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The Class So Far

 Lecture 1: Calibrated Probabilities (Closed World)
 Lecture 2: Rejection and Prediction Sets (Closed World)

* Lecture 3: Anomaly Detection for Out-of-Distribution and Novel
Category Detection (Open World)



Reminder: Threats to Competent Classifiers

X4 is near a decision boundary (the
features of x, are ambiguous)

X4 is in a region with high labeling noise

X4 is in a region with little training data

x4 belongs to a class that was not present in
the training data: “novel category problem”

Today we focus on case 3 where x, is an
outlier or anomaly
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Two Problem Formulations:
OOD and Open Category

Out-of-Distribution Problem Novel Category / Open Set Problem
* Training: * Training:
» Data: (x1,y1), ..., (Xy, Yy) drawn from D, » Data: (x1,V1), ..., (Xy, Yy) drawn from D,
° yiE{l,...,K} ° yiE{l,...,K}
* Testing: * Testing:
e Data: Mixture D,,, of data from D, and D, * Data: Mixture D,,, of data from Dy and D,
* (x,y) ~ D, belong to a different data set . Sx, y) ~ D, belong to new classes not seen
uring training (“alien categories”)
e Goal:
* Given a query x,, does it belong to D, or * Goal:
Dy? * Given a query x4, does it belong to D, or
e If from D,, REJECT as alien Dy? '
* Else classify using a classifier trained on D, * If from Dg, REJECT as alien
data . Else classify using a classifier trained on D,
ata
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Key Difference: Evaluation Protocol

Out-of-Distribution
* Train on data from domain A

e Test on data from a mix of
domain A and domain B

* Example:
* Train on MINIST
e Test on MINIST + Fashion-MNIST

H Z
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Novel Category

e Divide the classes of domain A
into known and unknown

* Train on known classes
e Test on all classes

* Example:
e Train on MNIST {1,2,3,4,5}
* Test on MINIST {1,2,3,4,5,6,7,8,9,0}



OOD and Novel Category Metrics

 AUROC: Area under the ROC curve for the binary decision
* OOD: Domain A vs Domain B
* Novel Category: Known vs Unknown

e Detection rate at fixed false alarm rate. TPR@10%FAR

* Maximize correct OOD/Novel Category detections subject to a constraint that
the false alarm rate is < 0.10.

* False alarm rate at fixed missed alarm rate: FAR@95%TPR
* Detect 95% of OOD/Novel Category examples while minimizing false alarms
* Most relevant to Al Safety and Trustworthy Systems



Comments

* OOD is usually easier than Novel Category because of global differences in
Image statistics
 Different image collection methods, different subject matter
* Novel category images are collected by the same methods and involve very similar
objects
* OOD rarely corresponds to a real-world use case

* If you've trained on MNIST for postal code recognition, you aren’t likely to suddenly
be given Fashion MINIST images

* Exceptions:
* Image collection methods can change: lighting, camera, etc.

* OOD is easier to study
* Download pre-trained network, apply your technique, evaluate on separate data set

* Novel Category is much more relevant to real-world use cases



Motivating Example: Automated Counting of
Freshwater Macroinvertebrates

* Goal: Assess the health of freshwater streams
* Method:

* Collect specimens via kicknet
* Photograph in the lab
* Classify to genus and species

* BuglD Project
* 54 classes of interest to the EPA

* accuracy = 90%

* larios, N., Soran, B., Shapiro, L., Martinez-Mufios, G., Lin, J., Dietterich, T. G. (2010).
Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species
Identification. /IEEE International Conference on Pattern Recognition (ICPR-2010).

* Lin, J.,, Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S.,
Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three
Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011)

* Lytle, D. A., Martinez-Mufioz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R.,
Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated
processing and identification of benthic invertebrate samples. Journal of the North
American Benthological Society, 29(3), 867-874.
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Problem: There are = 76, 000 species of
freshwater insects worldwide

* 1200 species in US

* Field samples may contain other things
e small rocks
* leaves
* trash

* Simple estimate of equal error rate for
novel classes vs. the 54 classes was
20% (in 2011)

* classifier is not usable without addressing
the novel class problem

* We still need to solve this problem




Anomaly Detection

* Definition: An “anomaly” is a data point generated by a process that is
different than the process generating the “nominal” data

* Given:
* Training data: {x1, x5, ..., Xx }
* Case 1: All data come from D, the “nominal” distribution
* Case 2: The data come from a mixture of Dy and D, the “anomaly” distribution
 Test data: {xy4+1, ..., Xy+p ) from a mixture of Dy and D,

* Find:
* The data points in the test data that belong to D,

* Note: D, need not be a stationary distribution, but we general assume that
D, is stationary.



