into known and unknown

• Train on known classes
• Test on all classes
• Example:

• Train on MNIST {1,2,3,4,5}
• Test on MNIST {1,2,3,4,5,6,7,8,9,0}
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OOD and Novel Category Metrics

• AUROC: Area under the ROC curve for the binary decision
• OOD: Domain A vs Domain B
• Novel Category: Known vs Unknown

• Detection rate at fixed false alarm rate. TPR@10%FAR
• Maximize correct OOD/Novel Category detections subject to a constraint that 
the false alarm rate is ൑ 0.10.

• False alarm rate at fixed missed alarm rate: FAR@95%TPR
• Detect 95% of OOD/Novel Category examples while minimizing false alarms
• Most relevant to AI Safety and Trustworthy Systems
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Comments

• OOD is usually easier than Novel Category because of global differences in 
image statistics

• Different image collection methods, different subject matter
• Novel category images are collected by the same methods and involve very similar 
objects

• OOD rarely corresponds to a real‐world use case
• If you’ve trained on MNIST for postal code recognition, you aren’t likely to suddenly 
be given Fashion MNIST images

• Exceptions:
• Image collection methods can change: lighting, camera, etc.

• OOD is easier to study
• Download pre‐trained network, apply your technique, evaluate on separate data set

• Novel Category is much more relevant to real‐world use cases
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Motivating Example: Automated Counting of 
Freshwater Macroinvertebrates
• Goal: Assess the health of freshwater streams
• Method: 

• Collect specimens via kicknet
• Photograph in the lab
• Classify to genus and species

• BugID Project
• 54 classes of interest to the EPA 
• accuracy ൎ 90%
• Larios, N., Soran, B., Shapiro, L., Martínez‐Muños, G., Lin, J., Dietterich, T. G. (2010). 

Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species 
Identification. IEEE International Conference on Pattern Recognition (ICPR‐2010). 

• Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., 
Dietterich, T. (2011). Fine‐Grained Recognition for Arthropod Field Surveys: Three 
Image Collections. First Workshop on Fine‐Grained Visual Categorization (CVPR‐2011)

• Lytle, D. A., Martínez‐Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., 
Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated 
processing and identification of benthic invertebrate samples. Journal of the North 
American Benthological Society, 29(3), 867‐874.
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Problem: There are  species of 
freshwater insects worldwide
• 1200 species in US
• Field samples may contain other things

• small rocks
• leaves
• trash

• Simple estimate of equal error rate for 
novel classes vs. the 54 classes was 
20% (in 2011)

• classifier is not usable without addressing 
the novel class problem

• We still need to solve this problem
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Anomaly Detection

• Definition: An “anomaly” is a data point generated by a process that is 
different than the process generating the “nominal” data

• Given:
• Training data:  𝑥ଵ, 𝑥ଶ, … , 𝑥ே
• Case 1: All data come from 𝐷଴ the “nominal” distribution
• Case 2: The data come from a mixture of 𝐷଴ and 𝐷௔ the “anomaly” distribution
• Test data:  𝑥ேାଵ, … , 𝑥ேାெ from a mixture of 𝐷଴ and 𝐷௔

• Find:
• The data points in the test data that belong to 𝐷௔

• Note: 𝐷௔ need not be a stationary distribution, but we general assume that 
𝐷଴ is stationary.
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Outline

• Theoretical Approaches to Anomaly Detection
• Practical Algorithms for Hand‐Crafted Features
• Deep Anomaly Detection
• Setting the Anomaly Detection Threshold
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Theoretical Approaches to Anomaly Detection

• Density Estimation Methods
• Surprise: 𝐴 𝑥௤ ൌ െ log𝑃஽ሺ𝑥௤ሻ
• Model the joint distribution 𝑃஽ሺ𝑥ሻ of the 
input data points 𝑥ଵ, … ∈ 𝐷

• Issues:
• Vulnerable to nuisance novelty
• High‐dimensional density estimation requires 

exponential amounts of training data

• Quantile Methods
• Find a smooth function 𝑓 such that 

𝑥: 𝑓 𝑥 ൒ 0 contains 1 െ 𝛼 of the 
training data

• Anomaly score 𝐴 𝑥 ൌ െ𝑓ሺ𝑥ሻ
• Based on kernel techniques, so requires a 

distance metric and a choice of kernel 
hyperparameters; vulnerable to irrelevant 
features

• Distance‐Based Methods
• Anomaly score 𝐴 𝑥௤ ൌ min

௫∈஽
𝑥௤ െ 𝑥

• Issues:
• Requires a good distance metric; vulnerable 

to irrelevant features

• Reconstruction Methods
• Train an auto‐encoder: 𝑥 ൎ 𝐷 𝐸 𝑥 , 
where 𝐸 is the encoder and 𝐷 is the 
decoder

• Anomaly score
𝐴 𝑥௤ ൌ 𝑥௤ െ 𝐷 𝐸 𝑥௤

• Issues:
• Vulnerable to irrelevant features
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Density Estimation

• Given a data set  𝑥ଵ, … , 𝑥ே where 𝑥௜ ∈ ℝௗ

• We assume the data have been drawn iid from an unknown probability 
density: 𝑥௜ ∼ 𝑃 𝑥௜

• Goal: Estimate 𝑃
• Anomaly Score: 𝐴 𝑥௤ ൌ െ log𝑃 𝑥௤

• “surprisal” from information theory

• Requirements
• 𝑃 𝑥 ൒ 0 ∀𝑥 ∈ ℝௗ must be non‐negative everywhere
• ׬ 𝑃 𝑥 𝑑𝑥 ௫∈ℝ೏ ൌ 1 must integrate to 1
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Example: The Gaussian (normal) Distribution
• Normal probability density function (pdf)

