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Rejection

• Given:
• Training data 𝑥𝑥1,𝑦𝑦1 , … , (𝑥𝑥𝑁𝑁,𝑦𝑦𝑁𝑁)
• Target accuracy level 1 − 𝜖𝜖
• Learn a classifier 𝑓𝑓 and a rejection rule 𝑟𝑟

• At run time
• Given query 𝑥𝑥𝑞𝑞
• If 𝑟𝑟 𝑥𝑥𝑞𝑞 ≤ 0, REJECT
• Else classify 𝑓𝑓 𝑥𝑥𝑞𝑞
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yes reject



Basic Theory

• Suppose 𝑓𝑓∗ 𝑥𝑥,𝑦𝑦 = 𝑃𝑃(𝑦𝑦|𝑥𝑥) is the optimal 
probabilistic classifier

• Best prediction is �𝑦𝑦 = arg max
𝑦𝑦

𝑓𝑓∗(𝑥𝑥,𝑦𝑦)

• Then the optimal rejection rule is to REJECT if 
𝑓𝑓∗ 𝑥𝑥, �𝑦𝑦 < 1 − 𝜖𝜖

• (Chow 1970)
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Two Paths Forward

• Path 1: 
• Calibrate the predicted probabilities of the classifier
• Apply Chow’s result

• Path 2:
• Directly learn a rejection function 𝑟𝑟 𝑥𝑥𝑞𝑞

• Vapnik’s principle: “When solving a problem of interest, do not solve a 
more general problem as an intermediate step.”
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Non-Optimal Case
• Suppose the probabilities output by 𝑓𝑓 are 

not optimal. We can still determine a 
threshold with performance guarantees

• Let 𝑓𝑓 𝑥𝑥𝑖𝑖 , �𝑦𝑦𝑖𝑖 , 𝕀𝕀 �𝑦𝑦𝑖𝑖 = 𝑦𝑦𝑖𝑖 be a set of 
calibration data points 𝑖𝑖 = 1, … ,𝑁𝑁

• Sort them by 𝑝̂𝑝 �𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖 , �𝑦𝑦𝑖𝑖
• Choose the smallest threshold 𝜏𝜏 such that if 
𝑓𝑓 𝑥𝑥𝑖𝑖 , �𝑦𝑦𝑖𝑖 > 𝜏𝜏 then the fraction of correct 
predictions is 1 − 𝜖𝜖

• Theorem: If 𝑁𝑁 > 1
𝜂𝜂2

log 2
𝛿𝛿

then w.p. 1 − 𝛿𝛿, 
the true error rate will be bounded by 1 −
𝜖𝜖 + 𝜂𝜂
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Finite Sample (PAC) Proof

• 𝑃𝑃 𝑛𝑛 sup
𝑥𝑥

�𝐹𝐹𝑛𝑛 𝑥𝑥 − 𝐹𝐹 𝑥𝑥 > 𝜆𝜆 ≤ 2 exp −2𝜆𝜆2 Massart (1990)

• Set 𝑥𝑥 ≔ 𝜏𝜏

• 𝑃𝑃 𝜂𝜂 > 𝜆𝜆
𝑛𝑛

= 2 exp −2𝜆𝜆2

• Set 𝜆𝜆
𝑛𝑛

= 𝜂𝜂 and 𝛿𝛿 = 2 exp −2𝜆𝜆2 ; solve for 𝑛𝑛

• 𝜆𝜆 = 𝜂𝜂 𝑛𝑛

• 𝛿𝛿 = 2 exp −2𝜂𝜂2𝑛𝑛

• log 𝛿𝛿
2

= −𝜂𝜂2𝑛𝑛

• 𝑛𝑛 = 1
𝜂𝜂2

log 2
𝛿𝛿

• If 𝑛𝑛 > 1
𝜂𝜂2

log 2
𝛿𝛿

then w.p. 1 − 𝛿𝛿, the true error rate will be bounded by 1 − 𝜖𝜖 + 𝜂𝜂
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Related Work

• Geifman & El Yaniv (2017)
• Develop confidence scores 

based on either the softmax
(“SR”) or Monte Carlo dropout 
(“MC-dropout”)

