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Goal: Trustworthy Classifiers

• Every classifier should also have a 
model of its own competence
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Threats to Competence

𝑥𝑥𝑞𝑞 is near a decision boundary (the 
features of 𝑥𝑥𝑞𝑞 are ambiguous)
𝑥𝑥𝑞𝑞 is in a region with high labeling noise
𝑥𝑥𝑞𝑞 is in a region with little training data

𝑥𝑥𝑞𝑞 belongs to a class that was not present in 
the training data: “novel category problem”

Traditional classifiers will make predictions 
in all these cases
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Approaches

• Calibrated probabilities
• Well-calibrated estimates 𝑝̂𝑝(𝑦𝑦|𝑥𝑥) of 𝑃𝑃 𝑦𝑦 𝑥𝑥

• comp 𝑥𝑥 = max
𝑘𝑘

�𝑝𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥)

• Should output 0.5 for the    and    cases
• Competence function (rejection function)

• comp 𝑥𝑥 > 𝜏𝜏
• Outlier/Anomaly/Out-of-Distribution 

detector
• Should detect the     case

• Prediction sets
• Output 𝑅𝑅(𝑥𝑥𝑞𝑞) and a guarantee that 𝑦𝑦 ∈ 𝑅𝑅(𝑥𝑥𝑞𝑞)
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Other threats not covered in this class

• Distribution shift / domain shift
• We will assume independent and identically-distributed data, but with the 

possibility that runtime data includes novel classes

• Adversarial examples
• We will not consider data points deliberately modified to fool the classifier
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Related Approaches Not Covered

• Batch/group detection
• We will focus on the setting where we have only one query 𝑥𝑥𝑞𝑞 and we must 

decide whether the classifier is competent to classify 𝑥𝑥𝑞𝑞
• In some applications, we are given a batch of queries 𝑥𝑥𝑞𝑞1, … , 𝑥𝑥𝑞𝑞𝐵𝐵 , and we can 

combine evidence to decide whether the classifier is competent to classify 
the whole batch. This is particularly important when detecting distribution 
shifts. 

• Structured data: time series, spatial data, text, graphs, etc.
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Notation
• Input space 𝒳𝒳 of dimension 𝑑𝑑
• Output space 𝒴𝒴 = 1, … ,𝐾𝐾 classes
• True joint distribution 𝑃𝑃 𝑥𝑥, 𝑦𝑦 = 𝑃𝑃 𝑥𝑥 𝑃𝑃 𝑦𝑦 𝑥𝑥
• Training data 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑁𝑁 , 𝑦𝑦𝑁𝑁 drawn from 𝑃𝑃(𝑥𝑥, 𝑦𝑦)
• Fitted function 𝑓𝑓:𝒳𝒳 ↦ Δ𝐾𝐾−1 the 𝐾𝐾-dimensional probability simplex
• 𝑓𝑓 𝑥𝑥 = 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥 , … , 𝑝̂𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥 class probability vector
• �𝑦𝑦 = arg max

𝑘𝑘
𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 predicted class

• 𝕀𝕀 𝑢𝑢 is 1 if 𝑢𝑢 is true and 0 otherwise
• Some classifiers do not output probabilities (e.g., SVMs), but we will ignore 

this in our notation
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Notation for Deep Networks

• Input image 𝑥𝑥
• Network backbone, also 

called the “encoder”: 𝑧𝑧 =
𝐸𝐸 𝑥𝑥

• Latent representation 𝑧𝑧
• Logits ℓ𝑘𝑘 = 𝑤𝑤𝑘𝑘⊤𝑧𝑧
• Predicted probabilities

𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 =
exp ℓ𝑘𝑘(𝑧𝑧)

∑𝑘𝑘′ exp ℓ𝑘𝑘′(𝑧𝑧)
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Convolutional Neural Network Classifier

Image
𝑥𝑥 Penultimate Layer 𝑧𝑧 Logits ℓ𝑘𝑘 = 𝑤𝑤𝑘𝑘⊤𝑧𝑧

Probabilities
𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥)

𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥)

DeepLearn 2021



Calibrated Classifiers
• A classifier is well-calibrated if the output probability 𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥𝑞𝑞) is 

equal to the true conditional probability 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞

9



Part 1: Calibrated Probabilities

• Reasons for Creating Calibrated Probabilities
• Reason 1: Rational Decision Making