𝑃 𝑥; 𝜇,𝜎 ൌ
1

2𝜋𝜎
expെ

1
2
𝑥 െ 𝜇
𝜎

ଶ

• Normal cumulative distribution function 
(cdf)

• 𝐹 𝑧; 𝜇,𝜎 ൌ probability of the event  െ∞, 𝑧
• 𝐹 𝑧; 𝜇,𝜎 ൌ ׬ 𝑃 𝑥; 𝜇,𝜎 𝑑𝑥 ௭

ିஶ

14DeepLearn 2021



Parametric Density Estimation

• Assume 𝑃 𝑥 ൌ Normal 𝑥 𝜇, Σ is the multivariate Gaussian 
distribution

• 𝑃 𝑥 ൌ ଵ
ଶగ ೏ ୢୣ୲ ஊ

expെଵ
ଶ
𝑥 െ 𝜇 ୃΣିଵ 𝑥 െ 𝜇

• Fit by computing the first and second moments:
• 𝜇 ൌ ଵ

ே
∑ 𝑥௜ ௜ mean

• Σ෠ ൌ ଵ
ே
∑ 𝑥௜ െ 𝜇 𝑥௜ െ 𝜇 ୃ
௜ covariance matrix
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Example
• Sample 100 points from multivariate 
Gaussian with 𝜇 ൌ ሺ2,2ሻ and Σ ൌ
 1 1.5

1.5 4
• Estimates:

• 𝜇 ൌ 1.968731, 1.894511

• Σ෠ ൌ 1.081423 1.462467
1.462467 4.000821

• Surprisal of 𝑥௤ ൌ ሺ3,െ2ሻ is 9.635
• Surprisal of 𝜇ො ൌ 2.229
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Kernel Density Estimation

• Estimate the density as the sum of kernels placed at each point in the 
training data. The kernel must be a probability density (integrate to 
1):

• 𝑃෠ 𝑥 ൌ ଵ
ே
∑ 𝑘 ‖𝑥 െ 𝑥௜‖,𝜎ଶே
௜ୀଵ

• Often use a Gaussian Kernel 𝑘 𝑥,𝜎ଶ ൌ ଵ
ଶగఙ

exp െ ௫మ

ଶఙమ

• Often use a fixed scale 𝜎ଶ. The scale is also called the “bandwidth”
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One‐Dimensional Example

18Source: wikipediaDeepLearn 2021



Design Decisions
• Choice of Kernel: generally not super important as long as it is 
local

• Choice of bandwidth is very important
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Challenges

• KDE in high dimensions suffers from the “Curse of Dimensionality”
• The amount of data required to achieve a desired level of accuracy 
scales exponentially with the dimensionality 𝑑 of the problem: 
exp ௗାସ

ଶ
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Deep Neural Networks for Density Estimation
• Idea: Transform a Normal 
density into a density that fits 
the data. Adjust the 
parameters 𝜃 of the model 𝐹
to maximize the likelihood of 
the data

෍ log𝑃ሺ𝒙௜ሻ
௜

• If 𝐹 is invertible, then 𝑃 𝒙 ൌ
Normal 𝐹ିଵ 𝒙 ;𝝁,𝚺

DeepLearn 2021 21

𝒛 ∼ Normal 𝝁,𝚺

𝒖ଵ ൌ 𝑓ଵሺ𝒛ሻ

𝒖ଶ ൌ 𝑓ଶሺ𝒖ଵሻ

𝒖௠ ൌ 𝑓௠ሺ𝒖ଵሻ

𝒙 ൌ 𝒖௠ ∼ 𝑃ሺ𝒙ሻ

𝒙 ൌ 𝐹ሺ𝒛;𝜃ሻ



Constraint: Must Preserve Probabilities of 
Events
• Recall

• Let 𝑃ሺ𝒙ሻ be a probability density (a measurable 
function that integrates to 1)

• An event is a region 𝑉, and its probability mass 
is 

• ׬ 𝑃 𝒙 𝑑𝒙𝒙∈௏ ൌ Pr 𝑉

• We need to ensure that for any region 𝑉 in 
the input space, the corresponding integral 
in 𝒵 space gives the same answer
න 𝐹 𝒙 𝑑𝒙
𝒙∈௏

ൌ න Normal 𝒛;𝝁,𝚺 𝑑𝒛
𝒛∈ிషభ ௏
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𝒛 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙 𝝁,𝚺

𝒖ଵ ൌ 𝑓ଵሺ𝒛ሻ

𝒖ଶ ൌ 𝑓ଶሺ𝒖ଵሻ

𝒖௠ ൌ 𝑓௠ሺ𝒖ଵሻ

𝒙 ൌ 𝒖௠ ∼ 𝑃ሺ𝒙ሻ

𝒙 ൌ 𝐹ሺ𝒛;𝜃ሻ



Change of Variables Formula

• 𝑃 𝐱 ൌ Normal 𝐹ିଵ 𝐱 ; 0, 𝐈 det డிషభ 𝒙
డ𝒙

where det డிషభ 𝒙
డ𝒙

 is the Jacobian of 𝐹ିଵ

This compensates for any stretching or compression of the space
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Constructing Deep Density Models

• Ensure that each 𝑓 is invertible and has an easy‐to‐compute Jacobian
• Example: Masked Auto‐Regressive Flow (Papamarkarios, et al 2017)
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Stacking MAFs
• One MAF network is often not sufficient

25

True Density Fitted Density from
single MAF network

Distribution of the 𝐳
values
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Stack MAFs until the  values are Normal(0,I)

26

True Density Fitted Density from
stack of 5 MAFs

Distribution of the 𝐳
values
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Test Set Log Likelihood