• Binary search for the threshold
• Use an exact Binomial 

confidence interval instead of 
Massart’s bound

• Union bound over the binary 
search queries
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Cost-Sensitive Rejection

• Cost Matrix
• Optimal Classifier

• For 𝑝̂𝑝 𝑦𝑦 = 1 𝑥𝑥 ≥ 𝜏𝜏1, predict 1
• For 𝑝̂𝑝 𝑦𝑦 = 2 𝑥𝑥 ≥ 𝜏𝜏2, predict 2
• Else REJECT

• Search all pairs 𝜏𝜏1, 𝜏𝜏2 to minimize 
expected cost

• Pietraszek (2005) provides a fast 
algorithm based on (a) isotonic 
regression and (b) computing the 
slopes on the ROC curve 
corresponding to 𝜏𝜏1 and 𝜏𝜏2
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Actions

Probabilities Predict 1 Predict 2 Reject

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) 0 𝑐𝑐12 𝑐𝑐1𝑟𝑟
𝑃𝑃(𝑦𝑦 = 2|𝑥𝑥) 𝑐𝑐21 0 𝑐𝑐2𝑟𝑟

Note: If we have calibrated probabilities, we 
could easily compute the optimal decision, but 
our goal is to avoid calibration



Cost-Sensitive One-vs-Rest Classifiers
(Charoenphakdee, Cui, Zhang, Sugiyama, ICML 2021)

• Rescale costs to [0,1] and assume 
constant cost of rejection

𝑐𝑐 < 0.5
• For each class 𝑘𝑘 learn a cost-

sensitive binary classifier
• Predict 1 if 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 > 1 − 𝑐𝑐
• Else Predict 0

• Reject if
• All classifiers predict 0
• More than one classifier predicts 1

• We can choose a threshold to 
achieve 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 = 1 − 𝑐𝑐
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Costs Actions

Probabilities Predict 1 Predict 2 Predict 3 Reject

𝑃𝑃(𝑦𝑦 = 1|𝑥𝑥) 0 1 1 𝑐𝑐

𝑃𝑃(𝑦𝑦 = 2|𝑥𝑥) 1 0 1 𝑐𝑐

𝑃𝑃 𝑦𝑦 = 3 𝑥𝑥 1 1 0 𝑐𝑐



Support Vector Machines
• Jointly learn the classifier 𝑓𝑓 and the 

rejection function 𝑟𝑟
• Method 1: Double Hinge Loss (DHL)

• Herbei & Wegkamp, 2006; Bartlett & 
Wegkamp, 2008

• Method 2: CHR Loss
• Cortes, DeSalvo & Mohri, 2016

• Extend SVM Methodology
• Define the loss function ℓ
• Derive a convex upper bound on the 

loss 𝜙𝜙
• Apply convex optimization to minimize 

this upper bound
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CHR Convex Upper Bound
Cortes, DeSalvo & Mohri, 2016

• 𝐿𝐿𝑀𝑀𝑀𝑀 𝑟𝑟, 𝑓𝑓, 𝑥𝑥,𝑦𝑦 = max 1 + 1
2
𝑟𝑟 𝑥𝑥 − 𝑦𝑦𝑦𝑦 𝑥𝑥 , 𝑐𝑐 1 − 1

1−2𝑐𝑐
𝑟𝑟 𝑥𝑥 , 0
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Comparison of SVM Methods

• Rejection cost 𝑐𝑐 = 0.25
• Method

• Fit CHR loss and measure fraction 
rejected

• Tune DHL to reject the same
number of points

• Measure total loss

• CHR is strictly superior to 
double-hinge loss
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Deep Learning for Image Classification: 
SelectiveNet
• Geifman & El Yaniv (2019)

• Minimize the error on the non-rejected images subject 
to a constraint on the coverage (fraction of images not 
rejected)

• User must specify 𝑐𝑐, the target coverage, rather than 𝜖𝜖, 
the target error rate

• Network has three “heads”
• 𝑓𝑓 and ℎ are both classification heads trained with cross-

entropy loss
• 𝑟𝑟 is the rejection classifier
• ℎ encourages the backbone to learn a latent 

representation that can classify all of the examples
• Loss function:

