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Rejection

e Given:

* Training data (x4, v1), ..., (XN, YN)
e Target accuracy level 1 — €

* Learn a classifier f and a rejection rule r

* At run time
* Given query x,
* If r(x4) < 0, REJECT
* Else classify f(xq)

Training

Examples
(%0, ¥i)
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r(xq) <0

no
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Basic Theory

* Suppose f*(x,y) = P(y|x) is the optimal
probabilistic classifier

* Best predictionis y = argmax f*(x,y)
y
* Then the optimal rejection rule is to REJECT if
fflx,y) <1-—¢€
* (Chow 1970)
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Two Paths Forward

e Path 1:

* Calibrate the predicted probabilities of the classifier
* Apply Chow’s result

e Path 2:

* Directly learn a rejection function r(xq)

* Vapnik’s principle: “When solving a problem of interest, do not solve a
more general problem as an intermediate step.”



Non-Optimal Case

* Suppose the probabilities output by f are
not optimal. We can still determine a
threshold with performance guarantees

* Let (f (x, ¥, 1[P; = y;]) be a set of
calibration data pointsi =1, ..., N

* Sort them by p(¥;|x;) = f(x;, Vi)

* Choose the smallest threshold 7 such that if _

f(x;,9;) > 7 then the fraction of correct 0%
predictionsis1 — €

* Theorem: If N > n—lzloggthen w.p. 1 — 0,
the true error rate will be bounded by 1 —

(e + 1)

t P, x)



Finite Sample (PAC) Proof

P (\/ﬁ sup|ﬁn(x) — F(x)| > /1) < 2 exp(—24?%) Massart (1990)
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Related Work

* Geifman & El Yaniv (2017)

* Develop confidence scores
based on either the softmax
(“SR”) or Monte Carlo dropout
(“MC-dropout”)

* Binary search for the threshold

 Use an exact Binomial
confidence interval instead of
Massart’s bound

* Union bound over the binary
search queries
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Cost-Sensitive Rejection
| ados

e Cost Matrix Probabilities Predict 1 Predict 2 Reject
e Optimal Classifier P(y = 1|x) 0 C12 C1r
* Forp(y = 1|x) = 14, predict 1 P(y = 2|x) €21 0 Car

* Forp(y = 2|x) = 1,, predict 2
e Else REJECT

* Search all pairs (74, T,) to minimize
expected cost

 Pietraszek (2005) provides a fast
algorithm based on (a) isotonic NOtE If wcla have calibrz:]ted pr'obaltzjliti'ets, web
regression and (b) Computing the could easily compute the optimal decision, but

our goal is to avoid calibration
slopes on the ROC curve ©
corresponding to 71 and 7,



Cost-Sensitive One-vs-Rest Classifiers
(Charoenphakdee, Cui, Zhang, Sugiyama, ICML 2021)

* Rescale costs to [0,1] and assume
] € Costs | Adons
constant cost of rejection

Probabilities Predict 1 Predict2 Predict3 Reject

c <05
P(y = 1|x) 0 1 1 C
* For each class k learn a cost- iy = 2) 1 0 1 c
sensitive binary classifier P(y = 3]x) n 1 0 c

* Predict1ifP(y =k|x) >1—c
* Else Predict 0
* Reject if
 All classifiers predict O
* More than one classifier predicts 1

 We can choose a threshold to
achieve P(y = k|x) =1—-c¢




Support Vector Machines

* Jointly learn the classifier f and the
rejection function r

 Method 1: Double Hinge Loss (DHL)

* Herbei & Wegkamp, 2006, Bartlett &
Wegkamp, 2008

 Method 2: CHR Loss
* Cortes, DeSalvo & Mohri, 2016

* Extend SVM Methodology
* Define the loss function £

e Derive a convex upper bound on the
loss ¢

* Apply convex optimization to minimize
this upper bound

yf(x)




CHR Convex Upper Bound

Cortes, DeSalvo & Mohri, 2016

* Lyy(r, f,x,y) = max (1 +%(r(x) — yf(x)),c (1 — 7

Rejection Loss L(h,r,z,y) Surrogate Loss L,y

1

—2C

r(x)) , O)
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Comparison of SVM Methods

* Rejection cost ¢ = 0.25
* Method

* Fit CHR loss and measure fraction
rejected

* Tune DHL to reject the same
number of points

* Measure total loss

* CHR is strictly superior to
double-hinge loss

Misclassification Loss
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Deep Learning for Image Classitication:
SelectiveNet

* Geifman & El Yaniv (2019)

* Minimize the error on the non-rejected images subject
to a constraint on the coverage (fraction of images not
rejected)

* User must specify c, the target coverage, rather than ¢,
the target error rate

. Network has three “heads”

* f and h are both classification heads trained with cross-
entropy loss X Backbone

* 1 isthe rejection classifier

* hencourages the backbone to learn a latent
representation that can classify all of the examples

* Loss function:
« aly+ (1 —a)Ly +A([c— p()]4)?