27

Priyank, Kobyzev, Yu & Brubaker (ICML 2020): Use a Student t distribution instead of a Gaussian. 
This allows you to generate distributions with heavy tails, which Gaussians cannot do
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Potential Bug
(Le Lan & Dinh, 2020)

• We want to use െ log𝑃ሺ𝑥ሻ as our anomaly score 𝐴ሺ𝑥ሻ
• Formally, െ log𝑃ሺ𝑥ሻ applies only to the probability mass of an event Prሾ𝑉ሿ. 
Under a probability density 𝑃ሺ𝑋ሻ, the event that 𝑋 ൌ 𝑥 has zero 
probability mass

• Solution: Consider a region surrounding 𝑥: 𝑉 𝑥 ൌ 𝑥ᇱ: 𝑥 െ 𝑥ᇱ ൏ 𝜌
• Prሾ𝑋 ∈ 𝑅 𝑥 ሿ ൌ ׬ 𝑃 𝑥 𝑑𝑥௫∈ோ ௫

• When we use െlog 𝑃ሺ𝑋 ൌ 𝑥ሻ as an anomaly score, we are assuming that 
the density at 𝑥 is a good approximation to Pr 𝑋 ∈ 𝑉ሺ𝑥ሻ

• This assumption is broken in most deep density models, because the 
invertible flow 𝐹 changes the distances between points, so a local 
neighborhood of 𝑥 may have a bizarre non‐local shape in 𝑧: 𝐹ିଵሺ𝑉ሻ
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Lesson

• The representational space matters
• We want to apply density estimation in a meaningful space

• This is NOT the input image/pixel space
• We DO NOT want to compute Pr 𝑥 ∈ 𝑉 𝑥

• We want to learn a good latent space 𝒵 such that images of similar 
contents (same objects, same class, etc.) are close together

• Then apply density estimation in that space
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Approach 2: Quantile Methods
• Vapnik’s principle again: We only need to 
estimate the “decision boundary” 
between nominal and anomalous

• Surround the data by a function 𝑓 that 
captures 1 െ 𝜖 of the training data

• One‐Class Support Vector Machine 
(OCSVM)

• 𝑓 is a hyperplane in “kernel space”
• Support Vector Data Description (SVDD)

• 𝑓 is a sphere is “kernel space”

• Closely related to kernel density 
estimation:

𝑓 𝑥 ൌ ෍ 𝛼௜𝑘ሺ𝑥, 𝑥௜ሻ
௫೔∈ௌ௏

െ 𝜌

where 𝑆𝑉 is the set of “support vectors”. 
These are a carefully‐selected subset of the 
training data points. 𝜌 is a scalar parameter
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Approach 3: Distance‐Based Methods
• Do we really need to estimate probability densities? 
• In most applications, we just need a way of ranking 
the anomalies

• Define a distance 𝑑ሺ𝑥௜ , 𝑥௝ሻ
• 𝐴 𝑥௤ ൌ min

௫∈஽
𝑑ሺ𝑥௤, 𝑥ሻ

• This can be made more robust by looking at the 
average distance to the 𝑘‐nearest points

• “k‐nn anomaly detection”

• This can be normalized by dividing by the distance of 
each neighbor to their 𝑘‐nearest neighbors

• “Local Outlier Factor (LOF)”

𝑥௤
𝑥௤
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Challenges with Distance Metrics
• Correlated or Redundant Features

• If a feature appears twice, then it contributes to the 
distance twice, which gives it too much weight

• If a pair of features is correlated, they have too much 
weight

• Distances in high dimensions are counter‐intuitive
• Suppose data points are uniformly distributed within the 
volume of a 𝑑‐dimensional hypersphere

• Most of the points will be very close to the surface of the 
sphere. 

• in 2𝑑, the shell at right contains 27% of the volume
• in 100𝑑, the shell contains 99.9973% of the volume

• The distances between pairs of points tends to cluster 
tightly (yet another version of the Central Limit Theorem)

• Therefore: Reduce dimensionality as much as 
possible

32

https://ee.stanford.edu/~hellman/playground/hy
perspheres/hyper01.html
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Computing Distances 
• Mahalanobis Distance

• Fit a multi‐variate Gaussian distribution to your 
data

• Mean vector: 𝝁
• Covariance matrix: 𝚺

• Compute the Mahalanobis Distance:
• 𝑑ெு 𝑥, 𝑥ᇱ ൌ 𝑥 െ 𝝁 ୃ𝚺ିଵ 𝑥 െ 𝝁
• This handles the correlation structure of the data

• Points of constant MD are ellipsoids in the 
original space
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Approach 4: Reconstruction Methods

• NavLab self‐driving van (Pomerleau, 1992)
• Primary head: Predict steering angle from input 
image

• Secondary head: Predict the input image (“auto‐
encoder”)

• 𝐴 𝑥௤ ൌ 𝑥௤ െ 𝑥ො௤
• If reconstruction is poor, this suggests that the 
steering angle should not be trusted

• Principle: Anomaly Detection through 
Failure

• Define a task on which the learned system 
should fail for anomalies

34

Pomerleau, NIPS 1992

DeepLearn 2021



Autoencoders
• 𝑧 ൌ 𝐸 𝑥
• 𝑥ො ൌ 𝐷ሺ𝑧ሻ

35
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Linear Autoencoder == 
Principal Component Analysis

• PCA:
• Let the input dimension be 𝑑
• Choose a latent dimension ℓ
• Find the 𝑑 ൈ ℓmatrix 𝑊 that minimizes the 
squared reconstruction error

• min
ௐ

∑ 𝑥௜ െ𝑊𝑊ୃ𝑥௜ ଶ
௜

• This can be done using the Singular Value 
Decomposition

• It can also be viewed as fitting a multi‐variate 
Gaussian to the data and then keeping only the ℓ
dimensions of highest variance
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Application: Finding Unusual Chemical Spectra

