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Outline
TAHMO Project
Sensor Network Quality Control
Rule-based methods
Probabilistic methods
SENSOR-DX approach
Neighbor Regression for Precipitation
 Improved anomaly detection
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TAHMO: Motivation
Africa is very poorly sensed
 Only a few weather stations reliably report 

data to WMO (blue points in map)
 Poor sensing No crop insurance Low 

agricultural productivity

TAHMO Goal:
 Make Africa the best-sensed continent & 

improve agriculture
 Self-sustaining non-profit company
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Do we need ground stations?
 Scatterplot of precipitation 

estimate from satellite (NASA 
GPM) versus TAHMO station at 
South Tetu Girls High School
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TAHMO = 0; 
GPM > 0

TAHMO > 0; 
GPM = 0

TAHMO  very big; 
GPM small
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Business Plan
Negotiate Memoranda of Understanding (MOUs) with each country in 
Sub-Saharan Africa
Raise funds (gifts and grants) to develop and deploy weather stations
Operating funds provided by selling the data
Free access for
 The meteorological agency in each country
 Education
 Research

Eager to collaborate with startups to create new businesses based on 
weather data
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Memoranda of Understanding (MoUs)
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Finances
Deployment cost
20,000 stations x $2000 per station  = $40M
Operating cost
$600/stations/year = $12M
Weather data market
Estimate $40,000M/year

Status: >500 stations deployed
Funding from USAID, UN, EU, IBM
School2School program
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Technology
Weather Stations
Automated Quality Control
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Generation 1 Weather Station
cables
3 moving parts
5 components
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Generation 3 station
No moving parts
No cables
Two components
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Generation 3 Features
Solar power
 6-month reserve battery
GSM/GPRS radio
GPS & Compass
 Temperature (3 ways)
Relative Humidity
Accelerometer
Sonic wind
Drip-count rain
Shortwave solar radiation
Barometer
 Lightning detector
 5 open sensor ports: soil moisture etc.
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Station Placement and Security
General strategy: Place stations at schools
 Teacher monitors the station and clean it regularly
 Use the station as an educational resource
 TAHMO provides educational materials and lesson plans
 Students can download data and analyze it

School2School Program
 Schools in US and Canada can purchase two stations
 One for their school
 One for a school in Africa
 Students learn about their partner school starting with the weather

12DSA Kampala 2020



Current Status
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Uganda and Kenya  (Lake Victoria Region)
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Quality Control
Weather Sensors Fail
Solar radiation sensor gets dirty
Wind sensors (anemometers) get dirty or blocked
Rain gauge becomes obstructed
Novel failures occur often
Battery Failure
Poor cellular telephone connectivity

15DSA Kampala 2020



Ant Infestation
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Wasps in the Anemometer
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Quality Control Pipeline

DSA Kampala 2020 18

Gen3 Raw database Controlled 
database

Trouble 
Tickets

SENSOR-DX
network 
manager

field 
technician

customers

cellular data 
network

IBM Cloud

TAHMO
stations



Data Quality Control
 Goal: Identify all sensor values that

correspond to malfunctioning
sensors
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Existing Approaches to Quality Control
Manual Inspection (used at H J Andrews LTER)
Complex Quality Control (OK Mesonet)
Probabilistic Quality Control (Rawinsonde Network)

All of these require large amounts of expert time
TAHMO is much larger than these networks
TAHMO will be larger than the networks used by the US National 
Weather Service
We need a fully-automated QC method
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Existing Methods 1:
Complex Quality Control
Rule-based approach that raises an alarm if a rule is violated

Step test: 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡 < 𝜃𝜃1

Flatline test: # of consecutive steps where 𝑥𝑥𝑡𝑡+1 = 𝑥𝑥𝑡𝑡 must be < 𝜃𝜃2

Buddy test: 𝑥𝑥𝑡𝑡 − 𝑦𝑦𝑡𝑡 < 𝜃𝜃3 for two identical sensors 𝑥𝑥 and 𝑦𝑦

etc.

