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Outline

= TAHMO Project

=Sensor Network Quality Control
= Rule-based methods

= Probabilistic methods
= SENSOR-DX approach

=Neighbor Regression for Precipitation
= Improved anomaly detection
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TAHMO: Motivation

= Africa is very poorly sensed

= Only a few weather stations reliably report
data to WMO (blue points in map)

= Poor sensing =»No crop insurance =»Low
agricultural productivity

= TAHMO Goal:

= Make Africa the best-sensed continent &
improve agriculture

= Self-sustaining non-profit company
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TAHMO very big;
GPM small

Regression line fitted fasfears 2016-2017

Scatterplot of precipitation
estimate from satellite (NASA
GPM) versus TAHMO station at
South Tetu Girls High School

TAHMO > 0;

GPM =0 TAHMO = 0;

GPM >0
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Business Plan |-

*Negotiate Memoranda of Understanding (MOUs) with each country in
Sub-Saharan Africa

=Raise funds (gifts and grants) to develop and deploy weather stations

=Operating funds provided by selling the data

= Free access for
= The meteorological agency in each country
= Education
= Research

=Eager to collaborate with startups to create new businesses based on
weather data
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Memoranda of Understanding (MoUs)

MoU'’s Close to complete
Kenya g o

Ghana

Malawi

Benin

Togo

Mali

Burkina Faso

Uganda
Ethiopia
Tanzania
Nigeria
South Africa
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Finances

=Deployment cost
= 20,000 stations x $2000 per station = $40M

=Operating cost
= $600/stations/year = $12M

=\Weather data market
= Estimate $40,000M/year

=Status: >500 stations deployed
= Funding from USAID, UN, EU, IBM
= School2School program
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Technology

=\Weather Stations
= Automated Quality Control




Generation 1 Weather Station

=cables
=3 moving parts
=5 components
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Generation 3 station

=No moving parts
=No cables
= Two components
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Generation 3 Features

= Solar power

= 6-month reserve battery
= GSM/GPRS radio

= GPS & Compass

= Temperature (3 ways)

= Relative Humidity

= Accelerometer

= Sonic wind

= Drip-count rain

= Shortwave solar radiation
= Barometer

= Lightning detector

= 5 open sensor ports: soil moisture etc.
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Station Placement and Security

= General strategy: Place stations at schools
= Teacher monitors the station and clean it regularly

= Use the station as an educational resource
= TAHMO provides educational materials and lesson plans
= Students can download data and analyze it

= School2School Program

= Schools in US and Canada can purchase two stations
= One for their school
= One for a school in Africa
= Students learn about their partner school starting with the weather
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Current Status
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Uganda and Kenya

Kanyama

Butembo

Kindu

Burund

Rumonge

Kalemie

Shinyanga
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Quality Control

=\Weather Sensors Fail
= Solar radiation sensor gets dirty
= Wind sensors (anemometers) get dirty or blocked
= Rain gauge becomes obstructed
= Novel failures occur often
=Battery Failure
= Poor cellular telephone connectivity

DSA Kampala 2020 15



-
O
=
©
e
/p
()
(@
C
e
C
<



Wasps in the Anemometer
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Quality Control Pipeline
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Data Quality Control

10

= Goal: ldentify all sensor values that
correspond to malfunctioning
sensors
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Existing Approaches to Quality Control |

=Manual Inspection (used at H J Andrews LTER)
=Complex Quality Control (OK Mesonet)
= Probabilistic Quality Control (Rawinsonde Network)

= All of these require large amounts of expert time
= TAHMO is much larger than these networks

= TAHMO will be larger than the networks used by the US National
Weather Service

*We need a fully-automated QC method
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Existing Methods 1:
Complex Quality Control I-

*Rule-based approach that raises an alarm if a rule is violated
=Step test: x;.1 — x; < 64
= Flatline test: # of consecutive steps where x;,, = x; must be < 6,
= Buddy test: |x; — y;| < 65 for two identical sensors x and y

= etc.
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Complex Quality Control

*Problems:
= No unifying principles
= Considers each variable separately
= Hard to maintain

= Advantages:
= Practical
= Easily extended by adding new rules
= Does not require a model of the signals
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Probabilistic Quality Control

= Define s; to be the state of the sensor attime t _
s; € {0,1} where 0 = OK and 1 = Broken working

= P(x¢|s; = 0) is the “normal” probability density - -~
for the sensor

= P(x¢|s; = 1) is the “broken” probability density
for the sensor

= P(s;) Is the prior over sensor states

= Query:
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broken

P(s¢)P(x¢lst)
P(xt) Sensor value

P(s¢lxe) =
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Challenge:
Modeling the Broken distribution

*Modeling P(x|s = 0)
= |ots of data; virtually all data points are from this case
= However, the distribution may still be complex