• If 𝐿𝐿 𝑘𝑘,𝑘𝑘′ is the loss received if 𝑦𝑦 = 𝑘𝑘, then the expected loss of predicting 𝑘𝑘𝑘
is

• ∑𝑘𝑘 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 𝐿𝐿 𝑘𝑘, 𝑘𝑘′

• We can choose 𝑘𝑘𝑘 to minimize this expected loss
• �𝑘𝑘 = arg max𝑘𝑘′ ∑𝑘𝑘 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 𝐿𝐿 𝑘𝑘, 𝑘𝑘′

• We can consider other decisions including abstention. Let 𝐿𝐿(𝑘𝑘, abstain) be 
the cost of abstaining

• E.g., Cost of asking a person to make the decision
• �𝑎𝑎 = arg max𝑎𝑎∈ 1,…,𝐾𝐾,abstain ∑𝑘𝑘 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 𝐿𝐿(𝑘𝑘,𝑎𝑎)
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Reason 2: Interpretability

• People can understand a probability statement like 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 = 0.8
better when the probability is well-calibrated
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Reason 3: System Integration

• It is easier to integrate multiple AI subsystems if they all work with 
well-calibrated probabilities

• Examples:
• Fusing multiple sensors
• Combining evidence from multiple sources
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Reason 4: Improved Accuracy

13

Of course, using a quadratic kernel 
gives 0.99 accuracy

Uncalibrated linear SVM achieves 0.64 accuracy
Calibrated linear SVM achieves 0.79 accuracy



Measuring Calibration Error
• We can’t measure the true conditional probability at a single point 

unless we have many training examples identically equal to 𝑥𝑥𝑞𝑞
• Instead, we must use some set of points to create an estimate 
�𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞
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Estimating 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞
• Method 1: Neighborhood in the input 

space
• let 𝜂𝜂(𝑥𝑥𝑞𝑞) be the 𝐻𝐻 data points nearest to 𝑥𝑥𝑞𝑞. 

• �𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 = 𝑥𝑥,𝑦𝑦 :𝑥𝑥∈𝜂𝜂 𝑥𝑥𝑞𝑞 and 𝑦𝑦=𝑘𝑘
𝜂𝜂

• Example: 3 out of 𝐻𝐻 = 7 points are class 1 
(red), so �𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥𝑞𝑞 = 3
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• Can generalize this to a similarity kernel 
𝑘𝑘 𝑥𝑥, 𝑥𝑥′

• �𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 =
∑𝑖𝑖 𝑘𝑘 𝑥𝑥𝑖𝑖,𝑥𝑥𝑞𝑞 𝕀𝕀 𝑦𝑦𝑖𝑖=𝑘𝑘

∑𝑖𝑖 𝑘𝑘(𝑥𝑥𝑖𝑖,𝑥𝑥𝑞𝑞)
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Digression: Kernels
• A kernel 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) is a real-valued function 

that satisfies certain properties. Typical 
properties include

• 0 ≤ 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ ≤ 1 ∀𝑥𝑥, 𝑥𝑥𝑥
• 𝑘𝑘 𝑥𝑥, 𝑥𝑥 = 1 self-similarity is maximum
• 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝑘𝑘 𝑥𝑥′, 𝑥𝑥 symmetric
• 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ → 0 as 𝑥𝑥 − 𝑥𝑥′ → ∞

• Different kernels satisfy different properties
• Radial kernels

• 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝑘𝑘 𝑥𝑥 − 𝑥𝑥′ for some distance ‖ ⋅ ‖
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By Brian Amberg - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=5329895

𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = 𝑘𝑘 𝑥𝑥 − 𝑥𝑥′



Estimating 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞
• Method 2: Neighborhood in the predicted probability space

• Let 𝑓𝑓 𝑥𝑥𝑞𝑞 = 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥𝑞𝑞 , … , 𝑝̂𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥𝑞𝑞 be the predicted class probabilities

• Let 𝜂𝜂(𝑥𝑥𝑞𝑞) be a set of data points for which 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑖𝑖 is close to 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 :

𝜂𝜂 𝑥𝑥𝑞𝑞 ≔ 𝑥𝑥𝑖𝑖: 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑖𝑖 − 𝑝̂𝑝 𝑦𝑦 = 𝑥𝑥𝑞𝑞 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