. ,(/.)Zfsclassmcatlon loss on training examples for which r(x) <
» L, classification loss on all training examples

Eb(r) fraction of tralnlng examples for which r(x) < 0.5;
i.e., not rejected)
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Results:

* SR: use max P(y = k|x) as the 100
competence signal ”

90
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e SelectiveNet: Use 1 as the
rejection rule
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* Using only the training data, the
coverage achieved on the test
set does not match the target o

e SelectiveNet is closer -
e Solution: Use a calibration set to 50
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Results: CIFAR10

 Selective Risk = error rate
on the test images that are
classified (not rejected)

* Coverage = fraction of test
images that are not
rejected

Selective risk (%)
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Results: Dogs vs Cats

3.5 m SelectiveNet
e SR

 Selective Risk = error rate
on the test images that are 3.0
classified (not rejected)
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CIFAR-10 Visualization of Learned Representation
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SelectiveNet does not try to
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that will be rejected
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Discussion

* Jointly learning a classifier and a rejection function gives better
results than learning a classifier and thresholding the class
probabilities

* The classifier focuses attention on separating the instances that will
not be rejected, and therefore learns a different latent representation

* Geifman & El Yaniv did not compare against calibrated class
probabilities, but post-hoc calibration would not have any effect on
the learned representation



Reject Option Summary

* Basic thresholding is easy and gives PAC guarantees
 2-class thresholding with differential costs is easy

» K-class thresholding with constant rejection cost is easy

* K-class thresholding with differential costs: open problem

e Jointly training classifier and rejection function
 Good solution for SVMs
e |nitial methods for DNNs



Prediction Sets

* Given:
* Training data [[z4, ..., Zz,,_1]] where z; = (x;, y;)
* Classifier f trained on the training data
* Query x,
* Accuracy level 6
* Find:
* Smallest set C(xq) c {1,..,K}suchthaty, € C(xq) with probability 1 — §



Conformal Prediction

e Conformal Prediction is a general method for obtaining prediction intervals
with coverage guarantees. See Vovk, Gammerman, & Shafer (2005)

* Nonconformity measure A,: 2"~ ! X Z — R indicates how different the
last item is from the first n — 1 items

* Method:

* For each class k, let z\ = (x4, k)

* Vi a{‘ = A([[zl, iy Zi— 1y Zj11s s z,’;f]], Zi) “how different is z; from the rest of the z values if
we label x, as class k?

* Let p* = fraction of [af, ..., ak| that are = ak. “how many points are stranger than zX?”
. C(xq) = {k|pk > 6} “include every class label that we can’t reject with p < §”
e Output C(xq)

* Theorem: With probability 1 — 9§, C(xq) contains the correct class



Conformal Prediction

* Red points
* xgprovisionally labeled by class k

* measure non-conformity score aél‘ of
the query

* measure fraction of data points p* with

non-conformity score greater than aé‘

* if p¥ < §, then we can reject the null
hypothesis that k € C(xq)

* In this case, we can reject k = 1, but
we mustinclude k = 2and k = 3

* C(xq) =1{2,3}
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Examples of Nonconformity Measures

e Conditional probability method:
* Train a probabilistic classifier f on[[zq, ..., Z;_1, Zj 41, ) Zn]
 Then compute
A2, w121, Zig1, - Z0) ) = —log f(2) = —log p(y = k|x,)

* Nearest neighbor nonconformity
« A(B,z) =

distance to nearest z'€B in same class

distance to nearest z’€B in different class



Additional Information

* In addition to outputting C(xq), we can output
* Jq = argmax p* (the best prediction)
* Pqg = max p* (the p-value of the best prediction)
e 1-— kfg%q p* (the “confidence”. We have more confidence if the second-best
p-value is small)