21DSA Kampala 2020



Complex Quality Control
Problems:
No unifying principles
Considers each variable separately
Hard to maintain

Advantages:
Practical
Easily extended by adding new rules
Does not require a model of the signals
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Probabilistic Quality Control
Define 𝑠𝑠𝑡𝑡 to be the state of the sensor at time 𝑡𝑡
𝑠𝑠𝑡𝑡 ∈ {0,1} where 0 = OK and 1 = Broken

𝑃𝑃(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡 = 0) is the “normal” probability density 
for the sensor
𝑃𝑃(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡 = 1) is the “broken” probability density 

for the sensor
𝑃𝑃(𝑠𝑠𝑡𝑡) is the prior over sensor states
Query: 

𝑃𝑃 𝑠𝑠𝑡𝑡 𝑥𝑥𝑡𝑡 =
𝑃𝑃 𝑠𝑠𝑡𝑡 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑠𝑠𝑡𝑡

𝑃𝑃 𝑥𝑥𝑡𝑡
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Challenge: 
Modeling the Broken distribution
Modeling 𝑃𝑃(𝑥𝑥|𝑠𝑠 = 0)
Lots of data; virtually all data points are from this case
However, the distribution may still be complex

Modeling 𝑃𝑃(𝑥𝑥|𝑠𝑠 = 1) is very difficult
Bad sensor values are rare, so little data
Sensors break in novel ways, so hard to predict the sensor readings
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Hack: “Junk Bucket” Distribution
Assume 𝑃𝑃(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡 = 1) is the uniform 
distribution
This is equivalent to setting a 
threshold on 𝑃𝑃 𝑥𝑥𝑡𝑡 𝑠𝑠𝑡𝑡 = 0
Hard to do this well
Hard to model multiple sensors
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Our Idea: 
Apply Anomaly Detection Methods
Suppose we could assign an anomaly score 𝐴𝐴(𝑥𝑥𝑡𝑡) to each observation 
𝑥𝑥𝑡𝑡
Scores near 0 are “normal”
Scores > 0.5 are “anomalous”
Learn a probabilistic model of the anomaly scores instead of the raw 
signals

𝑃𝑃 𝐴𝐴 𝑥𝑥𝑡𝑡 𝑠𝑠𝑡𝑡
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Basic Configuration
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𝑠𝑠𝑡𝑡

𝐴𝐴 𝑋𝑋𝑡𝑡

Observe 𝑋𝑋𝑡𝑡
Compute 𝐴𝐴(𝑋𝑋𝑡𝑡)
Compute arg max

𝑠𝑠𝑡𝑡
𝑃𝑃 𝑠𝑠𝑡𝑡 𝑃𝑃 𝐴𝐴 𝑋𝑋𝑡𝑡 𝑠𝑠𝑡𝑡
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Probabilistic Graphical Models
Graph
Each node is a random variable
Each edge denotes a probabilistic 

dependence
 If a node 𝑥𝑥 has no incoming edges, 

then its distribution is 𝑃𝑃 𝑥𝑥
 If a node 𝑦𝑦 has incoming edges 

from 𝑥𝑥, 𝑟𝑟, then its distribution is 
𝑃𝑃(𝑦𝑦|𝑥𝑥, 𝑟𝑟)

Joint probability distribution is 
the product of the distributions in 
each node
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𝑥𝑥

𝑦𝑦

𝑟𝑟

𝑃𝑃(𝑥𝑥) 𝑃𝑃(𝑟𝑟)

𝑃𝑃(𝑦𝑦|𝑥𝑥, 𝑟𝑟)
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Queries
Observe some variables
Compute the probability of one 
or more remaining variables
𝑃𝑃 𝑥𝑥 𝑦𝑦 = 𝑃𝑃 𝑥𝑥,𝑦𝑦