• 𝛼𝛼ℒ𝑓𝑓 + 1 − 𝛼𝛼 ℒℎ + 𝜆𝜆 𝑐𝑐 − 𝜙𝜙 𝑟𝑟 +
2

• ℒ𝑓𝑓 classification loss on training examples for which 𝑟𝑟 𝑥𝑥 <
0.5

• ℒℎ classification loss on all training examples
• 𝜙𝜙(𝑟𝑟): fraction of training examples for which 𝑟𝑟 𝑥𝑥 < 0.5; 

(i.e., not rejected)
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Results: 
• SR: use max

𝑘𝑘
𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 as the 

competence signal 
• SelectiveNet: Use 𝑟𝑟 as the 

rejection rule
• Using only the training data, the 

coverage achieved on the test 
set does not match the target

• SelectiveNet is closer
• Solution: Use a calibration set to 

select a threshold 𝜏𝜏 and reject if 
𝑟𝑟 𝑥𝑥 > 𝜏𝜏
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Results: CIFAR10

• Selective Risk = error rate 
on the test images that are 
classified (not rejected)

• Coverage = fraction of test 
images that are not 
rejected
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Results: Dogs vs Cats

• Selective Risk = error rate 
on the test images that are 
classified (not rejected)

• Coverage = fraction of test 
images that are not 
rejected
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CIFAR-10 Visualization of Learned Representation
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SelectiveNet does not try to 
discriminate among images 

that will be rejected

Softmax tries to separate 
all of the classes (of 

course)



Discussion

• Jointly learning a classifier and a rejection function gives better 
results than learning a classifier and thresholding the class 
probabilities

• The classifier focuses attention on separating the instances that will 
not be rejected, and therefore learns a different latent representation

• Geifman & El Yaniv did not compare against calibrated class 
probabilities, but post-hoc calibration would not have any effect on 
the learned representation
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Reject Option Summary

• Basic thresholding is easy and gives PAC guarantees
• 2-class thresholding with differential costs is easy
• 𝐾𝐾-class thresholding with constant rejection cost is easy
• 𝐾𝐾-class thresholding with differential costs: open problem
• Jointly training classifier and rejection function

• Good solution for SVMs
• Initial methods for DNNs
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Prediction Sets
• Given:

• Training data 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛−1 where 𝑧𝑧𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖
• Classifier 𝑓𝑓 trained on the training data
• Query 𝑥𝑥𝑞𝑞
• Accuracy level 𝛿𝛿

• Find:
• Smallest set 𝐶𝐶 𝑥𝑥𝑞𝑞 ⊆ 1, … ,𝐾𝐾 such that 𝑦𝑦𝑞𝑞 ∈ 𝐶𝐶 𝑥𝑥𝑞𝑞 with probability 1 − 𝛿𝛿
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Conformal Prediction 
• Conformal Prediction is a general method for obtaining prediction intervals 

with coverage guarantees. See Vovk, Gammerman, & Shafer (2005)
• Nonconformity measure 𝐴𝐴𝑛𝑛:𝒵𝒵𝑛𝑛−1 × 𝒵𝒵 ↦ ℝ indicates how different the 

last item is from the first 𝑛𝑛 − 1 items
• Method:

• For each class 𝑘𝑘, let 𝑧𝑧𝑛𝑛𝑘𝑘 = (𝑥𝑥𝑞𝑞 , 𝑘𝑘)
• ∀𝑖𝑖 𝛼𝛼𝑖𝑖𝑘𝑘 ≔ 𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖+1, … , 𝑧𝑧𝑛𝑛𝑘𝑘 , 𝑧𝑧𝑖𝑖 “how different is 𝑧𝑧𝑖𝑖 from the rest of the 𝑧𝑧 values if 

we label 𝑥𝑥𝑞𝑞 as class 𝑘𝑘?
• Let 𝑝𝑝𝑘𝑘 = fraction of 𝛼𝛼1𝑘𝑘 , … ,𝛼𝛼𝑛𝑛𝑘𝑘 that are ≥ 𝛼𝛼𝑛𝑛𝑘𝑘. “how many points are stranger than 𝑧𝑧𝑛𝑛𝑘𝑘?”