Batch (“inductive”) Conformal Prediction

Divide data into training set and validate set

Train f on the training data

Let [[z4, ..., z, ]| be the validation data

Let a4, ..., a;,; be the non-conformity scores of the validation data
o a; = Az, ) Zi—1, Zj4 1) ey Zn ), Z;)

Given query X,
e Fork=1,.. K
* Let Zc’f = (xg, k)
¢ letak = A([zy, ...,Zn]],Z(I;)
* Let p* = fraction of [ay, ..., @y, ak] that are > af

« C(xg) = {k|p* = &}

Key difference: Zg does not affect the other non-conformity scores



Almost Equivalent to Learning a Threshold

* Let T = the § quantile of [aq, ..., a,]

* Given query x4
e Fork=1,..,K
* Letzgs = (x4, k)
e let aé‘ = A([[Zl, ...,Zn]],Zg)

+ C(xq) = {k|ag = 7]

k

* Additional difference: 7 is computed without considering a

* If nis large enough, this does not matter



Experimental Results

Satellite | Shuttle | Segment
Hidden Units 23 12 11
Hidden Learning Rate 0.002 0.002 0.002
Output Learning Rate 0.001 0.001 0.001
Momentum Rate 0.1 0 0.1

* Non-conformity Measures

e Resubstitution:

* Train f on all data

* Lety; = f(x;)

° A([[Zl, vy Zi—1,Zj, ...,ZN]], (xi; k)) — H[j;l — k]
* Leave One Out:

* Train f on [[zy, ..., Zi_1, Zj, -, ZN]

* Lety; = f(x;)

. A([zl, iy Zi—1, Zjy ey ZN 1, (X4, k)) = [[y; = k]



Satellite Data Set

Nonconformity | Confidence | Only one More than No
Measure Level Label (%) one label (%) Label (%) Errors (%)
99 % 60.72 39.28 0.00 1.11
Resubstitution 95 % 84.42 15.58 0.00 4.67
90 % 96.16 3.02 0.82 9.59
99 % 61.69 38.31 0.00 1.10
Leave one out 95 % 85.70 14.30 0.00 4.86
90 % 96.11 3.10 0.79 9.43

Table 3. Results of the second mode of the Neural Networks ICP for the Satellite data set.
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Shuttle Data Set

Nonconformity | Confidence | Only one More than No
Measure Level Label (%) one label (%) Label (%) Errors (%)
99 % 99.23 0.00 0.77 0.77
Resubstitution 95 % 93.52 0.00 6.48 6.48
90 % 89.08 0.00 10.92 10.92
99 % 99.30 0.00 0.70 0.70
Leave one out 95 % 93.86 0.00 6.14 6.14
90 % 88.72 0.00 11.28 11.28

Table 4. Results of the second mode of the Neural Networks ICP for the Shuttle data set.




Segmentation Data Set

Nonconformity | Confidence Only one More than No
Measure Level Label (%) one label (%) Label (%) Errors (%)
99 % 90.69 9.31 0.00 0.95
Resubstitution 95 % 97.71 1.25 1.04 3.68
90 % 94.68 0.00 5.32 6.71
99 % 91.73 8.27 0.00 1.04
Leave one out 95 % 97.79 1.21 1.00 3.55
90 % 94.76 0.00 5.24 6.67

Table 5. Results of the second mode of the Neural Networks ICP for the Segment data set.




Pendigits + Random Forest

(Dietterich, unpublished)

* Train a random forest on half of UCI Training Set

* Use the predicted class probability P(y = k|x) as the
(non)conformity score

 Compute 7 values using other half of Training Set
e Compute C on the Test Set



Cumulative Distribution Function for Class “9”

Empirical CDF [.10))
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Pendigits Results

e All T values were O (for e = 0.001) 03 e
* Probability y € C(x) = 0.9997 N
* Abstention rate = 0.72 )
o2 M
* Sizes of prediction sets C: 5 018
,,'a': 0.15 oo B
g 0.12
2 011 0.1
c';é I e M I B
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Simple Thresholding of ml?xﬁ(y = k|x)
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/oomed In: 7 = 0.87 ford = 0.05
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Test Set Results

* Probability of correct classification: 0.9987

* Rejection rate: 33.4%
e [Conformal prediction was 72%]



Another Use Case: Vocabulary Reduction

* US Postal Service Address Reading Task
* (Madhvanath, Kleinberg, Govindaraju, 1997)