𝑃𝑃 𝑦𝑦

Inference
𝑃𝑃 𝑥𝑥,𝑦𝑦 = ∑𝑟𝑟 𝑃𝑃 𝑟𝑟 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦|𝑥𝑥, 𝑟𝑟)
𝑃𝑃 𝑦𝑦 = ∑𝑟𝑟 ∑𝑥𝑥 𝑃𝑃 𝑟𝑟 𝑃𝑃 𝑥𝑥 𝑃𝑃 𝑦𝑦 𝑥𝑥, 𝑟𝑟

𝑃𝑃 𝑦𝑦 𝑥𝑥 = ∑𝑟𝑟 𝑃𝑃 𝑟𝑟 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦|𝑥𝑥,𝑟𝑟)
∑𝑟𝑟 ∑𝑥𝑥 𝑃𝑃 𝑟𝑟 𝑃𝑃 𝑥𝑥 𝑃𝑃(𝑦𝑦|𝑥𝑥,𝑟𝑟)

Simplify algebraically
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𝑃𝑃(𝑦𝑦|𝑥𝑥, 𝑟𝑟)
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MAP Query
MAP query
𝑥𝑥∗ = arg max

𝑥𝑥
𝑃𝑃 𝑥𝑥 𝑦𝑦 = 0

Shaded nodes are “observed”
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𝑦𝑦

𝑟𝑟
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Cool Things We Can Do:
Model Persistence of Sensor State
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𝑠𝑠𝑡𝑡

𝐴𝐴 𝑋𝑋𝑡𝑡

𝑠𝑠𝑡𝑡+1

𝐴𝐴 𝑋𝑋𝑡𝑡+1

𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 encodes persistence of sensor state

• Sensors that are working usually continue working

• Sensors that are broken usually stay broken (until 
cleaned/repaired)
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Cool Things We Can Do #2:
Model the Joint Distribution of Sensors

Example: Temperature and 
Relative Humidity are strongly 
(negatively) correlated

July 2009
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Joint Anomaly Detection
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𝑠𝑠𝑡𝑡
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡,𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡

𝑠𝑠𝑡𝑡+1
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑡𝑡+1𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐴𝐴 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡+1,𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑡𝑡+1
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Cool Things We Can Do #3:
Incorporate Technician Visits

34

𝑠𝑠𝑡𝑡

𝐴𝐴 𝑋𝑋𝑡𝑡

𝑠𝑠𝑡𝑡+1

𝐴𝐴 𝑋𝑋𝑡𝑡+1

Let 𝑟𝑟 𝑡𝑡 = 1 if technician visited station at time 𝑡𝑡

Technician can repair – or break – sensors 

DSA Kampala 2020

𝑟𝑟𝑡𝑡



SENSOR-DX:
Multiple View Approach
Define many “views” of the data
Compute anomaly scores in each view
Perform probabilistic inference to determine the most likely state of 
each sensor at each time step

35DSA Kampala 2020



Four View Types
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Single variable & 
a single station 

Single variable 
across multiple 
stations 

Multiple  
variables over 
single station 

Single variable over 
multiple time points 

𝑠𝑠𝑖𝑖1(𝑡𝑡)

𝐴𝐴(𝑉𝑉𝑡𝑡𝑎𝑎)

si1(t)

𝐴𝐴(𝑉𝑉𝑡𝑡𝑎𝑎)

si2(t) si1(t)

𝐴𝐴(𝑉𝑉𝑡𝑡𝑎𝑎)

sj1(t)

𝐴𝐴(𝑉𝑉𝑡𝑡𝑎𝑎)

s1
𝑗𝑗

(𝑡𝑡 + 1) s1
𝑗𝑗

(𝑡𝑡 + 2)s1
𝑗𝑗

(𝑡𝑡)
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Designing good views on a single weather station

37
Sensor variable correlations

 TAIR:  Air temperature
 RELH: Relative humidity
 SRAD: Solar radiation
 PRES: Pressure

WVEC: Wind Speed (vector 
average)
WSPD: Wind Speed
WS2M: Wind Speed @ 2m
WMAX: Max wind speed
WSSD: Stdev wind speed
WDIR: Wind Direction
 TA9M: Air temperature @9m
WDSD: Stdev wind direction
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Correlation of sensor readings across space