• The estimated �𝑃𝑃 is the fraction of those points that belong to class 𝑘𝑘:

�𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 =
𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 𝑥𝑥𝑖𝑖 ∈ 𝜂𝜂 𝑥𝑥𝑞𝑞 and 𝑦𝑦𝑖𝑖 = 𝑘𝑘

𝜂𝜂

• Example: 6 out of 𝐻𝐻 =9 points are class 1 (red), so �𝑃𝑃 𝑦𝑦 = 1 𝑥𝑥𝑞𝑞 = ⁄6 9

• Can generalize this to a similarity kernel in predicted probability space: 
𝑘𝑘 𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥𝑞𝑞), 𝑝̂𝑝(𝑦𝑦 − 𝑘𝑘|𝑥𝑥𝑖𝑖)

�𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 =
∑𝑖𝑖 𝑘𝑘 𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥𝑞𝑞), 𝑝̂𝑝(𝑦𝑦 − 𝑘𝑘|𝑥𝑥𝑖𝑖) 𝕀𝕀 𝑦𝑦𝑖𝑖 = 𝑘𝑘

∑𝑖𝑖 𝑘𝑘 𝑝̂𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥𝑞𝑞), 𝑝̂𝑝(𝑦𝑦 − 𝑘𝑘|𝑥𝑥𝑖𝑖)
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Measuring Calibration with a Reliability Diagram
• Given a “calibration set” of data points and a classifier, we can 

compute a reliability diagram (2-class case):
• Divide [0,1] into 𝑀𝑀 bins (often 𝑀𝑀 = 10). Bins may be of equal width or 

of equal quantiles according to 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥
• For bin 𝑏𝑏 ∈ 1, … ,𝑀𝑀 , let 𝐵𝐵𝑏𝑏 be the set of points whose probability 

scores 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥 belong in bin 𝐵𝐵𝑏𝑏
• 𝑝̂𝑝 𝐵𝐵𝑏𝑏 = 1

𝐵𝐵𝑏𝑏
∑𝑥𝑥∈𝐵𝐵𝑏𝑏 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥 . This is the average predicted probability 

of the points in 𝐵𝐵𝑏𝑏
• �𝑃𝑃 𝐵𝐵𝑏𝑏 = 1

𝐵𝐵𝑏𝑏
∑𝑥𝑥∈𝐵𝐵𝑏𝑏 𝕀𝕀 𝑦𝑦 = 1 . This is the fraction of predictions that are 

correct
• Let 𝑃𝑃𝑥𝑥 𝑏𝑏 = 𝐵𝐵𝑏𝑏 /𝑁𝑁 be the fraction of calibration points that fall into bin 
𝑏𝑏

• Calibration Score
• ∑𝑏𝑏=1𝑀𝑀 𝑃𝑃𝑥𝑥(𝑏𝑏) 𝑝̂𝑝 𝐵𝐵𝑏𝑏 − �𝑃𝑃 𝐵𝐵𝑏𝑏

2
expected squared calibration error

• Expected Calibration Error (ECE)
• ∑𝑏𝑏=1𝑀𝑀 𝑃𝑃𝑥𝑥(𝑏𝑏) 𝑝̂𝑝 𝐵𝐵𝑏𝑏 − �𝑃𝑃 𝐵𝐵𝑏𝑏 expected absolute calibration error
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Reliability Diagram (Naïve Bayes; ADULT)

Zadrozny & Elkan, 2002



Calibration Score and the Brier Score

• The Brier Score is a proper scoring rule for probabilistic models
• 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1

𝑁𝑁
∑𝑖𝑖 𝑝̂𝑝 �𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 − 𝕀𝕀 �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 2

• It can also be written in terms of the bins as
• 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = ∑𝑏𝑏𝑃𝑃𝑥𝑥 𝑏𝑏 �𝑝𝑝 𝐵𝐵𝑏𝑏 − �𝑃𝑃 𝐵𝐵𝑏𝑏

2 + ∑𝑏𝑏𝑃𝑃𝑥𝑥 𝑏𝑏 �𝑃𝑃 𝐵𝐵𝑏𝑏 1 − �𝑃𝑃 𝐵𝐵𝑏𝑏
• Here The first term is the Calibration Score

• The second term is called the “Refinement Score”. It is minimized when 
�𝑃𝑃(𝐵𝐵𝑏𝑏) is near 0 or 1. 