Outline

* Theoretical Approaches to Anomaly Detection
* Practical Algorithms for Hand-Crafted Features
* Deep Anomaly Detection

e Setting the Anomaly Detection Threshold



Theoretical Approaches to Anomaly Detection

* Density Estimation Methods e Distance-Based Methods
* Surprise: A(xq) — _]ogPD(xq) * Anomaly score A(xq) = r,{‘eiB”xq — x||
* Model the joint distribution Pp(x) of the e |ssues:
input data points x4, ... € D * Requires a good distance metric; vulnerable
* |ssues: to irrelevant features
. Vglnergble tc? nuisance'noveljcy . ~« Reconstruction Methods
* High-dimensional density estimation requires )
exponential amounts of training data * Train an auto-encoder: x = D(E(x)),
. where E is the encoder and D is the
* Quantile Methods decoder
* Find a smooth function f such that e Anomalv score
{x: f(x) = 0} contains 1 — a of the Y
training data A(xg) = ”xq —-D (E(XCI))”
* Anomaly score A(x) = —f(x) * Issues:
* Based on kernel techniques, so requires a * Vulnerable to irrelevant features

distance metric and a choice of kernel
hyperparameters; vulnerable to irrelevant
features



Density Estimation

* Given a data set {xy, ..., xy} where x; € R¢

* We assume the data have been drawn iid from an unknown probability
density: x; ~ P(x;)

e Goal: Estimate P

* Anomaly Score: A(xq) = —logP(xq)

e “surprisal” from information theory

* Requirements
e P(x) = 0Vx € R? must be non-negative everywhere

. fxERdP(x)dx = 1 must integrateto 1



Example: The Gaussian (normal) Distribution

* Normal probability density function (pdf)

1 lpx—pu 2 2- / \\
P(.X';‘Ll,O') =mo_ex _E o ] : / \
5 / \\\

* Normal cumulative distribution function
(cdf)
* F(z; u,0) = probability of the event [—oo0, Z]

s F(z;u0) = [~ P(x;p,0)dx




Parametric Density Estimation

e Assume P(x) = Normal(x|u, X) is the multivariate Gaussian
distribution

1
o P =

(x) J(2m)? det(X)
* Fit by computing the first and second moments:

A1
. ﬁzi X; mean

1 —
exp—-(x — )7 (x — )

M =

%Zi(xi — M (x; — )T  covariance matrix



Example

* Sample 100 points from multivariate
Gaussian with u = (2,2) and X =
[ 1 1.5]
1.5 4
* Estimates:

* i =(1.968731,1.894511)
e $— 1.081423 1.462467]
1.462467 4.000821

* Surprisal of x;, = (3, —2) is 9.635
e Surprisal of i = 2.229




Kernel Density Estimation

* Estimate the density as the sum of kernels placed at each point in the
training data. The kernel must be a probability density (integrate to
1):

y P(x)——Z —1k(lx — x;ll, 0%)

* Often use a Gaussian Kernel k(x, 0?%) =

\/_a €xp [_ 202
« Often use a fixed scale 4. The scale is also called the “bandwidth”



One-Dimensional Example
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DeepLesEn 2021

Source: wikipedia

18



Design Decisions

* Choice of Kernel: generally not super important as long as it is
local

* Choice of bandwidth is very important

h = 0.2 (undersmooth)
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Challenges

e KDE in high dimensions suffers from the “Curse of Dimensionality”

 The amount of data required to achieve a desired level of accuracy

scales exponentially with the dimensionality d of the problem:

d+4
exp ——



Deep Neural Networks for Density Estimation

 |dea: Transform a Normal
density into a density that fits
the data. Adjust the
parameters 6 of the model F
to maximize the likelihood of

the data
x=F(z;0)
> logP(x:)
i

* If F is invertible, then P(x) =
Normal(F~1(x); u, X) _

z ~ Normal(u, X)

x=u, ~ Px)



Constraint: Must Preserve Probabilities of
Events

* Recall
* Let P(x) be a probability density (a measurable
function that integrates to 1)
* An eventis aregionV, and its probability mass
is
* J .oy P(@¥)dx = Pr[V]

z ~ Normal(u, X)

x=F(z;0)

* We need to ensure that for any region V in
the input space, the corresponding integral
in Z space gives the same answer _

f F(x)dx = f Normal(z; u, X)dz
XEV zEF~1(V)

x=u, ~ P(x)

DeepLearn 2021 22



Change of Variables Formula

0F 1(x)

e P(x) = Normal(F~1(x);0,1) ‘det[

F~'(x)
dx
This compensates for any stretching or compression of the space

is the Jacobian of F~1

where det [



Constructing Deep Density Models

* Ensure that each f is invertible and has an easy-to-compute Jacobian
* Example: Masked Auto-Regressive Flow (Papamarkarios, et al 2017)



Stacking MAFs

* One MAF network is often not sufficient

True Density Fitted Density from Distribution of the z
single MAF network values

DeepLearn 2021
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Stack MAFs until the z values are Normal(O,1)

True Density Fitted Density from Distribution of the z
stack of 5 MAFs values

DeepLearn 2021
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Test Set Log Likelihood