Designing good views across multiple weather stations
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Consider a single station at time 𝑡𝑡
Let 𝑖𝑖 index the sensors at the station
Let 𝑗𝑗 index the views and 𝑣𝑣𝑗𝑗 𝑡𝑡 be the view tuples involving time 𝑡𝑡

𝑃𝑃 𝑆𝑆(𝑡𝑡)|𝐴𝐴 𝑣𝑣 , 𝑟𝑟(𝑡𝑡)

= �
𝑖𝑖

𝑃𝑃 𝑠𝑠𝑡𝑡𝑖𝑖 𝑠𝑠𝑡𝑡−1𝑖𝑖 , 𝑟𝑟𝑡𝑡 𝑃𝑃 𝑠𝑠𝑡𝑡−1𝑖𝑖 �
𝑗𝑗

𝑃𝑃 𝐴𝐴 𝑣𝑣𝑗𝑗 𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑣𝑣𝑗𝑗 (𝑡𝑡)

Joint Probability Distribution
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Spontaneous state changes
State changes caused by repair visits

Extent to which the sensor states
explain the observed anomaly scores
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Anomaly Detection
Collect data for 2019
Divide the year into blocks of 20 days
 Jan 1  Jan 20; Jan 21 Feb 10; Feb 11 Mar 2; etc.
Compute features from the observations in each hour
 mean, variance, max, min, median
Fit an Isolation Forest to the data points for each view in each block
Scoring 2020
Use the isolation forest from the corresponding 20-day period
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Fitting the Conditional Probability Model

𝑃𝑃 𝐴𝐴 𝑣𝑣 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁)
 There are 2𝑁𝑁 configurations!

Reducing the number of parent 
configurations 
 Let 𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠1, … , 𝑠𝑠𝑁𝑁) = “number of broken sensors”
Model the anomaly score as a function of the 

number of broken sensors

𝑃𝑃 𝐴𝐴 𝑣𝑣 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁) ≈ 𝑃𝑃 𝐴𝐴 𝑣𝑣 𝑛𝑛𝑛𝑛𝑛𝑛(𝑠𝑠1, … , 𝑠𝑠𝑁𝑁) = 𝑖𝑖)

Only 𝑁𝑁 + 1 configurations!
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Generating Training Data for Broken Sensors

To fit 𝑃𝑃(𝐴𝐴(𝑣𝑣)|𝑛𝑛𝑛𝑛𝑛𝑛), we need training 
data for broken sensors
There is not enough real data
Engineering solution:
 Insert simulated faults into the data
 Compute anomaly scores
 Fit Gaussian distribution to the scores

DSA Kampala 2020 42

Flatline

Bias

Spike
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Examples of Fitted 𝑃𝑃 𝐴𝐴 𝑣𝑣 𝑛𝑛𝑛𝑛𝑛𝑛 𝑠𝑠1, … , 𝑠𝑠𝑁𝑁

Relative Humidity

May be able to improve 
performance by fitting a non-
Gaussian distribution
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Run Time Quality Control
Assemble incoming data into view tuples
Compute anomaly score for each view tuple
Perform probabilistic inference to determine which sensor states best 
explain the observed anomaly scores:

arg max
𝑆𝑆

𝑃𝑃 𝑆𝑆 𝐴𝐴 𝑉𝑉
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Inferring the Sensor States
Ideal MAP inference 

𝑆𝑆∗ = arg max
𝑆𝑆

𝑃𝑃(𝑆𝑆1:𝑇𝑇
𝑠𝑠 = 𝑆𝑆| 𝐴𝐴 𝑉𝑉1:𝑇𝑇

𝑣𝑣 )