• A classifier that minimizes the Brier Score seeks to be well-calibrated and
highly certain

• The Brier score is a proper scoring rule
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Improving Calibration does not necessarily 
Improve Refinement
• A classifier can be well-calibrated but useless

• Suppose 70% of the calibration data points belong to class 1
• Then always predict �𝑦𝑦 = 1 with 𝑝̂𝑝 �𝑦𝑦 = 0.7
• This is perfectly calibrated but useless
• Note that the Refinement score will be large

• 0.7 × 0.3 = 0.21
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Kernel ECE
• Most papers use a fixed set of 10 or 

100 equal-width bins
• This introduces biases near the bin 

boundaries
• There are methods for reducing those 

biases

• Better method: Kernel ECE
• Kumar, Sarawagi & Jain (2018)
• Use a kernel in the predicted probability 

space

21
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Post-Hoc Calibration Methods

• Divide data into a training set and a calibration set
• Train the classifier as usual on the training set (e.g., to maximize accuracy, AUC, etc.)
• Learn a calibration function that transforms the classifier’s output probabilities into well-

calibrated probabilities
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𝑥𝑥𝑞𝑞 classifier 𝑝̂𝑝 post-hoc
calibration 𝑔𝑔 𝑝̂𝑝

𝑔𝑔𝑓𝑓



Calibration Method 1: Binning
• Fit a function 𝑔𝑔 to map 𝑝̂𝑝 to 𝑃𝑃 and then replace 𝑝̂𝑝 with 𝑔𝑔 𝑝̂𝑝
• “training data” consist of 𝑝̂𝑝𝑖𝑖 , 𝕀𝕀 𝑦𝑦𝑖𝑖 = 𝑘𝑘 pairs
• Fixed-width Bins

• Sort the data by 𝑝̂𝑝
• Let 𝐵𝐵1, … ,𝐵𝐵𝑀𝑀 each be of width 1

𝑀𝑀
• Estimate �𝑃𝑃 𝐵𝐵𝑏𝑏 for each bin
• 𝑔𝑔 𝑝̂𝑝 = �𝑃𝑃 𝐵𝐵𝑏𝑏 for the bin 𝐵𝐵𝑏𝑏 containing 𝑝̂𝑝

• Quantile Bins
• Define the bins so that each bin contains 1

𝑀𝑀
of the training data
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Calibration Method 2: Platt Scaling
(Platt, 1999)

• 𝑔𝑔 𝑝̂𝑝;𝑎𝑎, 𝑏𝑏 = 1
1+𝑒𝑒𝑎𝑎+𝑏𝑏�𝑝𝑝

• Logistic regression with a single 
“feature” (𝑝̂𝑝)
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Method 3: Isotonic Regression

• Find the function 𝑔𝑔 that is 
monotonically increasing from 0 
to 1 and minimizes the Brier 
Score

• Pool-Adjacent Violators Algorithm
• Ayer, et al. (1955)
• Robertson, Wright, & Dykstra 

(1988)
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PAV 
Ayer, M., Brunk, H., Ewing, G., Reid, W., Silverman, E. (1955)

• Input: 𝑝̂𝑝𝑖𝑖 , 𝕀𝕀[𝑦𝑦𝑖𝑖 = 𝑘𝑘] sorted in 
ascending order by 𝑝̂𝑝𝑖𝑖

• Initialize �𝑚𝑚𝑖𝑖,𝑖𝑖 = 𝕀𝕀[𝑦𝑦𝑖𝑖 = 𝑘𝑘];𝑤𝑤𝑖𝑖,𝑖𝑖 = 1
• While ∃𝑖𝑖 𝑠𝑠. 𝑡𝑡. �𝑚𝑚𝑘𝑘,𝑖𝑖−1 ≥ �𝑚𝑚𝑘𝑘,𝑖𝑖