POWER GAS HEPMASS MINIBOONE BSDS300
(Gaussian —7.74+002 —358+075 —=2793+0.02 —=37.244+1.07 96.67 £ 0.25
MADE —3.084+0.03 3.564+0.04 —=2098+0.02 —15.59+0.50 148.85 +0.28
MADE MoG 0.40 +0.01 8.474+0.02 —15.154+0.02 —12.274+047 153.714+0.28
Real NVP (5) —0.02+0.01 4.784+1.80 —19.62+0.02 —13.554+049 152.974+0.28
Real NVP (10) 0.17+0.01 8.334+0.14 —18714+0.02 —13.844+052 153.2841.78
MAF (5) 0.144+0.01 9074002 —17.70+0.02 —11.754+0.44 155.694+0.28
MAF (10) 0244001 10.08+0.02 —-17.734+£0.02 —12.244+0.45 154.934+0.28
MAF MoG (5) 0.30 +0.01 9504+002 —1739+002 —-11.68+044 156.36+0.28

Priyank, Kobyzev, Yu & Brubaker (ICML 2020): Use a Student t distribution instead of a Gaussian.
This allows you to generate distributions with heavy tails, which Gaussians cannot do

DeepLearn 2021



Potential Bug
(Le Lan & Dinh, 2020)

* We want to use —log P(x) as our anomaly score A(x)

* Formally, —log P(x) applies only to the probability mass of an event Pr|V].
Under a probability density P(X), the event that X = x has zero
probability mass

* Solution: Consider a region surrounding x: V(x) = {x": ||lx — x'|| < p}
* Pr[X € R(x)] = fxER(x)P(x)dx

* When we use —log P(X = x) as an anomaly score, we are assuming that
the density at x is a good approximation to Pr[X € V(x)]

* This assumption is broken in most deep density models, because the
invertible flow F changes the distances between points, so a local
neighborhood of x may have a bizarre non-local shape in z: F~1(V)



Lesson

* The representational space matters

* We want to apply density estimation in a meaningful space
* This is NOT the input image/pixel space
* We DO NOT want to compute Pr[x € V(x)]

* We want to learn a good latent space Z such that images of similar
contents (same objects, same class, etc.) are close together

* Then apply density estimation in that space



Approach 2: Quantile Methods
8 :

Vapnik’s principle again: We only need to
estimate the “decision boundary”
between nominal and anomalous

Surround the data by a function f that
captures 1 — € of the training data

* One-Class Support Vector Machine
(OCSVM)
* fisahyperplanein “kernel space”
* Support Vector Data Description (SVDD)
* fisasphereis “kernel space”

Closely related to kernel density
estimation:

FO) = ) ak(rx) - p
X;ESV
where SV is the set of “support vectors”.
These are a carefully-selected subset of the
training data points. p is a scalar parameter

Feature 2

2 0 2
Feature 1




Approach 3: Distance-Based Methods

Do we really need to estimate probability densities?

In most applications, we just need a way of ranking
the anomalies

Define a distance d(x;, x;)

A(xq) = Igleilr)l d(xg,x)

This can be made more robust by looking at the
average distance to the k-nearest points

* “k-nn anomaly detection”

This can be normalized by dividing by the distance of
each neighbor to their k-nearest neighbors

* “Local Outlier Factor (LOF)”

mixture$y

mixture$x




Challenges with Distance Metrics

* Correlated or Redundant Features
* If a feature appears twice, then it contributes to the
distance twice, which gives it too much weight ]
* If a pair of features is correlated, they have too much
weight
* Distances in high dimensions are counter-intuitive

* Suppose data points are uniformly distributed within the
volume of a d-dimensional hypersphere

* Most of the points will be very close to the surface of the

sphere.
* in 2d, the shell at right contains 27% of the volume
* in 100d, the shell contains 99.9973% of the volume https://ee.stanford.edu/~hellman/playground/hy
* The distances between pairs of points tends to cluster perspheres/hyper01.html

tightly (yet another version of the Central Limit Theorem)

* Therefore: Reduce dimensionality as much as
possible



Computing Distances

* Mahalanobis Distance
* Fit a multi-variate Gaussian distribution to your

data

* Mean vector: u
e Covariance matrix: X

* Compute the Mahalanobis Distance:
« dyp(ex) = —WTE1(x — p)

* This handles the correlation structure of the data
 Points of constant MD are ellipsoids in the

original space

DeepLearn 2021
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Approach 4: Reconstruction Methods

* NavLab self-driving van (Pomerleau, 1992)
* Primary head: Predict steering angle from input

image

» Secondary head: Predict the input image (“auto-

encoder”)
* A(xq) = ”xq — ’?q”

* If reconstruction is poor, this suggests that the

steering angle should not be trusted

* Principle: Anomaly Detection through

Failure

e Define a task on which the learned system

should fail for anomalies

Deeplearn 2021
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Autoencoders

e z=FE(x)
*X=D(2)

Deeplearn 2021 35



Linear Autoencoder ==
Principal Component Analysis

* PCA:

 Let the input dimension be d
* Choose a latent dimension £

* Find the d X € matrix W that minimizes the
squared reconstruction error

o . T 2
mMI/H Dillxi = WW x|
* This can be done using the Singular Value

Decomposition

* It can also be viewed as fitting a multi-variate
Gaussian to the data and then keeping only the ¢
dimensions of highest variance

Deeplearn 2021

PCA applied to an ellipsoidically shaped point cloud
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https://www.joyofdata.de/blog/illustration-of-principal-component-analysis-pca/