Exact inference is intractable: 𝑁𝑁 sensors and 𝑇𝑇 timesteps 
requires scoring 2𝑁𝑁𝑁𝑁 configurations
To overcome this, we introduce two approximations
SearchMAP [Dereszynski 2012]  for computing the MAP assignment
Filter-and-Commit (FAC) for incremental MAP inference
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SearchMAP 𝑠𝑠𝑡𝑡 = 0, 0, 0
Score: -8.03

𝑠𝑠𝑡𝑡 = 0, 1, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−7.53

𝑠𝑠𝑡𝑡 = 0, 0, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.3𝒔𝒔𝒕𝒕 = 𝟏𝟏,𝟎𝟎,𝟎𝟎

S𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:−𝟒𝟒.𝟏𝟏𝟏𝟏

47

Greedy algorithm 
Flip sensor states until no single flip increases the likelihood
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𝑠𝑠𝑡𝑡 = 0, 0, 0
Score: -8.03

𝑠𝑠𝑡𝑡 = 0, 1, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−7.53

𝑠𝑠𝑡𝑡 = 0, 0, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.3

𝑠𝑠𝑡𝑡 = 1, 0, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−4.10

𝑠𝑠𝑡𝑡 = 1, 1, 0

S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.53
𝒔𝒔𝒕𝒕 = 𝟏𝟏 𝟎𝟎,𝟏𝟏

S𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:−𝟐𝟐.𝟒𝟒𝟒𝟒

SearchMAP
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𝑠𝑠𝑡𝑡 = 0, 0, 0
Score: -8.03

𝑠𝑠𝑡𝑡 = 0, 1, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−7.53

𝑠𝑠𝑡𝑡 = 0, 0, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.3

𝑠𝑠𝑡𝑡 = 1, 0, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−4.10

𝑠𝑠𝑡𝑡 = 1, 1, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.53

𝒔𝒔𝒕𝒕 = 𝟏𝟏,𝟎𝟎,𝟏𝟏
S𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:−𝟐𝟐.𝟒𝟒𝟒𝟒

𝑠𝑠𝑡𝑡 = 0, 0, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.3

𝑠𝑠𝑡𝑡 = 1, 1, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−3.7

SearchMAP
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𝑠𝑠𝑡𝑡 = 0, 0, 0
Score: -8.03

𝑠𝑠𝑡𝑡 = 0, 1, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−7.53

𝑠𝑠𝑡𝑡 = 0, 0, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.3

𝑠𝑠𝑡𝑡 = 1, 0, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−4.10

𝑠𝑠𝑡𝑡 = 1, 1, 0
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.53

𝒔𝒔𝒕𝒕 = 𝟏𝟏,𝟎𝟎,𝟏𝟏
S𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄:−𝟐𝟐.𝟒𝟒𝟒𝟒

𝑠𝑠𝑡𝑡 = 0, 0, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−5.3

𝑠𝑠𝑡𝑡 = 1, 1, 1
S𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐:−3.7

SearchMAP
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

51

Filter-and-Commit (FAC)

TAIR

RELH

Temperature

Relative Hum

Temp &
RELH
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Observation time: 2 Focus time: 0        Commit time: 0
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3 𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Observation time: 3 Focus time: 1          Commit time: 1
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𝑠𝑠1 3

𝑠𝑠2(2) 𝑠𝑠2 3
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Observation time: 4 Focus Time: 2       Commit time: 2
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Observation time: 5 Focus Time: 3       Commit time: 3
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𝑠𝑠1(2)

𝐴𝐴 𝑣𝑣1(0: 2)

𝑠𝑠1(1)𝑠𝑠1(0)

𝐴𝐴 𝑣𝑣1 1: 3

𝑠𝑠1 3

𝐴𝐴 𝑣𝑣1(2: 4)

𝑠𝑠1(4)

𝑠𝑠2(2)𝑠𝑠2(1)𝑠𝑠2(0) 𝑠𝑠2 3 𝑠𝑠2(4)

𝐴𝐴 𝑣𝑣2(0: 2) 𝐴𝐴 𝑣𝑣2 1: 3 𝐴𝐴 𝑣𝑣2(2: 4)