• NASA Mars Science Laboratory 
ChemCam instrument

• Collects 6144 spectral bands on rock 
samples from 7m distance using laser 
stimulation

• Goal: active learning to find interesting 
spectra

• DEMUD
• Incremental PCA applied to samples one at a 
time

• Fit only to the samples labeled as 
“uninteresting” by the user

• Show the user the most un‐uninteresting 
sample (sample with highest PCA 
reconstruction error)

• Rapidly discovers interesting samples
• Wagstaff, et al. (2013)
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Outline

• Theoretical Approaches to Anomaly Detection
• Practical Algorithms for Hand‐Crafted Features
• Deep Anomaly Detection
• Setting the Anomaly Detection Threshold
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Density Estimation

• RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
• Selects a subset of the input points and places kernels only on those points
• Robust to the presence of anomalies in the training data

• EGMM: Ensemble Gaussian Mixture Model (our group)
• Fit a mixture of Gaussian mixture models

• LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)
• Fit an ensemble of histogram density estimators to sparse, random one‐
dimensional projections of the data
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Robust Kernel Density Estimation

• Kernel Density Estimation
• Let 𝑘ఙ 𝑥, 𝑥ᇱ be a positive semi‐definite kernel such 
as the Gaussian kernel or the Student‐t‐kernel

• 𝑝 𝑥 ൌ ଵ
ே
∑ 𝑘ఙ 𝑥, 𝑥௜ே
௜ୀଵ

• Let Φ 𝑥 be the feature function corresponding 
to 𝑘ఙ

• 𝑘ఙ 𝑥, 𝑥ᇱ ൌ Φ 𝑥 ,Φ 𝑥ᇱ

• Then the KDE is the solution to a least squares 
problem in Hilbert space:

• 𝑝 ൌ min
௚∈ℋ

∑ Φ 𝑥௜ െ 𝑔 𝑥௜ ℋ
ଶ  ே

௜ୀଵ

• We can make this more robust by replacing the 
square loss with a robust loss

40
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Robust Loss Functions

𝑝 ൌ argmin
௚∈ℋ

෍𝜌 Φ 𝑥௜ െ 𝑔 𝑥௜ ℋ
  

ே

௜ୀଵ

This can be solved by Iteratively 
Reweighted Least Squares
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Example: 
Mixture of 2 Gaussians
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Ensemble of Gaussian Mixture Models

• 𝑃 𝑥 ൌ ∑ 𝑝௞ ⋅ Normal 𝑥 𝜇௞ , Σ௞  ௄
௞ୀଵ K=3
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Ensemble of GMMs
• Train 𝑀 independent Gaussian Mixture Models
• Train model 𝑚 ൌ 1, … ,𝑀 on a bootstrap replicate of the data
• Vary the number of clusters 𝐾
• Delete any model with log likelihood < 70% of best model

• Compute average surprise: െ ଵ
ெ
∑ log𝑃௠ሺ𝑥௜ሻ௠
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LODA: Lightweight Online Detector of Anomalies 
[Pevny, 2016]
• Πଵ, … ,Πெ set of 𝑀 sparse 
random projections

• Let 𝑤௠ ൌ 0, … , 0
• Choose  𝑑 elements of 𝑤௠ and 
set them to normal random 
variate

• Π௠ 𝑥 ൌ 𝑤௠ ⋅ 𝑥
• 𝑓ଵ, … , 𝑓ெ corresponding 1‐
dimensional density 
estimators

• Pevny uses optimal histograms

• 𝑆 𝑥 ൌ െ ଵ
ெ
∑ log 𝑓௠ሺ𝑥ሻ௠

average “surprise”

𝑓ଵ
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Quantile‐Based Methods

• OCSVM: One‐class SVM (Schoelkopf, et al., 1999)
• SVDD: Support Vector Data Description (Tax & Duin, 2004)
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One‐Class Support Vector Machine
(Schoelkopf, Williamson, Smola, Shawe‐Taylor, Platt, NIPS 2000)

• Given a kernel 𝑘ሺ𝑥, 𝑥ᇱሻ, map the data into the 
feature space Φ 𝑥 and find a hyperplane that is 
as far from the origin as possible and separates 
1 െ 𝜈 of the data points from the origin

• Solution to the following
• min
௪,క,ఘ

ଵ
ଶ
𝑤 ଶ ൅ ଵ

ఔே
∑ 𝜉௜ே
௜ୀଵ െ 𝜌

• Subject to  𝑤 ⋅ Φ 𝑥௜ ൒ 𝜌 െ 𝜉௜; 𝜉௜ ൒ 0
• The discriminant function is

• 𝑓 𝑥 ൌ ∑ 𝛼௜𝑘 𝑥, 𝑥௜௜ െ 𝜌
• It is positive for nominal points and negative for 
anomalies
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Support Vector Data Description
(Tax & Duin, 2004)
• Find the smallest hypersphere in feature 
space that contains 1 െ 𝜈 of the data points

• Solution to
• min

ோ,௔
𝑅ଶ ൅ 𝐶 ∑ 𝜉௜ே

௜ୀଵ

• Subject to  𝑥௜ െ 𝑎 ଶ ൑ 𝑅ଶ ൅ 𝜉௜;   𝜉௜ ൒ 0
• Only works well for the Gaussian kernel
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Distance‐Based Methods

• Local Outlier Factor (Breunig, et al., 2000)
• Normalized distance to k‐nearest neighbors 

• Isolation Forest (Liu, et al., 2011)
• Tree‐based method for approximating the L1 distance between the query and 
the training data
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LOF: Local Outlier Factor
(Breunig, et al., 2000)

• Distance from 𝑥 to its k‐th nearest neighbor 
divided by the average distance of each of 
those neighbors to their k‐th nearest 
neighbors

• [The actual calculation is slightly more 
complex.]