Application: Finding Unusual Chemical Spectra

* NASA Mars Science Laboratory
ChemCam instrument

Collects 6144 spectral bands on rock

samples from 7m distance using laser

stimulation

Goal: active learning to find interesting

spectra
DEMUD

* Incremental PCA applied to samples one at a

time
* Fit only to the samples labeled as
“uninteresting” by the user

* Show the user the most un-uninteresting

sample (sample with highest PCA
reconstruction error)

Rapidly discovers interesting samples

Wagstaff, et al. (2013)

Number of selections required
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Outline

* Practical Algorithms for Hand-Crafted Features
* Deep Anomaly Detection
e Setting the Anomaly Detection Threshold



Density Estimation

 RKDE: Robust Kernel Density Estimation (Kim & Scott, 2008)
* Selects a subset of the input points and places kernels only on those points
* Robust to the presence of anomalies in the training data

* EGMM: Ensemble Gaussian Mixture Model (our group)
* Fit a mixture of Gaussian mixture models

* LODA: Lightweight Online Detector of Anomalies (Pevny, 2016)

* Fit an ensemble of histogram density estimators to sparse, random one-
dimensional projections of the data



Robust Kernel Density Estimation

* Kernel Density Estimation

* Let k;(x,x") be a positive semi-definite kernel such
as the Gaussian kernel or the Student-t-kernel

+ P = ~ 2N, ko, x)

. LetkCID(x) be the feature function corresponding
to k,

* ky(x,x") = {DP(x), P(x"))

* Then the KDE is the solution to a least squares
problem in Hilbert space:

*p= gg}? SN alleG) — gGeplla,

* We can make this more robust by replacing the
square loss with a robust loss

Density function

0.15

Wikipedia



Robust Loss Functions

p = argmmZ pUIPCx) — gDl

This can be solved by Iteratively
Reweighted Least Squares

p(x)

41

Kim & Scott



Example:
Mixture of 2 Gaussians

. . . . . s
-6 -4 -2 0 2 4 6

(a) True density (b) KDE without outliers

(¢) KDE with outliers (d) RKDE with outliers
DeepLearn 2021
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Ensemble of Gaussian Mixture Models

AP

DeepLearn 2021
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Ensemble of GMMSs

* Train M independent Gaussian Mixture Models

 Train modelm = 1, ..., M on a bootstrap replicate of the data
e Vary the number of clusters K

* Delete any model with log likelihood < 70% of best model

e Compute average surprise: — %Zm log P, (x;)




LODA: Lightweight Online Detector of Anomalies

[Pevny, 2016] -
* [14, ..., Il set of M sparse
random projections ]
* Letw,, = (0,...,0)

« Choose vd elements of w,, and
set them to normal random

variate
* I (x) = wp - x
* f1, -, fu corresponding 1-
dllmen5|onal density

estimators
* Pevny uses optimal histograms

1
+ S(x) = = = Y 108 i (X)
average “surprise”




Quantile-Based Methods

* OCSVM: One-class SVM (Schoelkopf, et al., 1999)
» SVDD: Support Vector Data Description (Tax & Duin, 2004)



One-Class Support Vector Machine
(Schoelkopf, Williamson, Smola, Shawe-Taylor, Platt, NIPS 2000)

* Given a kernel k(x,x"), map the data into the
feature space ®(x) and find a hyperplane that is
as far from the origin as possible and separates
1 — v of the data points from the origin

* Solution to the following
° 1 l 2 i N . —
min S fwll® + 752z, & - p
» Subjectto (w- ®(x)) =p—¢;6 =0
* The discriminant function is

* fx) = Xpaik(x,x) —p
* It is positive for nominal points and negative for
anomalies



Support Vector Data Description
(Tax & Duin, 2004)

* Find the smallest hypersphere in feature
space that contains 1 — v of the data points

outlier hyper sphere
* (boundary)

e Solution to

* min R+ CYYN ¢ +
,a
e Subjectto||x; —all? < R*+¢&; & =0

* Only works well for the Gaussian kernel

target

Saeid Homayouni



Distance-Based Methods

 Local Outlier Factor (Breunig, et al., 2000)
* Normalized distance to k-nearest neighbors

* |solation Forest (Liu, et al., 2011)

* Tree-based method for approximating the L1 distance between the query and
the training data



LOF: Local Outlier Factor
(Breunig, et al., 2000)

* Distance from x to its k-th nearest neighbor -,
divided by the average distance of each of
those neighbors to their k-th nearest
neighbors

* [The actual calculation is slightly more
complex.]