• 𝑤𝑤𝑘𝑘,𝑙𝑙 ≔ 𝑤𝑤𝑘𝑘,𝑖𝑖−1 + 𝑤𝑤𝑖𝑖,𝑙𝑙
• �𝑚𝑚𝑘𝑘,𝑙𝑙 ≔

𝑤𝑤𝑘𝑘,𝑖𝑖−1 �𝑚𝑚𝑘𝑘,𝑖𝑖−1+𝑤𝑤𝑖𝑖,𝑙𝑙 �𝑚𝑚𝑖𝑖,𝑙𝑙
𝑤𝑤𝑘𝑘,𝑙𝑙

• Insert �𝑚𝑚𝑘𝑘,𝑙𝑙 in place of �𝑚𝑚𝑘𝑘,𝑖𝑖−1 and �𝑚𝑚𝑘𝑘,𝑖𝑖

• Output the function
• �𝑚𝑚 𝑝̂𝑝 = �𝑚𝑚𝑖𝑖,𝑗𝑗 for 𝑝̂𝑝 ∈ 𝑝̂𝑝𝑖𝑖 , 𝑝̂𝑝𝑗𝑗
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Method 4: Regularized Isotonic Regression

• Isotonic Regression can be rewritten as the solution to the following 
problem

• Choose �𝑃𝑃𝑖𝑖 to minimize
• 1
2
∑𝑖𝑖=1𝑁𝑁 �𝑃𝑃𝑖𝑖 − 𝑝̂𝑝𝑖𝑖

2
+ 𝜆𝜆∑𝑖𝑖=1𝑁𝑁−1 �𝑃𝑃𝑖𝑖 − �𝑃𝑃𝑖𝑖+1 𝕀𝕀 �𝑃𝑃𝑖𝑖 > �𝑃𝑃𝑖𝑖+1 subject to 𝜆𝜆 = +∞

• Tibshirani, Hastie & Tibshirani (2011) developed mPAVA, which constructs 
the complete regularization path from 𝜆𝜆 = 0 to 𝜆𝜆 = ∞

• Efficient algorithm that produces a sequence of “near isotonic” regression models 
𝑔𝑔1, … ,𝑔𝑔𝑡𝑡 , …

• ENIR (Ensemble of Near Isotonic Regressions; Naeini & Cooper, 2018) 
computes the BIC score of each 𝑔𝑔𝑡𝑡, normalizes these scores, and then 
computes the weighted average of the models to obtain 𝑔𝑔
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Method 5: Other Flexible Models

• Splines (Lucena, 2018 arxiv 1809.07751)
• Piecewise linear functions via a tree-based decomposition (Leathart, 

Frank, Holmes, Pfahringer, 2017)
• Gaussian Processes (Song, Kull, Flach, 2018)
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Methods for Multiclass Classifiers

• Method 1: Normalized one-vs-rest calibration
• For each class 𝑘𝑘, learn a binary calibration function 𝑔𝑔𝑘𝑘 based on a one-vs-rest 

classifier
• Define 𝑔𝑔 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥 , … , 𝑝̂𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥 as follows

• Let the predicted probability for class 𝑘𝑘 be 
𝑔𝑔𝑘𝑘 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥

∑𝑘𝑘′ 𝑔𝑔𝑘𝑘′ 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘′ 𝑥𝑥
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Multiclass Method 2: Softmax Temperature 
Tuning (Guo et al, 2017)

• Let ℓ = ℓ1, … , ℓ𝐾𝐾 be the logits of a DNN
• Scale the logits by dividing by a temperature 𝑇𝑇:

𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 =
exp ℓ𝑘𝑘𝑇𝑇

∑𝑘𝑘′ exp ℓ𝑘𝑘′𝑇𝑇

= 𝜎𝜎𝑆𝑆𝑆𝑆 ℓ

• Adjust 𝑇𝑇 to fit the calibration data
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Multiclass Methods 3 and 4: Generalized Platt 
Scaling
• Matrix Scaling

• Learn a matrix 𝐖𝐖 and vector 𝐛𝐛 to fit 𝜎𝜎𝑆𝑆𝑆𝑆(𝐖𝐖ℓ + 𝐛𝐛) to a 1-hot encoding of 𝑦𝑦𝑖𝑖
• Vector Scaling

• Matrix scaling with 𝐖𝐖 = diag(𝐰𝐰)
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Experiments 1: Niculescu-Mizil & Caruana 
(2005)

• Insights
• Max-margin methods push 𝑝̂𝑝 toward 0.5
• Naïve Bayes pushes 𝑝̂𝑝 toward 1.0
• Calibration flattens out this distribution
• Max-margin methods are fit well by logistic regression (Platt scaling), which 

also needs relatively little data
• Isotonic Regression works well with Naïve Bayes but usually requires more 

calibration data
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Boosted Trees

33



Boosted Trees after Platt Calibration
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Boosted Trees after Isotonic Regression 
Calibration

35



10 Different Learning Algorithms 
(on SLAC dataset)

36

Platt PlattIsotonic IsotonicPlatt histogram Platt histogram

𝑝̂𝑝 concentrated 
in the middle

Already well-
calibrated



37

Platt Isotonic Platt histogram

Sigmoid is not 
a good model 

for NB



How big does the calibration set need to be?

