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Goal: Trustworthy Classifiers

* Every classifier should also have a
model of its own competence

Competence

Model

Training

comp(xq) > 17

Examples
(%0, ¥i) yes

y=f(xq)



Threats to Competence

X is near a decision boundary (the

features of Xy are am
X4 isin a region with

X4 isin a region with

niguous)

high labeling noise

ittle training data

x4 belongs to a class that was not present in
the training data: “novel category problem”

Traditional classifiers will make predictions

in all these cases
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Approaches

 Calibrated probabilities
* Well-calibrated estimates p(y|x) of P(y|x)
* comp(x) = maxp(y = k|x)

e Should output 0.5 for the e and « cases
 Competence function (rejection function)
e comp(x) >T

e Qutlier/Anomaly/Out-of-Distribution
detector

 Should detect the e case

* Prediction sets
* Output R(x,) and a guarantee thaty € R(x,)
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Other threats not covered in this class

 Distribution shift / domain shift

* We will assume independent and identically-distributed data, but with the
possibility that runtime data includes novel classes

* Adversarial examples
* We will not consider data points deliberately modified to fool the classifier



Related Approaches Not Covered

» Batch/group detection
* We will focus on the setting where we have only one query x, and we must

decide whether the classifier is competent to classify x,,

* |n some applications, we are given a batch of queries {x}l, e xg}, and we can
combine evidence to decide whether the classifier is competent to classify
the whole batch. This is particularly important when detecting distribution

shifts.
 Structured data: time series, spatial data, text, graphs, etc.



Notation

* Input space X of dimension d

* Qutput space Y = {1, ..., K} classes

* True joint distribution P(x,y) = P(x)P(y|x)

* Training data {(x4, ¥1), ..., (X, Yn)} drawn from P(x, y)

e Fitted function f: X — AX~! the K-dimensional probability simplex
e f(x) =|p(y = 1|x), ..., p(y = K|x)] class probability vector

Y =arg max p(y = k|x) predicted class

e T[u]is 1if uis true and O otherwise

* Some classifiers do not output probabilities (e.g., SVMs), but we will ignore
this in our notation



Notation for Deep Networks

* Input image x

 Network backbone, also
called the “encoder”: z = Convolutional Neural Network Classifier 024

E(x) 32 Y 10_.
* Latent representation z : iiguﬁs;h ;zxz Pl B | =R

] 14 poy 7 connected
* Logits £, = w, z -

28

* Predicted probabilities

Penultimate Layer z Logits £, = wy z
exp 4y (2)

ply = klx) = 5

Probabilities
Py = klx)

Deeplearn 2021 8



Calibrated Classifiers

* A classifier is well-calibrated if the output probability p(y = k|x;) is
equal to the true conditional probability P(y = k‘xq)



Part 1: Calibrated Probabilities

* Reasons for Creating Calibrated Probabilities

* Reason 1: Rational Decision Making
* If L(k, k") is the loss received if y = k, then the expected loss of predicting k'
IS
* 2k Py =kl|x)L(k, k')
* We can choose k' to minimize this expected loss
« k =argmax, ¥, P(y = k|x)L(k, k")

* We can consider other decisions including abstention. Let L(k, abstain) be
the cost of abstaining

e E.g., Cost of asking a person to make the decision
* a=arg MmaXge(1,..,K,abstain} Zk P(y = k|x)L(k,a)



Reason 2: Interpretability

* People can understand a probability statement like p(y = k|x) = 0.8
better when the probability is well-calibrated



Reason 3: System Integration

* It is easier to integrate multiple Al subsystems if they all work with
well-calibrated probabilities

* Examples:
* Fusing multiple sensors
* Combining evidence from multiple sources



Reason 4: Improved Accuracy

Uncalibrated linear SVM achieves 0.64 accuracy
Calibrated linear SVM achieves 0.79 accuracy

Of course, using a quadratic kernel
gives 0.99 accuracy

-~

Fig. 3 Scatter plot of the simulated data. The two classes of the binary classification task are indicated by the
red squares and blue stars. The black oval indicates the decision boundary found using SVM with a quadratic
kernel (colour figure online)
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Measuring Calibration Error