Breunig, et al.,



Isolation Forest [Liu, Ting, Zhou, 2011]

* Construct a fully random binary tree
* choose attribute j at random
* choose splitting threshold 6, uniformly
from [min(x.j) ) max(x.j)]
* until every data point s in its own leaf
* let d(x;) be the depth of point x;

* repeat 100 times

* let d(x;) be the average depth of x;
_(a(xi))

e score(x;) =2 \r(x)

* 7(x;) is the expected depth

DeepLearn 2021
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Benchmarking Study

[Andrew Emmott]

* Most AD papers only evaluate on a few datasets
e Often proprietary or very easy (e.g., KDD 1999)

e Research community needs a large and growing collection of
public anomaly benchmarks

[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013]
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
[Emmott, MS Thesis. 2020]



Benchmarking Methodology

* Select 19 data sets from UC Irvine repository

 Choose one or more classes to be “anomalies”; the rest are
“nominals”
* Manipulate
* Relative frequency
 Point difficulty

* |rrelevant features
* Clusteredness

20 replicates of each configuration
e Result: 11,888 Non-trivial Benchmark Datasets



Analysis of Variance

* Linear ANOVA

* metric ~rf + pd + cl + ir + mset + algo
 rf: relative frequency
e pd: point difficulty
* cl: normalized clusteredness
* ir:irrelevant features
* mset: “Mother” set
* algo: anomaly detection algorithm

* Validate the effect of each factor
* Assess the algo effect while controlling for all other factors

* metric: area under the ROC curve for the nominal vs. anomaly binary
decision



Benchmarking Study Results

19 UCI Datasets

8 Leading “feature-based” algorithms Mean AUC Effect
11,888 non-trivial benchmark datasets

0.78
Mean AUC effect for “nominal” vs. “anomaly” decisions 0.76
* Controlling for ’
* Parent data set 0.74
* Difficulty of individual queries
* Fraction of anomalies 0.72
* Irrelevant features 0.70
* Clusteredness of anomalies
Baseline method: Distance to nominal mean (“tmd”) 0.68
Best methods: K-nearest neighbors and Isolation Forest 0-66
Worst methods: Kernel-based OCSVM and SVDD 0.64
0.62
N e & O w»
S & Y X O O
N .s\\Oﬁ Qj’éo NS N NS
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Outline

* Deep Anomaly Detection
e Setting the Anomaly Detection Threshold



Deep Anomaly Detection

* Deep Learning learns a representation that is sufficient for the task

* In classification, this means the representation separates the labeled training
data by class

* However, this does not necessarily provide a good representation for
detecting anomalies
* Formally
* Discriminative classification seeks to model P(y|x)
* Anomaly detection needs P(x) or else P(x|y = k) for each k



Representation Learning Approaches

* Method 1: Supervised Classification

 Method 2: Supervised Classification with Modified Output Layer
* Method 3: Hybrid Methods

* Method 4: Instance-Contrastive Learning



Method 1: Train Standard Multiclass Classifier

* Input image x

* Network backbone, also
called the “encoder”: z = Convolutional Neural Network Classifier 02

e P-4 -2
* Latent representation z : 2w P P2 (W | |7 || S 2010

* Logits £, = wy, z co
* Predicted probabilities

28

Penultimate Layer z Logits ¢}, = W,-ch
exp £y (2)
Zk' exp fk’(z)

p(y = klx) =

Probabilities
p(y = klx)

Deeplearn 2021 59



Supervised Classification: UMAP Visualization

DenseNet with 384-dimensional latent

space.
CIFAR-10: 6 known classes, 4 novel 20 -
classes ot ©
'.o.a L 4 o, o

Light green: novel classes 5 x s o :« °

@ o @
Darker greens: known classes 10 - :' ve O g ‘ w..

ot s ® e ¥ o,
& [ % e ® s - ® [ ]
Note that many novel classes stay € oo 2o LY
toward the center of the space; others 04 - AL % .t?
overlap with known classes 4 . <
4 E .s ". S
Training was not required to “pull them -5 - 2 ‘. do
out” so that they could be discriminated ! ° ﬁ?‘
=10 - a

Distance to known classes is useful, but 0
distances between nO\{eI points are not 10 & 0 4 10 15 . 2%
useful (e.g., for clustering to discover Alex Guyer

new classes)
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Anomaly Scores A(x)

* Entropy of the predicted probabilities:

* A(x) = H|x) = — Lk D(y = kl|x) logp(y = klx)
* (Lack of) confidence:

* Alx) =1—maxp(y = k|x)

* Maximum logit
 A(x) = —m’flek(z)

* In our experience, the max logit is slightly better than the other two



Headroom Analysis
Risheek Garrepalli (MS 2020)

* Q1: How well do existing anomaly scoring methods extract the
anomaly information that is captured in the latent representation z?

* Approach: Compare to an oracle anomaly detector
* Q2: How well could any network with this architecture perform the

anomaly detection task?
* Approach: Supervised training on both nominal and anomalous classes



Methods:

CIFAR-10: 6 “nominal” classes and 4 “anomaly” classes
CIFAR-100: 80 “nominal” classes and 20 “anomaly” classes

Train Classifier
* Divide data into train (60%), validate (20%), test (20%)
* Remove anomaly classes from the training and validation data
* Train ResNet34; use validation set accuracy to determine stopping point
* Compute anomaly score on test set; measure AUC (“nominal” vs “anomaly” decision)

Oracle Anomaly Detection
* Take all validation data and label the nominal classes as “nominal” and the anomaly classes as “anomaly”
* Train a random forest (1000 trees) that takes z as input and predicts “nominal” vs. “anomaly”
* Compute test set anomaly scores using this classifier; measure AUC