50
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Isolation Forest [Liu, Ting, Zhou, 2011]
• Construct a fully random binary tree

• choose attribute 𝑗 at random
• choose splitting threshold 𝜃ଵ uniformly 
from  min 𝑥⋅௝ , max 𝑥⋅௝

• until every data point is in its own leaf
• let 𝑑ሺ𝑥௜ሻ be the depth of point 𝑥௜

• repeat 100 times
• let 𝑑ሺ𝑥௜ሻ be the average depth of 𝑥௜

• 𝑠𝑐𝑜𝑟𝑒 𝑥௜ ൌ 2
ି

೏ഥ ೣ೔
ೝ ೣ೔

• 𝑟ሺ𝑥௜ሻ is the expected depth 

𝑥⋅௝         𝑥⋅௝ ൐ 𝜃ଵ

𝑥⋅ଶ ൐ 𝜃ଶ 𝑥⋅଼ ൐ 𝜃ଷ

𝑥⋅ଷ ൐ 𝜃ସ 𝑥⋅ଵ ൐ 𝜃ହ

𝑥௜
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Benchmarking Study
[Andrew Emmott]

• Most AD papers only evaluate on a few datasets
• Often proprietary or very easy (e.g., KDD 1999)
• Research community needs a large and growing collection of 
public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD‐2013] 
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
[Emmott, MS Thesis. 2020]
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Benchmarking Methodology

• Select 19 data sets from UC Irvine repository
• Choose one or more classes to be “anomalies”; the rest are 
“nominals”

• Manipulate
• Relative frequency
• Point difficulty 
• Irrelevant features
• Clusteredness

• 20 replicates of each configuration
• Result: 11,888 Non‐trivial Benchmark Datasets
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Analysis of Variance

• Linear ANOVA
• 𝑚𝑒𝑡𝑟𝑖𝑐 ~ 𝑟𝑓 ൅ 𝑝𝑑 ൅ 𝑐𝑙 ൅ 𝑖𝑟 ൅ 𝑚𝑠𝑒𝑡 ൅ 𝑎𝑙𝑔𝑜

• rf: relative frequency
• pd: point difficulty
• cl: normalized clusteredness
• ir: irrelevant features
• mset: “Mother” set
• algo: anomaly detection algorithm

• Validate the effect of each factor
• Assess the algo effect while controlling for all other factors
• 𝑚𝑒𝑡𝑟𝑖𝑐: area under the ROC curve for the nominal vs. anomaly binary 
decision
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• 19 UCI Datasets
• 8 Leading “feature‐based” algorithms
• 11,888 non‐trivial benchmark datasets
• Mean AUC effect for “nominal” vs. “anomaly” decisions

• Controlling for
• Parent data set
• Difficulty of individual queries
• Fraction of anomalies
• Irrelevant features
• Clusteredness of anomalies

• Baseline method: Distance to nominal mean (“tmd”)
• Best methods: K‐nearest neighbors and Isolation Forest 
• Worst methods: Kernel‐based OCSVM and SVDD

Benchmarking Study Results

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Mean AUC Effect

Employs a distance
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Outline

• Theoretical Approaches to Anomaly Detection
• Practical Algorithms for Hand‐Crafted Features
• Deep Anomaly Detection
• Setting the Anomaly Detection Threshold
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Deep Anomaly Detection

• Deep Learning learns a representation that is sufficient for the task
• In classification, this means the representation separates the labeled training 
data by class

• However, this does not necessarily provide a good representation for 
detecting anomalies

• Formally
• Discriminative classification seeks to model 𝑃 𝑦 𝑥  
• Anomaly detection needs 𝑃ሺ𝑥ሻ or else 𝑃 𝑥 𝑦 ൌ 𝑘 for each 𝑘

57DeepLearn 2021



Representation Learning Approaches

• Method 1: Supervised Classification
• Method 2: Supervised Classification with Modified Output Layer
• Method 3: Hybrid Methods
• Method 4: Instance‐Contrastive Learning
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Method 1: Train Standard Multiclass Classifier

• Input image 𝑥
• Network backbone, also 
called the “encoder”: 𝑧 ൌ
𝐸 𝑥

• Latent representation 𝑧
• Logits ℓ௞ ൌ 𝑤௞ୃ𝑧
• Predicted probabilities

𝑝 𝑦 ൌ 𝑘 𝑥 ൌ
exp ℓ௞ሺ𝑧ሻ

∑ exp ℓ௞ᇲሺ𝑧ሻ௞ᇲ

59

Convolutional Neural Network Classifier

Image
𝑥 Penultimate Layer 𝑧 Logits ℓ௞ ൌ 𝑤௞ୃ𝑧

Probabilities
𝑝ሺ𝑦 ൌ 𝑘|𝑥ሻ

𝑝ሺ𝑦 ൌ 𝑘|𝑥ሻ
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Supervised Classification: UMAP Visualization
• DenseNet with 384‐dimensional latent 

space.  