 We can’t measure the true conditional probability at a single point
unless we have many training examples identically equal to x,

* Instead, we must use some set of points to create an estimate
P(y = k‘xq)



Estimating P(y = k‘xq)

* Method 1: Neighborhood in the input
space

* letn(x,) be the H data points nearest to x,,.

o ~ {y):xen(xq) and y=k}|
* P(y o kGCI) o |,7(1|

e Example:3outof H =7 goints are class 1

(red), so P(y = 1|xq) =

* Can generalize this to a similarity kernel
k(x,x")

* P(y =k|xg) = % k(xixq)1i=k)

Zi k(xi»xq)

1.0

05

0.0

-05

-1.0

0.0

0.5

1.0

1.5 20




Digression: Kernels

k(x,x") =k(x—x")

* Akernel k(x,x") is a real-valued function

that satisfies certain properties. Typical 1ol A Efr%“ﬁgﬁ’;‘h n
properties include _ / \ — Qe
c 0<k(xx')<1Vxx | Cosie
* k(x,x) =1 self-similarity is maximum °er /
o k(x,x') — k(x’,x) symmetric 0.4} //7 \\\
e k(x,x') > 0as|lx —x'|| » o i
 Different kernels satisfy different properties // \\
e Radial kernels | 1o 05 50 o5 To

o k(x,x") = k(||]x — x'||) for some distance || - ||

By Brian Amberg - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=5329895



Estimating P(y = k‘xq)

Method 2: Neighborhood in the predicted probability space

Let f(xq) = (ﬁ(y = 1|xq), ...,ﬁ(y = K|xq)) be the predicted class probabilities

Let 7(x,) be a set of data points for which p(y = k|x;) is close to ﬁ(y = k|xq):
n(xq) = {xl-: |15(y = k|x;) — ﬁ(y = |xq)| is small}

The estimated P is the fraction of those points that belong to class k:

|{(xi:3Ii):xi € n(xq) and y; = k}|
Inl

13(y = klxq) =

Example: 6 out of H =9 points are class 1 (red), so P(y = 1|xq) =6/9

Can generalize thjs to a similarity kernel in predicted probability space:
k(PO = klxg), POy — klx,))

Yik(B(y = klxg), p(y — klx))Uly; = kI
k(B = klxg), By — kIxy))

ﬁ(y = k|xq) =

1.0
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Measuring Calibration with a Reliability Diagram

* Given a “calibration set” of data points and a classifier, we can L . .
compute a reliability diagram (2-class case): Reliability Diagram (Naive Bayes; ADULT)

N

* Divide [0,1] into M bins (often M = 10). Bins may be of equal width or
of equal quantiles according to p(y = 1|x)

* Forbinb € {1, ..., M}, let B}, be the set of points whose probability
scores p(y = 1|x) belong in bin By,

o
©
T

o
©
T

2710

o
9
T

* p(By) = |B_1|Zx€Bb p(y = 1|x). This is the average predicted probability
b

o
()
T

of the points in B,
672

Empirical class membership probability

- P(By) = ﬁZxEBb I[y = 1]. This is the fraction of predictions that are 0.5 e
correct L i *
* Let P,(b) = |B,|/N be the fraction of calibration points that fall into bin ol o 4O 2
b ' .
N *
* Calibration Score o2 "
* b Px(b)[ﬁ(Bb) - IS(Bb)]2 expected squared calibration error o1F
. . %
) ExpeCted Callbratlon Er’ror (ECE) 00 O{’I 0{2 0!3 0{4 Of5 0{6 0{7 01.8 0{9
© Yhe1 P(B)|B(Bp) — P(Bb)l expected absolute calibration error NB Score

Zadrozny & Elkan, 2002



Calibration Score and the Brier Score

* The Brier Score is a proper scoring rule for probabilistic models
) 1 A7 A ~
* BrierScore = ;Zi(p(yilxi) — 1[9; = yi])?
* |t can also be written in terms of the bins as