Oracle Representation
* Train ResNet34 on all classes
* Train a random forest (1000 trees) that takes z as input and predicts “nominal” vs. “anomaly”
* Compute test set anomaly scores using this classifier; measure AUC



Results

e Details:

* Oracle Anomaly Detector: 1000-tree Random

Forest

e Anomaly Score: max logit

* Q1: The latent space contains much more
anomaly information than is extracted by
current anomaly scores

* 0.776>0.905 =0.129
* 0.717->0.789 =0.072

e Q2: There is additional anomaly information in
the images that is not represented by the

latent space

* 0.905->0.987 = 0.082
* 0.789->0.809 = 0.020
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0.50
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CIFAR 100 AUC
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Extracting Improved Anomaly Scores via
Density Estimation

* Fit a Gaussian to the z values

* Let Qk(Z; Ui Zk) be the 20
Gaussian fitted to class k

 Anomaly score
mkin —log Qx(z4) 10 |
* where z;, = E(x,) 5.

15 1

* This is very practical and works
surprisingly well

* Requires computing 2 %,

which requires special tricks
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Mahalanobis Method

(Lee, Lee, Lee & Shin 2018)

* Fit a shared X across all
classes (after subtracting off 1-maxp(y = klxg)  89.89 32.19 85.06
Uy for each class) min MD (zq, fy; %) 93.92 54.51 88.93

* This allows us to use the
Mahalanobis distance rather

than the de_nSIty White lie warning: Lee et al. include several other improvements.
A (x) = mk]n MD (Zq, Uk Z) This was the simplest of their methods.

* Train on CIFAR-10

e Test on mix of CIFAR-10 and
SVHN
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Extreme Value Distributions
[Bendale & Boult, CVPR 2016]

* Extreme value distribution
* General model of the tails of probability distributions

* Welbu” diStribUtion @-® OpenMax Fooling Detector Ge OpenMax Openset Detector
. . . . . B=l Softmax Fooling Detector Ii I Softmax Openset Detector
* Goal: Shrink the logit score ¢y if the query x, lies far from the mean logit = ‘ i ‘ ga ot
score for class k

* Method I IS N
* Letf(z) = (fl (2), ..., fK(Z)) be the vector of logits for z = E(x)
* Let G be the set of correctly-classified training examples for class k
* Compute the mean logit vector for each class k

o
=3

1 g
ty=— ) £(z) 3 :
Nk i;k - < ., LIRR— ’ o [ P —e O enMaX is
* Fit the Weibull distribution to {”{’(Zi) - {’k”: i € Gk} P
* Compute a weight wy(z,) based on the CDF of the fitted Weibull distribution - better than
v Tulzg) = wnlz)  a(2y) SR NS W SO trmax
. 2 (zq? i= Y. tr(z4) — ?x(z4) collect the removed logit mass into an “open space” | -
logit class 0 - : , ‘ ‘
« p(y = k|x,) = softmax (?O(Zq),?l (z4), ...,?K(zq)) oo 02 B i 8 o8
* This gives an explicit probability p(y = 0|x,) that x,; belongs to a novel
class
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Method 2:
Supervised Learning with a Modified Output Layer

Goal: Learn an improved representation
* Label Smoothing

* G-ODIN: Compute the logit as a ratio of two learned functions £ (z) =
h,(z)/g(z). Then apply softmax

* [IsoMax;: Compute logits based on distance to learned prototypes for
each class



CIFAR-100

1.6 |
_ 3 semantically I
I_a bel Sm Ooth | ng different classes | 0s! :f
1-hot 0.0l q{,.};? g
* Old idea from 1990s, reintroduced by targets A
Szegedy, et al. (CVPR 2015) 08| S
» Use a standard softmax output layer L - | |
* Change the usual 1-hot targets from TLe T8 000810
(0, .., 1,...,0) to (%,...,(1—a)+%,...,%) . T
Remove a probability mass from the target 0.4} i
class and distribute it uniformly across all
classes 'f\bel 0.0|
o .
* Miiller, et al. (NeurlIPS 2019) show that SOOI . .o
this causes the data points to form 0.4F
tighter clusters
D'ED.S —Dl.4 0.10 0.14 0.8
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G-ODIN

(Hsu, Chen, Jin, & Kira, 2020)

* Compute the logit as a ratio of two
learned functions £, (z) =
hi(z)/g(z). Then apply softmax

* Experiments
* CIFAR-10: 6 known; 4 unknown
* CIFAR-100: 80 known; 20 unknown
* Modest improvements

Deeplearn 2021

AUC
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W Softmax ™ G-ODIN

(Alex Guyer, unpublished)

70



IsoMax;
(Macedo & Ludermir, 2021)

* Learn a “prototype” u; for each

class k in the latent space
Normalize 1 —maxp(y = k|xg) 86.9 33.2
* the z values: Z := z/||z|| and IsoMax; MDS 99.5 97.2

* the prototypes: i = ur/|ltxll
1.(2) = —xlcl||Zg — |

* cis a learned scaling parameter.
k=10
* Anomaly score

A(xg) = mkin”Zq — fik |
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Other Methods