• CIFAR‐10: 6 known classes, 4 novel 
classes

• Light green: novel classes

• Darker greens: known classes

• Note that many novel classes stay 
toward the center of the space; others 
overlap with known classes

• Training was not required to “pull them 
out” so that they could be discriminated

• Distance to known classes is useful, but 
distances between novel points are not 
useful (e.g., for clustering to discover 
new classes)

60

Alex Guyer

DeepLearn 2021



Anomaly Scores 
• Entropy of the predicted probabilities: 

• 𝐴 𝑥 ൌ 𝐻 𝑦ො|𝑥 ൌ െ∑ 𝑝 𝑦 ൌ 𝑘 𝑥 log𝑝 𝑦 ൌ 𝑘 𝑥௞

• (Lack of) confidence:
• 𝐴 𝑥 ൌ 1 െ max

௞
𝑝ሺ𝑦 ൌ 𝑘|𝑥ሻ

• Maximum logit
• 𝐴 𝑥 ൌ െmax

௞
ℓ௞ሺ𝑧ሻ

• In our experience, the max logit is slightly better than the other two 
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Headroom Analysis
Risheek Garrepalli (MS 2020)

• Q1: How well do existing anomaly scoring methods extract the 
anomaly information that is captured in the latent representation 𝑧?

• Approach: Compare to an oracle anomaly detector

• Q2: How well could any network with this architecture perform the 
anomaly detection task?

• Approach: Supervised training on both nominal and anomalous classes
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Methods:
• CIFAR‐10: 6 “nominal” classes and 4 “anomaly” classes
• CIFAR‐100: 80 “nominal” classes and 20 “anomaly” classes

• Train Classifier
• Divide data into train (60%), validate (20%), test (20%)
• Remove anomaly classes from the training and validation data
• Train ResNet34; use validation set accuracy to determine stopping point
• Compute anomaly score on test set; measure AUC (“nominal” vs “anomaly” decision)

• Oracle Anomaly Detection
• Take all validation data and label the nominal classes as “nominal” and the anomaly classes as “anomaly”
• Train a random forest (1000 trees) that takes 𝑧 as input and predicts “nominal” vs. “anomaly” 
• Compute test set anomaly scores using this classifier; measure AUC

• Oracle Representation
• Train ResNet34 on all classes
• Train a random forest (1000 trees) that takes 𝑧 as input and predicts “nominal” vs. “anomaly” 
• Compute test set anomaly scores using this classifier; measure AUC
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Results
• Details:

• Oracle Anomaly Detector: 1000‐tree Random 
Forest

• Anomaly Score: max logit
• Q1: The latent space contains much more 
anomaly information than is extracted by 
current anomaly scores
• 0.7760.905 = 0.129
• 0.7170.789 = 0.072

• Q2: There is additional anomaly information in 
the images that is not represented by the 
latent space
• 0.9050.987 = 0.082
• 0.7890.809 = 0.020
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Extracting Improved Anomaly Scores via 
Density Estimation
• Fit a Gaussian to the 𝑧 values

• Let 𝑄௞ሺ𝑧; 𝜇௞ , Σ௞ሻ be the 
Gaussian fitted to class 𝑘

• Anomaly score 
min
௞
െ log𝑄௞ሺ𝑧௤ሻ 

• where 𝑧௤ ൌ 𝐸ሺ𝑥௤ሻ

• This is very practical and works 
surprisingly well

• Requires computing Σ௞ିଵ, 
which requires special tricks
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Mahalanobis Method
(Lee, Lee, Lee & Shin 2018)

• Fit a shared Σ across all 
classes (after subtracting off 
𝜇௞ for each class)

• This allows us to use the 
Mahalanobis distance rather 
than the density
𝐴 𝑥 ൌ min

௞
𝑀𝐷 𝑧௤ , 𝜇௞; Σ

• Train on CIFAR‐10
• Test on mix of CIFAR‐10 and 
SVHN

66

Anomaly Score 𝑨ሺ𝒙ሻ AUC TNR@95%TPR Accuracy

1 െ max
௞

𝑝ሺ𝑦 ൌ 𝑘|𝑥௤ሻ 89.89 32.19 85.06

min
௞
𝑀𝐷 𝑧௤ , 𝜇௞; Σ 93.92 54.51 88.93

White lie warning: Lee et al. include several other improvements.
This was the simplest of their methods.
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Extreme Value Distributions
[Bendale & Boult, CVPR 2016]

• Extreme value distribution
• General model of the tails of probability distributions
• Weibull distribution

• Goal: Shrink the logit score ℓ௞ if the query 𝑥௤ lies far from the mean logit 
score for class 𝑘

• Method
• Let ℓ 𝑧 ൌ ℓଵ 𝑧 , … , ℓ௄ 𝑧  be the vector of logits for 𝑧 ൌ 𝐸ሺ𝑥ሻ
• Let 𝐺௞ be the set of correctly‐classified training examples for class 𝑘
• Compute the mean logit vector for each class 𝑘

ℓത௞ ൌ
1
𝑁௞

෍ ℓ 𝑧௜
௜∈ீೖ

• Fit the Weibull distribution to  ℓ 𝑧௜ െ ℓത௞ : 𝑖 ∈ 𝐺௞
• Compute a weight 𝜔௞ሺ𝑧௤ሻ based on the CDF of the fitted Weibull distribution
• ℓ෨௞ 𝑧௤ ≔ 𝜔௞ 𝑧௤ ⋅ ℓ௞ 𝑧௤
• ℓ෨଴ 𝑧௤ ≔ ∑ ℓ௞ 𝑧௤ െ ℓ෨௞ 𝑧௤௞ collect the removed logit mass into an “open space” 

logit class 0

• 𝑝 𝑦 ൌ 𝑘|𝑥௤ ൌ softmax ℓ෨଴ 𝑧௤ , ℓ෨ଵ 𝑧௤ , … , ℓ෨௄ 𝑧௤

• This gives an explicit probability 𝑝ሺ𝑦 ൌ 0|𝑥௤ሻ that 𝑥௤ belongs to a novel 
class

67

OpenMax is 
better than 
Softmax
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Method 2: 
Supervised Learning with a Modified Output Layer

Goal: Learn an improved representation
• Label Smoothing
• G‐ODIN: Compute the logit as a ratio of two learned functions ℓ௞ 𝑧 ≔
ℎ௞ሺ𝑧ሻ/𝑔ሺ𝑧ሻ. Then apply softmax