• 𝐶𝐶 𝑥𝑥𝑞𝑞 = 𝑘𝑘 𝑝𝑝𝑘𝑘 ≥ 𝛿𝛿 “include every class label that we can’t reject with 𝑝𝑝 < 𝛿𝛿”
• Output 𝐶𝐶 𝑥𝑥𝑞𝑞

• Theorem: With probability 1 − 𝛿𝛿, 𝐶𝐶 𝑥𝑥𝑞𝑞 contains the correct class
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Conformal Prediction

• Red points
• 𝑥𝑥𝑞𝑞provisionally labeled by class 𝑘𝑘
• measure non-conformity score 𝛼𝛼𝑞𝑞𝑘𝑘 of 

the query
• measure fraction of data points 𝑝𝑝𝑘𝑘 with 

non-conformity score greater than 𝛼𝛼𝑞𝑞𝑘𝑘
• if 𝑝𝑝𝑘𝑘 < 𝛿𝛿, then we can reject the null 

hypothesis that 𝑘𝑘 ∈ 𝐶𝐶 𝑥𝑥𝑞𝑞
• In this case, we can reject 𝑘𝑘 = 1, but 

we must include 𝑘𝑘 = 2 and 𝑘𝑘 = 3
• 𝐶𝐶 𝑥𝑥𝑞𝑞 = 2,3
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Examples of Nonconformity Measures

• Conditional probability method:
• Train a probabilistic classifier 𝑓𝑓 on 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖+1, … , 𝑧𝑧𝑛𝑛
• Then compute 
𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖+1, … , 𝑧𝑧𝑛𝑛 , 𝑧𝑧𝑖𝑖 = −log 𝑓𝑓 𝑧𝑧𝑖𝑖 = − log 𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞

• Nearest neighbor nonconformity
• 𝐴𝐴 𝐵𝐵, 𝑧𝑧 = distance to nearest 𝑧𝑧′∈𝐵𝐵 in same class

distance to nearest 𝑧𝑧′∈𝐵𝐵 in different class
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Additional Information

• In addition to outputting 𝐶𝐶 𝑥𝑥𝑞𝑞 , we can output
• �𝑦𝑦𝑞𝑞 = arg max

𝑘𝑘
𝑝𝑝𝑘𝑘 (the best prediction)

• 𝑝𝑝𝑞𝑞 = max
𝑘𝑘

𝑝𝑝𝑘𝑘 (the p-value of the best prediction)

• 1 − max
𝑘𝑘;𝑘𝑘≠ �𝑦𝑦𝑞𝑞

𝑝𝑝𝑘𝑘 (the “confidence”. We have more confidence if the second-best 

p-value is small)
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Batch (“inductive”) Conformal Prediction

• Divide data into training set and validate set
• Train 𝑓𝑓 on the training data
• Let 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 be the validation data
• Let 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛 be the non-conformity scores of the validation data

• 𝛼𝛼𝑖𝑖 ≔ 𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖+1, … , 𝑧𝑧𝑛𝑛 , 𝑧𝑧𝑖𝑖
• Given query 𝑥𝑥𝑞𝑞

• For 𝑘𝑘 = 1, … ,𝐾𝐾
• Let 𝑧𝑧𝑞𝑞𝑘𝑘 = (𝑥𝑥𝑞𝑞 ,𝑘𝑘)
• let 𝛼𝛼𝑞𝑞𝑘𝑘 = 𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 , 𝑧𝑧𝑞𝑞𝑘𝑘
• Let 𝑝𝑝𝑘𝑘 = fraction of 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛,𝛼𝛼𝑞𝑞𝑘𝑘 that are ≥ 𝛼𝛼𝑞𝑞𝑘𝑘

• 𝐶𝐶 𝑥𝑥𝑞𝑞 = 𝑘𝑘 𝑝𝑝𝑘𝑘 ≥ 𝛿𝛿

• Key difference: 𝑧𝑧𝑞𝑞𝑘𝑘 does not affect the other non-conformity scores
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Almost Equivalent to Learning a Threshold