* Replace final layer with a Gaussian Process classifier
* Liu, Lin, Padhy, et al. (NeurlPS 2020)

* Replace final layer with a Dirichlet distribution rather than a
categorical (multinomial) distribution
» Sensoy, Kaplan & Kanemir (NeurlPS 2018)

* Open question:
* Compare the learned representations of these different methods



Method 3: Hybrid Methods

 Combine a supervised loss with an anomaly detection method

 Supervised + Autoencoder
e Supervised + Deep Density Estimator



Reconstruction

y classification

X Resnet34 Backbone

X reconstruction

Add a Reconstruction head to the network and jointly train the representation to support both
classification and reconstruction (per-pixel squared error)

Loss = Cross-Entropy + A X Reconstruction Error
CIFAR10: A = 0.9, CIFAR100: A = 0.005
See also:

Oza, P., & Patel, V. M. C2AE: Class Conditioned Auto-Encoder for Open-set Recognition. CVPR 2019

Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and
invertible features. ICML 2019

Perera, P., Morariu, V. I, Jain, R., Manjunatha, V., Wigington, C., Ordonez, V., & Patel, V. M. Generative-discriminative
feature representations for open-set recognition. CVPR 2020

Deeplearn 2021 74



CIFAR 10 AUC

Reconstruction Results I

0.95

(Garrepalli, 2020 MS) 0.9 .

e Result: Hybrid representation 0.80 .

0.75

improves performance 070

0.65

 Caution: A tuned using labeled test 0.60
data 0.55

0.50

AD Oracle AD Oracle Classifier
CIFAR 100 AUC

1. . .. .
00 @ Discriminative
0.95

0.90 @ Hybrid
0.85 ER
0.80 1
0.75
0.70
0.65
0.60
0.55
0.50

AD Oracle AD Oracle Classifier
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Open Hybrid: Classification + Density Estimation
(Tack, Li, Guo, Guo, 2020)

Encoder i Encoder

"

L I
bits_per_dimension|

. B T + Test . . B
— logP(x) 'images — logP(x)
L Known i \ True >t False al
Classes ! Known ['nknown
Classifier

- l : Classes Class
L

Training
. —
images

Classifier

Cross_entropy

Training :Testing

* Residual Flow Deep Density Estimator
* (Chen, Behrmann, Duvenaud, et al. NeurIPS 2019)

* Standard Cross-Entropy Supervised Loss
* Claim: This helps focus P (x) on relevant aspects of the images

* Anomaly Score: A(xq) = —log P(x,)
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OpenHybrid Results

* 6 Known and 4
Unknown classes

* 4 Known and many
unknown classes
drawn from CIFAR-
100

1- mlgxﬁ(y = k|xq) 0.978
OpenHybrid: —log P(x,) 0.995
AUC

1- m’?xﬁ(y = k|xg)
OpenHybrid: — logP(xq)

Deeplearn 2021

0.886

0.947

0.677

0.883

CIFAR+10 | CIFAR+50

0.816

0.962

0.805

0.955
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Method 4: Instance-Contrastive Learning

e SImCLR (Chen, et al. 2020)
e Set of transformations T

Uqi-Uy

Nl Izl

T;(x) Backbone Zq M Uq

J— Similarity

Scos(uliuz)
T, (x) Backbone Z, m— Uy
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. cosine similarity: s.,s(uy, uy) =
* Case 1: Same image “

Increase




Method 4: Instance-Contrastive Learning

* Case 2: Different images

Xq ﬂ T;(xq) Backbone

Decrease
Similarity

Scos (u1; uz)

X, ﬂ T5(x5) Backbone
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Classification imageNet top-1 Accuracy

®Supervised #SimCLR (4x)
* Classification 3 - KSImCLR (2x)
e Train linear logits on z using labeled g 4 ‘Cpﬁ‘c’)%'c'; -
. . - o = x
training data and softmax g SimCLR JPIRL.pSCMC ¢
T s q eMoCo (2x) AMDIM
a CPCv2 PIRL-ens.
2 PIRL oBigBIGAN
g 80 *MoCo
z LA
S
£ eRotation
o9 elnstDisc

25 50 100 200 400 626
Number of Parameters (Millions)



Visualization of Instance-Contrastive
Representations

t-SNE visualization of features

* As with supervised learning, we

see that anomalies tend to 40 - . IN (CIFAR-10)
cluster in the center of the Z % ‘:..".r - OUT (CIFAR-100)
~ 20 1 -
space P
>
e 100 images from CIFAR-10 &0
(training) and CIFAR-100 (novel & |
categories) -
* Each instance was augmented —40

100 times

60 —-40 -20 O 20 40
t-SNE axis 1
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Multivariate Gaussian Scoring

Known: CIFAR-10; Unknown: CIFAR-100

* Winkins, Bunel, Roy, et al. 2020 m-

* Train with two losses 1-maxp(y = klr,) 864
e SimCLR instance-contrastive loss

| . min G, 029
 Softmax with label smoothing k

* Fit multivariate Gaussians G to
each class (U, )

FPR@95%TPR | Accuracy
+ Anomaly score m-—-

mkin —log G (zq) min —log Gy (%)