𝐴𝐴 𝑣𝑣3(0) 𝐴𝐴 𝑣𝑣3(1) 𝐴𝐴 𝑣𝑣3(2) 𝐴𝐴 𝑣𝑣3(3) 𝐴𝐴 𝑣𝑣3(4)

𝑠𝑠1(5)

𝐴𝐴 𝑣𝑣1(3: 5)

𝐴𝐴 𝑣𝑣3(5)

𝑠𝑠2(5)

𝐴𝐴 𝑣𝑣2(3: 5)

Temperature

Relative Hum

Temp &
RelH

𝑧𝑧1(2)𝑧𝑧1(1)𝑧𝑧1(0) 𝑧𝑧1 3 𝑧𝑧1(4) 𝑧𝑧1(5)
Controlling 
False Alarms vs. 
Missed Alarms
Introduce two parameters:
• 𝑃𝑃 𝑧𝑧1 𝑡𝑡 = 0 𝑠𝑠1 = 𝑜𝑜𝑜𝑜 = 𝜋𝜋𝑜𝑜𝑜𝑜
• 𝑃𝑃 𝑧𝑧1 𝑡𝑡 = 0 𝑠𝑠1 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝜋𝜋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

The difference determines the relative 
penalty/bonus for assigning 𝑠𝑠1 = 𝑜𝑜𝑜𝑜 vs 
𝑠𝑠1 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

Example 𝑠𝑠1 2 :
𝑧𝑧1 2 = 0 is always “observed”
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Experimental Evaluation: Experiment Design
Data: Oklahoma Mesonet
4 stations:
 OKCE, OKCN, OKCW, NRMN
2 years  
5 minute reporting interval
Hourly sensor state
Sensors:  
 TAIR, RELH, SRAD, PRES

Baseline:
Single sensor view based 

detection
Metrics:
Precision and recall

57DSA Kampala 2020



Synthetic Fault Insertion 
Fault types:
Flatline
Spike
Bias
Fault proportion: 
 [1

2
, 1
3

, 1
6
]

58

Flatline

Bias

Spike

DSA Kampala 2020



Result: Sensor-DX improves precision

59

Difference in precision of multi-view method versus single-view baseline

95% two-sided paired 
differences bootstrap 
confidence intervals
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Precision at Matching Recall Level

60

Pr
ec

is
io

n

95% confidence 
intervals

Sensor-DX 
improves 
precision, but the 
false alarm rate 
will still be quite 
high
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Precision-recall of 𝜋𝜋𝑜𝑜𝑜𝑜 & 𝜋𝜋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 tradeoff

PRES (atmospheric 
pressure) is best
SRAD (solar radiation) is 
much worse than the 
others
We believe that by 

incorporating theoretical 
max SRAD we can greatly 
improve this in future work

61

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

Pr
ec

is
io

n TAIR

SRAD

PRES

RELH

𝜋𝜋𝑜𝑜𝑜𝑜 < 𝜋𝜋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝜋𝜋𝑜𝑜𝑜𝑜 > 𝜋𝜋𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
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Next Steps
Improved probability model for 𝑃𝑃 𝐴𝐴 𝑣𝑣 𝑛𝑛𝑛𝑛𝑛𝑛
Improved anomaly detection models based on Neighbor Regression
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Dealing with Non-Stationarity

Weather data is non-stationary
24-hour cycle (“diel”)
365-day cycle (“annual”)
storm system: irregular 2-5 days
Three approaches:
Model and remove the cycles
Blocking
Use neighboring stations that 

experience the same cycles

DSA Kampala 2020 63day of year

hour of day



Neighbor Regression for Precipitation

Precipitation is most important 
variable:
Sub-Saharan 95%,  Latin America 

90% & 65% of South East Asia relies 
on rainfed Agriculture [Wani et al., 
2009]