+ BrierScore = ¥, B.(b)[p(By) — P(By)]” + X, P.(b) |[P(By) (1 - P(By) )|
 Here The first term is the Calibration Score

* The second term is called the “Refinement Score”. It is minimized when
P(Bp) isnearQor 1.

e A classifier that minimizes the Brier Score seeks to be well-calibrated and
highly certain

* The Brier score is a proper scoring rule



mproving Calibration does not necessarily
mprove Refinement

* A classifier can be well-calibrated but useless
» Suppose 70% of the calibration data points belong to class 1
* Then always predict y = 1 with p(y) = 0.7
* This is perfectly calibrated but useless

* Note that the Refinement score will be large
* 0.7x0.3=0.21



Kernel ECE

* Most papers use a fixed set of 10 or
100 equal-width bins

e This introduces biases near the bin
boundaries

* There are methods for reducing those
biases
e Better method: Kernel ECE

e Kumar, Sarawagi & Jain (2018)

* Use a kernel in the predicted probability
space

Accuracy

1.0 -~

0.8 1

o
(o)}
1

©
N

0.2 A

0.0 A

® Uncalibrated: 0.039
A Platt scaling: 0.041
Proximity: 0.034

*aooo. A
‘f"* “Bans’
P d
”
r".‘ /,/
TT/,
//
.‘.A
;./"
0.0 0.2 0.4 0.6 0.8 1.0

P(class 1)

source: Kiri Wagstaff




Post-Hoc Calibration Methods

* Divide data into a training set and a calibration set
* Train the classifier as usual on the training set (e.g., to maximize accuracy, AUC, etc.)

* Learn a calibration function that transforms the classifier’s output probabilities into well-
calibrated probabilities

A post-hoc n
p o

g

22



Calibration Method 1: Binning

* Fit a function g to map p to P and then replace p with g(p)
* “training data” consist of (p;, [|y; = k]) pairs
* Fixed-width Bins
* Sort the data by p
* Let By, ..., By each be of width %
* Estimate P(B,,) for each bin
» g(p) = P(B,) for the bin B}, containing p
e Quantile Bins

: . : .1 .
e Define the bins so that each bin contains v of the training data



Calibration Method 2: Platt Scaling

(Platt, 1999)

—

©
©
T

1

*9Pia,b) = o

* Logistic regression with a single
“feature” (p)

o
~
T

Empirical class membership probability
o o
w [8)]
T

o
N
T

01F

Adult Dataset
I T

©
™
T

o
9
T

©
o
T

SVM Score



Method 3: Isotonic Regression

Adult Dataset
[

I I
* Testdata

* Find the function g that is T
monotonically increasing from O 08|
to 1 and minimizes the Brier ol
Score

©
>
|

* Pool-Adjacent Violators Algorithm
* Ayer, et al. (1955)

* Robertson, Wright, & Dykstra
(1988)

Empirical class membership probability
o o o
w A (€}
I I I

o
(¥
|

011

| | | | | | | | |
0 0.1 02 0.3 04 0.5 0.6 0.7 08 0.9 1
NB Score



PAV

Ayer, M., Brunk, H., Ewing, G., Reid, W., Silverman, E. (1955)
e Input: (p;, [[y; = k]) sorted in
ascending order by p;
* Initialize m;; = I[y; = k|;w;; =1

e While 3i s.t. mk,i—l = mk}i

* Wi, = Wgi—1 T Wi
Wk i-1Mgi—1TWi M

e M —
k,l Wi
* Insert My ; in place of My ;_4 and My ;
* Output the function

« m(p) =m;; forp € (ﬁi,ﬁj]



Method 4: Regularized Isotonic Regression

* |sotonic Regression can be rewritten as the solution to the following
problem

* Choose P; to minimize
1 L \2 Cira A S _
. 52?’:1(3’ —p;)" + AN (P, — Piyy )| P; > Py q| subjectto A = +oo

 Tibshirani, Hastie & Tibshirani (2011) developed mPAVA, which constructs
the complete regularization path fromA =0to A = o