38

Platt: 500; Isotonic: 8000? Platt: 500; Isotonic: 4000 



Experiments 2: Guo, Pleiss, Sun & Weinberger

39

ResNet is much 
more confident

ResNet over-
confident!



What are the causes of bad calibration?

40
Note: ECE = mean absolute calibration error  ∑𝑏𝑏

𝐵𝐵𝑏𝑏
𝑁𝑁

�𝑃𝑃 𝐵𝐵𝑏𝑏 − 𝑝̂𝑝 𝐵𝐵𝑏𝑏



Comparison on Multiple Tasks and 
Architectures
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Comparison against other methods
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Insights and Questions

• The simple Temperature Calibration model works well and works 
better than more complex generalizations of Platt Scaling

• Temperature Calibration can be derived as the solution to a maximum 
entropy optimization problem

• Maximize entropy of �𝑃𝑃 subject to (a) �𝑃𝑃 is a probability and (b) the sum of true 
class logits == mean value of all logits weighted by �𝑃𝑃

• Not clear why (b) makes sense

• Need to compare against Platt Scaling each class separately and then 
normalizing
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Experiment 3: Naeini & Cooper (ENIR, 2018)

• 40 UCI and LibSVM benchmark 
datasets

• Classifiers: Naïve Bayes, Logistic 
Regression, SVM

• Hyperparameters tuned via 10x10-
fold cross-validation

• Calibration Algorithms:
• Isotonic Regression (IsoRegC)
• BBQ: Bayesian Quantile Binning 

(ensemble of quantile bin models)
• ENIR: Ensemble of Near Isotonic 

Regressions

• Calibration reuses the training data
• No comparison against Platt scaling 

or other model-based approaches
• Metrics:

• AUC = area under ROC curve
• ACC = accuracy 
• RMSE = square root of the Calibration 

score
• ECE = expected absolute calibration 

error
• MCE = maximum absolute calibration 

error
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Percentage Change using ENIR

45

Naïve Bayes & 
LR ACC always 

improves

Calibration 
Metrics always 

improve

Accuracy improvements probably result from better thresholding



Insights and Questions

• Using a regularized version of Isotonic Regression (ENIR) does not 
improve accuracy or AUC compared to regular Isotonic Regression

• But it does improve measures of calibration

• The main advantage of regularizing should be to reduce the amount 
of calibration data that is needed, but the authors did not study this 
question
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Summary of Miscalibration Behaviors
Based on these Papers

• Max Margin Methods (SVM, boosted trees):
• 𝑝̂𝑝 concentrates near 0.5
• Sigmoid-shaped Reliability Diagram
• Platt (logistic regression) model fits well, learns quickly

• Naïve Bayes and Deep Nets
• 𝑝̂𝑝 concentrates near 0 and 1; systematically optimistic
• Sigmoid model fits NB poorly; Isotonic regression is better
• Temperature Calibration worked better for Deep Nets

• Random Forests, Bagging, MLPs
• Naturally well-calibrated except at extreme probabilities

• We have counter-examples for random forests
• Sigmoid model fits poorly
• Need lots of calibration data to obtain any improvements
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Open Questions for Calibration

• Do we care equally about all parts of the 𝑝̂𝑝 space?
• For high-confidence predictions

• We only care about large values of 𝑝̂𝑝
• For anomaly detection

• We only care about very small values of 𝑝̂𝑝
• For stock market trading

• We care about values of 𝑝̂𝑝 = 0.5 + 𝜖𝜖

• To estimate 𝑃𝑃(𝑦𝑦|𝑥𝑥), we use a combined neighborhood 𝜂𝜂 over 𝒳𝒳 ×
𝒴𝒴?

• Can we address the causes of miscalibration?
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