* Two classifiers
 Method 1: Fast but not always accurate

* Method 2: Slower but more accurate
* Can only afford to run on 1/3 of envelopes
e Faster if it can be focused on a subset of the classes

* Apply conformal prediction using Method 1

* Eliminate as many classes as possible
e Apply Method 2if |C(x)| > 1



Summary

* Rejection
* Method 1: Threshold f with single or multiple thresholds
e Multiple thresholds requires a change in the SVM methodology
 Method 2: Learn a separate rejection function and threshold it
* Method 3: Conformal: Use thresholding to construct a confidence set
* Rejectif |C(xq)| *1
e Can perform “vocabulary reduction”

* In my experience, Conformal Prediction is not good for Rejection, but more
experiments are needed



Citations

Bartlett, P., Wegkamp, M. (2008). Classification with a reject option using a hinge loss. JIMLR, 2008.
Chow (1970). On optimum recognition error and reject trade-off. IEEE Transactions on Computing.

Cortes, C., DeSalvo, G., & Mohri, M. (2016). Learning with rejection. Lecture Notes in Artificial Intelligence,
9925 LNAI, 67-82. http://doi.org/10.1007/978-3-319-46379-7 5

Geifman, Y., El-Yaniv, R. (2017) Selective Classification for Deep Neural Networks. NIPS 2017. arXiv:
1705.08500

Geifman, Y., & El-Yaniv, R. (2019). SelectiveNet: A deep neural network with an integrated reject option. 36th
International Conference on Machine Learning, ICML 2019, 2019-June, 3768-3776.

Herbei, R., Wegkamp, M. (2005). Classification with reject option. Canadian Journal of Statistics.

Madhvanath, S., Kleinberg, E., Govindaraju, V. (1997). Empirical Design of a Multi-Classifier
Thresholding/Control Strategy for Recognition of Handwritten Street Names. International Journal of Pattern
Recognition and Artificial Intelligence, 11(6):933-946. https://doi.org/10.1142/5S0218001497000421

Papadopoulos, H. (2008). Inductive Conformal Prediction: Theory and Application to Neural Networks. Book
chapter.

https://www.researchgate.net/publication/221787122 Inductive Conformal Prediction Theory and Appli
cation to Neural Networks

Pietraszek, T. (2005). Optimizing abstaining classifiers using ROC analysis. In ICML, 2005

Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9,
371-421. Retrieved from http://arxiv.org/abs/0706.3188

Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic Learning in a Random World. Springer.

39


http://doi.org/10.1007/978-3-319-46379-7_5
https://doi.org/10.1142/S0218001497000421
https://www.researchgate.net/publication/221787122_Inductive_Conformal_Prediction_Theory_and_Application_to_Neural_Networks
http://arxiv.org/abs/0706.3188

	Machine Learning Methods for Robust Artificial Intelligence�Part 2: Rejection
	Rejection
	Basic Theory
	Two Paths Forward
	Non-Optimal Case
	Finite Sample (PAC) Proof
	Related Work
	Cost-Sensitive Rejection
	Cost-Sensitive One-vs-Rest Classifiers�(Charoenphakdee, Cui, Zhang, Sugiyama, ICML 2021)
	Support Vector Machines
	CHR Convex Upper Bound�Cortes, DeSalvo & Mohri, 2016
	Comparison of SVM Methods
	Deep Learning for Image Classification: SelectiveNet
	Results: 
	Results: CIFAR10
	Results: Dogs vs Cats
	CIFAR-10 Visualization of Learned Representation
	Discussion
	Reject Option Summary
	Prediction Sets
	Conformal Prediction 
	Conformal Prediction
	Examples of Nonconformity Measures
	Additional Information
	Batch (“inductive”) Conformal Prediction
	Almost Equivalent to Learning a Threshold
	Experimental Results
	Satellite Data Set
	Shuttle Data Set
	Segmentation Data Set
	Pendigits + Random Forest�(Dietterich, unpublished)
	Cumulative Distribution Function for Class “9”
	Pendigits Results
	Simple Thresholding of   max 𝑘   𝑝  𝑦=𝑘 𝑥  
	Zoomed In: 𝜏=0.87 for 𝛿=0.05
	Test Set Results
	Another Use Case: Vocabulary Reduction
	Summary
	Citations