 Efficient algorithm that produces a sequence of “near isotonic” regression models
G1r weer Jtr oo

* ENIR (Ensemble of Near Isotonic Regressions; Naeini & Cooper, 2018)
computes the BIC score of each g;, normalizes these scores, and then
computes the weighted average of the models to obtain g



Method 5: Other Flexible Models

* Splines (Lucena, 2018 arxiv 1809.07751)

* Piecewise linear functions via a tree-based decomposition (Leathart,
Frank, Holmes, Pfahringer, 2017)

e Gaussian Processes (Song, Kull, Flach, 2018)



Methods for Multiclass Classifiers

e Method 1: Normalized one-vs-rest calibration

* For each class k, learn a binary calibration function g; based on a one-vs-rest
classifier

» Define g(A(y = 1]x), ..., p(y = le)) as follows

* Let the predicted probability for class k be
g(P(y = k|x))

Y 9 (Pl = K'|x))




Multiclass Method 2: Softmax Temperature
Tuning (Guoetal, 2017)

*letf =¥, ..., be the logits of a DNN

* Scale the logits by dividing by a temperature T:
2"

exp =

Tfk, — O-SM(f)

Zkr €XP =~

Py = klx) =

* Adjust T to fit the calibration data



Multiclass Methods 3 and 4: Generalized Platt
Scaling

* Matrix Scaling
* Learn a matrix W and vector b to fit a5, (W# + b) to a 1-hot encoding of y;

* Vector Scaling
* Matrix scaling with W = diag(w)



Experiments 1: Niculescu-Mizil & Caruana
(2005)

* Insights

* Max-margin methods push p toward 0.5
Naive Bayes pushes p toward 1.0
Calibration flattens out this distribution

Max-margin methods are fit well by logistic regression (Platt scaling), which
also needs relatively little data

Isotonic Regression works well with Naive Bayes but usually requires more
calibration data
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Figure 1. Histograms of predicted values and reliability diagrams for boosted decision trees.
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Fraction of Positives

Boosted Trees after Platt Calibration
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Figure 2. Histograms of predicted values and reliability diagrams for boosted trees calibrated with Platt’s method.
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Fraction of Positives

Boosted Trees after Isotonic Regression

Calibration
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Figure 3.

Histograms of predicted values and reliability diagrams for boosted trees calibrated with Isotonic Regression.
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10 Different Learning Algorithis
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Figure 6. Histograms and reliability diagrams for SLAC.
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How big does the calibration set need to be?

BST-OT SVM
DSE‘ T T T T T T 17 T T T T T LI | T T T T T T T 7T DE‘B T T T T T T | T T T T T T T I| T T T T T T T
Unscaled ——+— Unscaled +—+—
Platt Platt
Isotonic =--#---: Isotonic :--#---:
036 . 036
034 - - 034 -
4& v + *
032 - - - 032 -
*, .
+ + + + — g — *
03+ * : 031
® T
028 - K. i 028 L ¥ <%
e E
L L M S R | L L M R S R | ?:- L ”:““:“‘:‘“:“F. 1 1 1 TR R R | 1 L L A | L L TR R S SR
10 100 1000 10000 10 100 1000 10000
Calibration Set Size Calibration Set Size
Platt: 500; Isotonic: 80007? Platt: 500; Isotonic: 4000
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Experiments 2: Guo, Pleiss, Sun & Weinberger
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What are the causes of bad calibration?

Varying Depth Varying Width Using Normalization Varying Weight Decay
ResNet - CIFAR-100 ResNet-14 - CIFAR-100 ConvNet - CIFAR-100 ResNet-110 - CIFAR-100
0.6 === Error m==  Firror Bl Error === Error
= KCE = ECE B ECE = ECE

= 0.5 : ;
Q

0.4 . : :
= ) Sl
|-
= 0.2

0.0

0 20 40 60 80 100 120 0 50 100 150 200 250 300 Without With 102 10~ 10—3 102
Depth Filters per layer Batch Normalization Weight decay

Figure 2. The effect of network depth (far left), width (middle left), Batch Normalization (middle right), and weight decay (far right) on
miscalibration, as measured by ECE (lower is better).