• 𝐼𝑠𝑜𝑀𝑎𝑥ூ: Compute logits based on distance to learned prototypes for 
each class
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Label Smoothing

• Old idea from 1990s, reintroduced by 
Szegedy, et al. (CVPR 2015)

• Use a standard softmax output layer
• Change the usual 1‐hot targets from

ሺ0, … , 1, … , 0ሻ to  ఈ
௄

, … , 1 െ 𝛼 ൅ ఈ
௄

, … , ఈ
௄

Remove 𝛼 probability mass from the target 
class and distribute it uniformly across all 
classes

• Müller, et al. (NeurIPS 2019) show that 
this causes the data points to form 
tighter clusters
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G‐ODIN
(Hsu, Chen, Jin, & Kira, 2020)

• Compute the logit as a ratio of two 
learned functions ℓ௞ 𝑧 ≔
ℎ௞ሺ𝑧ሻ/𝑔ሺ𝑧ሻ. Then apply softmax

• Experiments
• CIFAR‐10: 6 known; 4 unknown
• CIFAR‐100: 80 known; 20 unknown
• Modest improvements
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(Macedo & Ludermir, 2021)

• Learn a “prototype” 𝜇௞ for each 
class 𝑘 in the latent space 
Normalize 

• the 𝑧 values: 𝑧 ≔ 𝑧/ 𝑧 and 
• the prototypes: 𝜇෤௞ ≔ 𝜇௞/‖𝜇௞‖

ℓ௞ 𝑧 ≔ െ𝜅 𝑐 𝑧௤ െ 𝜇෤௞

• 𝑐 is a learned scaling parameter. 
𝜅 ൌ 10

• Anomaly score 
𝐴 𝑥௤ ൌ min

௞
𝑧௤ െ 𝜇෤௞

71

Anomaly Score 𝑨ሺ𝒙ሻ AUC TNR@95%TPR

1 െ max
௞

𝑝ሺ𝑦 ൌ 𝑘|𝑥௤ሻ 86.9 33.2

𝐼𝑠𝑜𝑀𝑎𝑥ூ MDS 99.5 97.2
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Other Methods

• Replace final layer with a Gaussian Process classifier
• Liu, Lin, Padhy, et al. (NeurIPS 2020)

• Replace final layer with a Dirichlet distribution rather than a 
categorical (multinomial) distribution

• Sensoy, Kaplan & Kanemir (NeurIPS 2018)

• Open question:
• Compare the learned representations of these different methods
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Method 3: Hybrid Methods

• Combine a supervised loss with an anomaly detection method
• Supervised + Autoencoder
• Supervised + Deep Density Estimator
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Reconstruction

• Add a Reconstruction head to the network and jointly train the representation to support both 
classification and reconstruction (per‐pixel squared error)

• Loss = Cross‐Entropy + 𝜆 ൈ Reconstruction Error
• CIFAR10: 𝜆 ൌ 0.9, CIFAR100: 𝜆 ൌ 0.005
• See also: 

• Oza, P., & Patel, V. M. C2AE: Class Conditioned Auto‐Encoder for Open‐set Recognition. CVPR 2019
• Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and 

invertible features. ICML 2019
• Perera, P., Morariu, V. I., Jain, R., Manjunatha, V., Wigington, C., Ordonez, V., & Patel, V. M.  Generative‐discriminative 

feature representations for open‐set recognition. CVPR 2020
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Reconstruction Results
(Garrepalli, 2020 MS)

• Result: Hybrid representation 
improves performance

• Caution: 𝜆 tuned using labeled test 
data
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Open Hybrid: Classification + Density Estimation
(Tack, Li, Guo, Guo, 2020)

• Residual Flow Deep Density Estimator 
• (Chen, Behrmann, Duvenaud, et al. NeurIPS 2019)

• Standard Cross‐Entropy Supervised Loss
• Claim: This helps focus 𝑃 𝑥 on relevant aspects of the images

• Anomaly Score: 𝐴 𝑥௤ ൌ െ log𝑃ሺ𝑥௤ሻ
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OpenHybrid Results

• 6 Known and 4 
Unknown classes

• 4 Known and many 
unknown classes 
drawn from CIFAR‐
100
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AUC MNIST SVHN CIFAR‐10

1 െ max
௞

𝑝 𝑦 ൌ 𝑘 𝑥௤ 0.978 0.886 0.677

OpenHybrid: െ log𝑃 𝑥௤ 0.995 0.947 0.883

AUC CIFAR+10 CIFAR+50

1 െ max
௞

𝑝 𝑦 ൌ 𝑘 𝑥௤ 0.816 0.805

OpenHybrid: െ log𝑃 𝑥௤ 0.962 0.955
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Method 4: Instance‐Contrastive Learning
• SimCLR (Chen, et al. 2020)
• Set of transformations 𝒯
• Case 1: Same image
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Method 4: Instance‐Contrastive Learning
• Case 2: Different images
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Classification

• Classification
• Train linear logits on 𝑧 using labeled 
training data and softmax

80

ImageNet top‐1 Accuracy
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Visualization of Instance‐Contrastive 
Representations

• As with supervised learning, we 
see that anomalies tend to 
cluster in the center of the 𝑍
space

• 100 images from CIFAR‐10 
(training) and CIFAR‐100 (novel 
categories)

• Each instance was augmented 
100 times
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Multivariate Gaussian Scoring

• Winkins, Bunel, Roy, et al. 2020
• Train with two losses

• SimCLR instance‐contrastive loss
• Softmax with label smoothing

• Fit multivariate Gaussians 𝐺௞ to 
each class  𝜇௞ , Σ௞

• Anomaly score 
min
௞
െ log𝐺௞ 𝑧௤
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Method AUC