Anomaly detection for 
precipitation is very difficult
Rainfall is zero on most days
Rainfall can be large
Very non-Gaussian
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Problem setting
Notation
 Let 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛 a network of weather stations 
 Let 𝑅𝑅 𝑠𝑠, 𝑡𝑡 rainfall measured at station 𝑠𝑠 at time  
𝑡𝑡
 𝑟𝑟𝜂𝜂(𝑠𝑠)(𝑡𝑡) denote vector of rainfall at time 𝑡𝑡 for 𝑘𝑘

neighboring stations

Goal: 
 Detect rain gauge blockage at station 𝑠𝑠

Approach:
 Define a set 𝜂𝜂(𝑠𝑠) of 𝑘𝑘 stations similar to 𝑠𝑠
 Fit a model 𝑓𝑓 to predict 𝑅𝑅(𝑠𝑠, 𝑡𝑡) given 𝑟𝑟𝜂𝜂(𝑠𝑠) 𝑡𝑡
 Compare prediction to observation
 𝜌𝜌 = 𝑦𝑦 − �𝑦𝑦 “residual”
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Single station unconditional mixture model

𝑃𝑃(𝑅𝑅 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟 )

(1 − 𝑝𝑝1)𝛿𝛿0 𝑝𝑝1𝒩𝒩(log 𝑟𝑟 , 𝜇𝜇,𝜎𝜎2)

𝑟𝑟 > 0𝑟𝑟 = 0

𝑃𝑃 𝑅𝑅 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟 = 1 − 𝑝𝑝1 𝛿𝛿0 𝑟𝑟 + 𝑝𝑝1𝑁𝑁(log 𝑟𝑟 ; 𝜇𝜇,𝜎𝜎2)

𝛿𝛿0

𝑝𝑝1 = probability of rainy day 𝑅𝑅 𝑠𝑠, 𝑡𝑡 > 0

𝒩𝒩(log 𝑟𝑟 , 𝜇𝜇,𝜎𝜎2)
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Condition on the Neighboring Stations 𝜂𝜂
𝑟𝑟𝜂𝜂 𝑡𝑡 : observations from neighboring stations at time 𝑡𝑡

 𝑃𝑃 𝑅𝑅 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟 𝑟𝑟𝜂𝜂(𝑡𝑡)) =

�
1 − 𝑝𝑝1 𝑟𝑟𝜂𝜂(𝑡𝑡);𝛼𝛼 𝛿𝛿0 𝑟𝑟 = 0

𝑝𝑝1 𝑟𝑟𝜂𝜂(𝑡𝑡);𝛼𝛼 𝑁𝑁 log 𝑟𝑟 ;𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 log 𝑟𝑟𝜂𝜂 𝑡𝑡 + 𝜖𝜖 ,𝜎𝜎2 𝑟𝑟 > 0

where: 
𝑝𝑝1 𝑟𝑟𝜂𝜂(𝑡𝑡);𝛼𝛼 : logistic regression model with weight vector 𝛼𝛼
𝛽𝛽0,𝛽𝛽1𝑇𝑇 ,𝜎𝜎2: Are parameters of the log-norm regression with covariates of log 𝑟𝑟𝜂𝜂 𝑡𝑡 + 𝜖𝜖
 𝜖𝜖: small constant added to avoid log of zero
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Estimating parameters
Two-stage procedure [Min & Agresti, 2002]
To estimate 𝛼𝛼, fit the logistic regression to 𝑦𝑦 = 1 if 𝑟𝑟 > 0 else 𝑦𝑦 = 0

𝑃𝑃 𝑦𝑦 = 1 𝑟𝑟𝜂𝜂(𝑡𝑡);𝛼𝛼 = 1

1+𝑒𝑒− 𝛼𝛼0+𝛼𝛼⊤𝑟𝑟𝜂𝜂(𝑡𝑡)

To estimate parameters of lognorm 𝛽𝛽0,𝛽𝛽1𝑇𝑇 and 𝜎𝜎2
we restrict to case of 𝑅𝑅 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟(𝑠𝑠) > 0 and plug  𝑝̂𝑝1 𝑠𝑠, 𝑡𝑡 = 𝑃𝑃 𝑦𝑦 = 1 𝑟𝑟𝜂𝜂(𝑡𝑡);𝛼𝛼