Note: ECE = mean absolute calibration error Zb% |P(Bb) — ﬁ(Bb)|
40



Comparison on Multiple Tasks and
Architectures

Matrix Scaling

is often very
—e—Uncalibrated bad

N
(92

——TempScaling

—e—VectorScaling

N
o

—e—MatrixScaling

Expected Calibrationi Error (%)
[y
u

10 ,
Vector Scaling
== Temp Scaling
5
0
0 5 10 15 20

Dataset and Model 41



Comparison against other methods
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Insights and Questions

* The simple Temperature Calibration model works well and works
better than more complex generalizations of Platt Scaling

* Temperature Calibration can be derived as the solution to a maximum
entropy optimization problem

 Maximize entropy of P subject to (a) P is a probability and (b) the sum of true
class logits == mean value of all logits weighted by P

* Not clear why (b) makes sense

* Need to compare against Platt Scaling each class separately and then
normalizing



Experiment 3: Naeini & Cooper (ENIR, 2018)

40 UCIl and LibSVM benchmark
datasets

 Classifiers: Naive Bayes, Logistic
Regression, SVM

* Hyperparameters tuned via 10x10-
fold cross-validation

 Calibration Algorithms:
* |sotonic Regression (IsoRegC)
* BBQ: Bayesian Quantile Binning
(ensemble of quantile bin models)

* ENIR: Ensemble of Near Isotonic
Regressions

 Calibration reuses the training data

* No comparison against Platt scaling
or other model-based approaches

* Metrics:

AUC = area under ROC curve
ACC = accuracy

RMSE = square root of the Calibration
score

ECE = expected absolute calibration
error

MCE = maximum absolute calibration
error



Percentage Change using ENIR

Table 3 The 95% confidence interval for the average percentage of improvement over the base classifiers
(LR, SVM, NB) by using the ENIR method for post-processing

Naive Bayes &

LR SVM NB LR ACC always
improves
AUC [— 0.008, 0.003] [—0.010, 0.003] [—0.010, 0.000]
ACC [0.002, 0.016] [—0.001, 0.010] [0.012, 0.068]
RMSE [—0.124, —0.016] [—0.310, —0.176] [—0.196, —0.100]
ECE [—0.389, —0.153] [—0.768, —0.591] [—0.514, —0.274] _ .
Calibration
MCE [—0.313, —0.064] [—0.591, —0.340] [—0.552, —0.305] :
Metrics always
Positive entries for AUC and ACC mean ENIR is on average providing better discrimination than the base improve

classifiers. Negative entries for RMSE, ECE, and MCE mean that ENIR is on average performing better
calibration than the base classifiers

Accuracy improvements probably result from better thresholding
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Insights and Questions

* Using a regularized version of Isotonic Regression (ENIR) does not
improve accuracy or AUC compared to regular Isotonic Regression

* But it does improve measures of calibration

* The main advantage of regularizing should be to reduce the amount
of calibration data that is needed, but the authors did not study this
guestion



Summary of Miscalibration Behaviors
Based on these Papers

* Max Margin Methods (SVM, boosted trees):

* p concentrates near 0.5
* Sigmoid-shaped Reliability Diagram
* Platt (logistic regression) model fits well, learns quickly

* Naive Bayes and Deep Nets
e p concentrates near 0 and 1; systematically optimistic
* Sigmoid model fits NB poorly; Isotonic regression is better
* Temperature Calibration worked better for Deep Nets

 Random Forests, Bagging, MLPs
* Naturally well-calibrated except at extreme probabilities
* We have counter-examples for random forests
* Sigmoid model fits poorly
* Need lots of calibration data to obtain any improvements



Open Questions for Calibration

* Do we care equally about all parts of the p space?
* For high-confidence predictions
* We only care about large values of p

* For anomaly detection
* We only care about very small values of p

* For stock market trading
* We care about valuesof p = 0.5 + ¢

* To estimate P(y|x), we use a combined neighborhood 1 over X X
Y

e Can we address the causes of miscalibration?
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