• Let 𝜏𝜏 = the 𝛿𝛿 quantile of 𝛼𝛼1, … ,𝛼𝛼𝑛𝑛
• Given query 𝑥𝑥𝑞𝑞

• For 𝑘𝑘 = 1, … ,𝐾𝐾
• Let 𝑧𝑧𝑞𝑞𝑘𝑘 = (𝑥𝑥𝑞𝑞, 𝑘𝑘)
• let 𝛼𝛼𝑞𝑞𝑘𝑘 = 𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 , 𝑧𝑧𝑞𝑞𝑘𝑘

• 𝐶𝐶 𝑥𝑥𝑞𝑞 = 𝑘𝑘 𝛼𝛼𝑞𝑞𝑘𝑘 ≥ 𝜏𝜏

• Additional difference: 𝜏𝜏 is computed without considering 𝛼𝛼𝑞𝑞𝑘𝑘

• If 𝑛𝑛 is large enough, this does not matter
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Experimental Results

• Non-conformity Measures
• Resubstitution:

• Train 𝑓𝑓 on all data
• Let �𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖
• 𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖 , … , 𝑧𝑧𝑁𝑁 , 𝑥𝑥𝑖𝑖 ,𝑘𝑘 = 𝕀𝕀 �𝑦𝑦𝑖𝑖 = 𝑘𝑘

• Leave One Out:
• Train 𝑓𝑓 on 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖 , … , 𝑧𝑧𝑁𝑁
• Let �𝑦𝑦𝑖𝑖 = 𝑓𝑓 𝑥𝑥𝑖𝑖
• 𝐴𝐴 𝑧𝑧1, … , 𝑧𝑧𝑖𝑖−1, 𝑧𝑧𝑖𝑖 , … , 𝑧𝑧𝑁𝑁 , 𝑥𝑥𝑖𝑖 ,𝑘𝑘 = 𝕀𝕀 �𝑦𝑦𝑖𝑖 = 𝑘𝑘

27



Satellite Data Set

28

Resubstitution

Leave one out

Error:
𝑦𝑦𝑖𝑖 ∉ 𝐶𝐶 𝑥𝑥𝑖𝑖



Shuttle Data Set
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Resubstitution

Leave one out



Segmentation Data Set
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Pendigits + Random Forest
(Dietterich, unpublished)

• Train a random forest on half of UCI Training Set
• Use the predicted class probability 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 as the 

(non)conformity score
• Compute 𝜏𝜏 values using other half of Training Set
• Compute 𝐶𝐶 on the Test Set
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Cumulative Distribution Function for Class “9”
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Pendigits Results

• All 𝜏𝜏 values were 0 (for 𝜖𝜖 = 0.001)
• Probability 𝑦𝑦 ∈ C 𝑥𝑥 = 0.9997
• Abstention rate = 0.72
• Sizes of prediction sets C:
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Simple Thresholding of max
𝑘𝑘

𝑝̂𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥
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Zoomed In: 𝜏𝜏 = 0.87 for 𝛿𝛿 = 0.05
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Test Set Results

• Probability of correct classification: 0.9987
• Rejection rate: 33.4%

• [Conformal prediction was 72%]
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Another Use Case: Vocabulary Reduction

• US Postal Service Address Reading Task
• (Madhvanath, Kleinberg, Govindaraju, 1997)

• Two classifiers
• Method 1: Fast but not always accurate
• Method 2: Slower but more accurate

• Can only afford to run on 1/3 of envelopes
• Faster if it can be focused on a subset of the classes

• Apply conformal prediction using Method 1
• Eliminate as many classes as possible
• Apply Method 2 if 𝐶𝐶 𝑥𝑥 > 1
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Summary

• Rejection
• Method 1: Threshold 𝑓𝑓 with single or multiple thresholds

• Multiple thresholds requires a change in the SVM methodology
• Method 2: Learn a separate rejection function and threshold it
• Method 3: Conformal: Use thresholding to construct a confidence set

• Reject if 𝐶𝐶 𝑥𝑥𝑞𝑞 ≠ 1
• Can perform “vocabulary reduction”

• In my experience, Conformal Prediction is not good for Rejection, but more 
experiments are needed
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