𝑙𝑙 𝛽𝛽 = �
𝑡𝑡

𝑝̂𝑝1 𝑠𝑠, 𝑡𝑡 log 𝑟𝑟(𝑠𝑠) + 𝜖𝜖 − �
𝑠𝑠′∈𝜂𝜂 𝑠𝑠

𝛽𝛽𝑠𝑠′log 𝑟𝑟 𝑠𝑠′ − 𝛽𝛽0
2

Residual
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Two ways of computing anomaly score
Method 1: score using p-value of mixture model
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.𝐶𝐶𝐶𝐶𝐶𝐶 𝑦𝑦 = − log[ min 𝐹𝐹 𝜌𝜌 𝑦𝑦 , 1 − 𝐹𝐹 𝜌𝜌 𝑦𝑦 ]
 𝜌𝜌 residual of neighbor regression model
 𝐹𝐹 𝑝𝑝 = 1 − 𝑝𝑝1 + 𝑝𝑝1Φ 𝜌𝜌, 0,𝜎𝜎2

1 − 𝑝𝑝1

1

0
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Method 2: Scoring based on NLL 

𝑃𝑃 𝑅𝑅 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟 𝑟𝑟𝜂𝜂 𝑡𝑡 = �min{ 1 − 𝑝𝑝1 𝛿𝛿0 ,𝑝𝑝1𝑓𝑓 𝜌𝜌,𝛽𝛽 𝑥𝑥)} 𝑦𝑦 = 0
𝑝𝑝1𝑓𝑓 𝜌𝜌,𝛽𝛽 𝑥𝑥) 𝑦𝑦 > 0

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀.𝑁𝑁𝑁𝑁𝑁𝑁 𝑟𝑟 = − log𝑃𝑃(𝑅𝑅 𝑠𝑠, 𝑡𝑡 = 𝑟𝑟|𝑟𝑟𝜂𝜂(𝑡𝑡))

 where 𝑓𝑓 𝜌𝜌,𝛽𝛽 𝑥𝑥) residual fitted to probability distribution
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Experimental Study

Data:
2 year of Oklahoma mesonet data
Synthetic faults inserted to simulate rain gauge blockage
Research questions:
RQ1: What is the best way of scoring anomaly?
RQ2: Which model is best?
Metrics:
Prec@80: precision at 80% recall (detect 80% of blocked gauges)
Average precision 
AUC 
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Comparison of scoring functions on 3 metrics

MNORM.CDF MNORM.NLL KDE.NLL RFR LRR QF
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MNORM.NLL is the best
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Status and Next Steps
Precipitation model has been deployed on the TAHMO network

Neighbor regression models for the other sensors
solar radiation
 temperature
 temperature and relative humidity (joint)
atmospheric pressure
wind speed and direction (joint)
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Summary
TAHMO is creating a weather station network of unprecedented size
QC must be automated as much as possible
Existing QC Methods
Rule-based (ad hoc)
Probabilistic (requires modeling the sensor values when the sensor is broken)
SENSOR-DX Approach
Define multiple views
Fit an anomaly detector to each view
Probabilistic QC by modeling the anomaly scores of broken sensors
Diagnostic reasoning to infer which sensors are broken
Out-performs baseline methods substantially
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Summary (2): Neighbor Regression
Predict sensor readings at station 𝑠𝑠 from a nearby stations 𝜂𝜂 𝑠𝑠
For Precipitation, we learn a mixture model
Logistic regression to predict the probability that 𝑅𝑅 𝑠𝑠, 𝑡𝑡 > 0: 𝑝𝑝1
Log-linear regression to predict the amount of precipitation 𝑅𝑅 𝑠𝑠, 𝑡𝑡 based on the 

amount at the neighbors
Anomaly score computed using log likelihood of the prediction error (residual)
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