Known: CIFAR-10; Unknown: CIFAR-100

No contrastive training
No label smoothing

min — log Gy (%) 92.9 39.9 85.9
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CSI

(Tack, Mo, Jeong, Shin, NeurlPS 2020)

 Two kinds of transformations

» J': class-preserving transformations: Cutout, Edge image, Salt+Pepper Noise,
Blur

* §:class-damaging transformations: Permutation, Rotation

AT e ] o lt *i =
(a) Original ~ (b) Cutout (c) Sobel (d) Noise (e) Blur (f) Perm (g) Rotate

* Maximize SCOS(Tl (x), T, (x)) and Minimize SCOS(Tl (x), S (x))
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Auxiliary Task and Anomaly Scores

* Given z = E(T(x)), predict which transformation T was applied

* Confidence Calibration
* Anomaly Score combines many factors

a- Izl
b. max SCOS(xq, xl-) most similar training data point x;

Expected value of b. overall § € §

Expected value of b. overallT € T

Accuracy of the predictions of the auxiliary classifier overall S € §
(Somewhat ad hoc; probably reflects tuning to optimize results)

-~ D o O



CS| Results combining unsupervised and
supervised training

Train on CIFAR-10; Evaluate on CIFAR-10 U Other Dataset

1-— maxp(y k|xg) 88.6 85.8 87.4

CSI 96.5 90.5 93.5 94.0

*Fixes problem with buggy resize operation to remove easy images
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Outline

e Setting the Anomaly Detection Threshold



Setting the Anomaly Score Threshold

* Maximize TAR@5%FAR

* Set TTAR@S%FAR to the 95%
qguantile of the Known Classes
distribution S

* Only requires the Known Classes
density, which can be computed
on a validation set

* Minimize FAR@95%TAR

e Set TFAR@95%TAR to the 5%
quantile of the Novel Classes

/\ Known Classes

0.04
|

3

0

Density
002
|

0.01

0.00

distribution ; | ] | .
. . 40 60 80 100 120
* We need to estimate this T AR@OSUTAR TTAR@S%FAR
distribution

Anomaly Score



Another Resource:

Nominal Distribution

Unlabeled Data

Mixture Distribution

Proportion of Aliens = a

P,=0—-a)P,+ aP,

Deeplearn 2021
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Cumulative CDF of Alien Anomaly Scores: F,

1.001

0.75;

Fo(x)

0.25;

0.001

0.501

0.00

0.25

0.50 0.75
Anomaly score
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Want to have
TAR=1—g¢q
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Choosing T for target quantile g

1.00
0.75

qg = 0.05

0.25
0.05

0.00 T0.05

0.00 0.25 0.50 0.75 1.00
Anomaly score
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Pm = (1—6()P0+C(Pa
implies that

Fn(x) = (1 — a)Fy(x) + aFg(x)



CDFs of Nominal, Mixture, and Alien Anomaly
Scores

1.00-
Fo
0.75-
F,

0.50- a

0.25-

0.00-

0.00 0.25 0.50 0.75 1.00
Anomaly score

Fp(x) — (1 — a)Fy(x)

a
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What We Have Are Empirical CDFs

1.00 1

0.75 -

0.50 -

0.25 -

0.00

0.00 0.25 0.50 0.75 1.00
Anomaly score

f - )= (- 0RG)
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We Use the Empirical Estimate Tg g5

1.00
0.75
0.50
0.25

0.05
0.00 A

10.05
0.00 0.25 0.50 0.75 1.00

Anomaly score
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Theoretical Guarantee

[Liu, Garrepalli, Fern, Dietterich, ICML 2018]

N 1l 2 (1)2 (Z—a)z
n —1n —
2 1—+1-=6 \e€ a

then with probability 1 — § the alien detection rate will be at least 1 — (g + €)

* Theorem: If




Estimating the mixing proportion «

The mixing proportion is not identifiable

in general 1.00 - - Estimator
N bt_patrasen
However, under reasonable 0.75 - // "\ c_patrasen
assumptions, we can obtain an estimate | — Ny i — c_roc
ao guaranteed with high probability to /f ;%{;,
be a lower bound on 0.50 - truth
.-"'--PJ..-:
Comparison of five estimators 0.5 - g
* bt _patrasen comes closest to achieving the ]
target TPR of 0.95 on six datasets
* (Patra & Sen, 2016) 0.00- [ N S N —
Liu, Mondal, Dietterich (under review) Q = o ;
@ N = =
5298575
0O &5 3
(]
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summary

Main Anomaly Detection Methods
* Density estimation

* Density quantile estimation
e Distance
* Reconstruction

Representation Learning Methods
 Supervised classification with
softmax

 Supervised classification with a
different final layer

* Hybrid network: supervised
classification + anomaly
detection loss

* Instance-contrastive learning



Open Questions / Research Needs

* Improved methods for representation learning
* meaningful representation of distances between novel-class points

* Methods for comparing learned representations
* Open framework for controlled comparison of methods
* Methods for

e Explaining anomalies to users
* Incorporating user feedback to improve anomaly detection
* Discovering and incorporating new classes into the classifier
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