1 െ max
௞

𝑝 𝑦 ൌ 𝑘 𝑥௤ 86.4

min
௞
𝐺௞ 𝑥௤ 92.9

Method AUC FPR@95%TPR Accuracy

min
௞
െ log𝐺௞ 𝑥௤

No contrastive training
No label smoothing

81.3 67.1 73.8

min
௞
െ log𝐺௞ 𝑥௤ 92.9 39.9 85.9

Known: CIFAR‐10; Unknown: CIFAR‐100

Known: CIFAR‐10; Unknown: CIFAR‐100

DeepLearn 2021



CSI
(Tack, Mo, Jeong, Shin, NeurIPS 2020)

• Two kinds of transformations
• 𝒯: class‐preserving transformations: Cutout, Edge image, Salt+Pepper Noise, 
Blur

• 𝒮: class‐damaging transformations: Permutation, Rotation

• Maximize 𝑠௖௢௦ 𝑇ଵ 𝑥 ,𝑇ଶ 𝑥 and Minimize 𝑠௖௢௦ 𝑇ଵ 𝑥 , 𝑆ଵ 𝑥
83DeepLearn 2021



Auxiliary Task and Anomaly Scores

• Given 𝑧 ൌ 𝐸 𝑇 𝑥 , predict which transformation 𝑇 was applied
• Confidence Calibration
• Anomaly Score combines many factors

a. 𝑧௤
b. max

௜
𝑠௖௢௦ 𝑥௤ , 𝑥௜ most similar training data point 𝑥௜

c. Expected value of b. over all 𝑆 ∈ 𝒮
d. Expected value of b. over all 𝑇 ∈ 𝒯
e. Accuracy of the predictions of the auxiliary classifier over all 𝑆 ∈ 𝒮
f. (Somewhat ad hoc; probably reflects tuning to optimize results)
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CSI Results combining unsupervised and 
supervised training

AUC SVHN CIFAR100 LSUN* ImageNet*

1 െ max
௞

𝑝 𝑦 ൌ 𝑘 𝑥௤ 88.6 85.8 87.5 87.4

CSI 96.5 90.5 93.5 94.0
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Train on CIFAR‐10; Evaluate on CIFAR‐10 ∪ Other Dataset

*Fixes problem with buggy resize operation to remove easy images
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Outline

• Theoretical Approaches to Anomaly Detection
• Practical Algorithms for Hand‐Crafted Features
• Deep Anomaly Detection
• Setting the Anomaly Detection Threshold
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Setting the Anomaly Score Threshold

• Maximize TAR@5%FAR
• Set 𝜏்஺ோ@ହ%ி஺ோ to the 95% 
quantile of the Known Classes 
distribution

• Only requires the Known Classes 
density, which can be computed 
on a validation set

• Minimize FAR@95%TAR
• Set 𝜏ி஺ோ@ଽହ%்஺ோ to the 5% 
quantile of the Novel Classes 
distribution

• We need to estimate this 
distribution
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Anomaly Score

Known Classes

Novel Classes
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Another Resource: Unlabeled Data
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𝑆଴

𝑆௠

Nominal Distribution Mixture Distribution

Proportion of Aliens = 𝛼

𝑃௠ ൌ 1 െ 𝛼 𝑃଴ ൅ 𝛼𝑃௔
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Cumulative CDF of Alien Anomaly Scores: 
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𝐹 ௔
ሺ𝑥
ሻ Want to have 

TAR 
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Choosing  for target quantile 
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𝐹 ௔
ሺ𝑥
ሻ
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௠ ଴ ௔

implies that

௠ ଴ +  ௔
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CDFs of Nominal, Mixture, and Alien Anomaly 
Scores
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𝐹଴

𝐹௠

𝐹௔

𝐹௔ 𝑥 ൌ  
𝐹௠ 𝑥 െ 1 െ 𝛼 𝐹଴ 𝑥

𝛼
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What We Have Are Empirical CDFs

𝐹෠଴

𝐹෠௠
𝐹෠௔

𝐹෠௔ 𝑥 ൌ  
𝐹෠௠ 𝑥 െ 1 െ 𝛼 𝐹෠଴ 𝑥

𝛼
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We Use the Empirical Estimate 
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𝐹෠௔
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Theoretical Guarantee
[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

• Theorem: If 

𝑛 ൐
1
2 ln

2
1 െ 1 െ 𝛿 

1
𝜖

ଶ 2 െ 𝛼
𝛼

ଶ

then with probability 1 െ 𝛿 the alien detection rate will be at least 1 െ 𝑞 ൅ 𝜖
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Estimating the mixing proportion 

• The mixing proportion is not identifiable 
in general

• However, under reasonable 
assumptions, we can obtain an estimate 
𝛼଴ guaranteed with high probability to 
be a lower bound on 𝛼

• Comparison of five estimators
• bt_patrasen comes closest to achieving the 
target TPR of 0.95 on six datasets

• (Patra & Sen, 2016)

• Liu, Mondal, Dietterich (under review)
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Summary

Main Anomaly Detection Methods
• Density estimation
• Density quantile estimation
• Distance
• Reconstruction

Representation Learning Methods
• Supervised classification with 
softmax

• Supervised classification with a 
different final layer

• Hybrid network: supervised 
classification + anomaly 
detection loss

• Instance‐contrastive learning
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Open Questions / Research Needs
• Improved methods for representation learning

• meaningful representation of distances between novel‐class points

• Methods for comparing learned representations
• Open framework for controlled comparison of methods
• Methods for

• Explaining anomalies to users
• Incorporating user feedback to improve anomaly detection
• Discovering and incorporating new classes into the classifier
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