=Modeling P(x|s = 1) is very difficult

= Bad sensor values are rare, so little data
= Sensors break in novel ways, so hard to predict the sensor readings
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Hack: “Junk Bucket” Distribution

=Assume P(x;|s; = 1) is the uniform |
dIStrIbUthn working

=This is equivalent to setting a
threshold on P(x;|s; = 0)

=Hard to do this well
=Hard to model multiple sensors

Probability Density

Sensor value

DSA Kampala 2020 25



Our ldea:
Apply Anomaly Detection Methods I-

=Suppose we could assign an anomaly score A(x;) to each observation
Xt
= Scores near 0 are “normal’
= Scores > 0.5 are “anomalous”

=l_earn a probabilistic model of the anomaly scores instead of the raw
signals

P(A(x¢)|s¢)
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Basic Configuration

Observe X;

Compute A(X;)

Compute arg max P(s;)P(A(X;)|sy)
t

0



Probabilistic Graphical Models |

P(x) P(r)

=Graph
= Each node is a random variable '

= Each edge denotes a probabilistic
dependence

= [f a node x has no incoming edges,
then its distribution is P(x)

* |f a node y has incoming edges
from x, r, then its distribution is

' P(ylx,7)
P(ylx, 1)

= Joint probability distribution is

the product of the distributions in P(r,x,y) = PGOP(P(ylx, 1) Vx,y,7

each node
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Queries

=Observe some variables
= Compute the probability of one
or more remaining variables

P(x,
"P(xly) = 522

=|nference
“P(x,y) = %y P(r)P(x)P(y|x,7)
“P(y) =2 2x P(r)P(x)P(ylx,7)

) _ B PPGOPyIxT)
PO =5 S PP POIen

= Simplify algebraically
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P(x) P(r)

‘ P(ylx,r)

P(r,x,y) = P(x)P(r)P(ylx,r) Vx,y,r
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MAP Query
*MAP query

"x* =argmax P(x|y = 0)
X

= Shaded nodes are “observed”

P(r,x,y) = P(x)P(r)P(y|x,r) Vx,y,r




Cool Things We Can Do:
Model Persistence of Sensor State

‘ - , P(s;+11s¢) encodes persistence of sensor state

« Sensors that are working usually continue working

« Sensors that are broken usually stay broken (until
cleaned/repaired)




Example: Temperature and
Relative Humidity are strongly
(negatively) correlated

July 2009

G
v
Q
Q
1=
[+1s}
Y

z
Q
L =1
=1
e
E
Q
Q
£

ﬁ

=

<

8]
i

W

WEBR (Oklahoma)

50 60 70
Relative Humidity (%)

KV



Joint Anomaly Detection
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Cool Things We Can Do #3:
Incorporate Technician Visits I-

Let r(t) = 1 if technician visited station at time ¢

Technician can repair — or break — sensors

St St+1

A(X) A(Xt41)
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SENSOR-DX:
Multiple View Approach I-

=Define many “views” of the data
=Compute anomaly scores in each view

= Perform probabilistic inference to determine the most likely state of
each sensor at each time step
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Four View Types

\ 4

Single variable & Single variable Multiple Single variable over
a single station across multiple variables over multiple time points
stations single station
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Designing good views on a single weather station

= TAIR: Air temperature e
- RELH: Relative humidity e
. . WS2M Correlation
= SRAD: Solar radiation |
WMAX -1.0 05 00 05 -
= PRES: Pressure
WSSD
= WVEC: Wind Speed (vector o I =
average) TAGM .—0.16 014 004 -001 -003 -0.0
n VVSPD W|nd Speed TAIR .. 016 018 008 003 001
= WSZM W|nd Speed @ 2m SRAD . 041 038 005 03 02 3 025
= \WMAX: Max W|nd Speed WDSD . 035 033 03 0.8 O. 23 047 042
™ WSSD Stdev wind Speed RAIN . 0 001 006 006 -0.09 03 005 005 005
= \WDIR: W|nd D|rect|on RELH . 02 -025-049 -023 -022 -0.15 -0. _ 31 -029 -0.28

= TAOM: Air temperature @9m PRES 007 008 -019 0 |-045|-045 006 -027 021 -0.16 —-0.15 —0.14
= WDSD: Stdev wind direction

& & & S F L E

FFEE s

RO

Sensor variable correlations
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Correlation of TAIR
Correlation of RELH

75 100 125 150 175 200 75
Distance (KM} from target station

100 125 150 175 200
Distance (KM) from target station

(a) TAIR sensor (b) RELH sensor

Correlation of SRAD
Correlation of PRES

T T T T T T T
75 100 125 150 175 200 75
Distance (KM} from target station

T T T T T
100 125 150 175 200
Distance (KM} from target station

(c) SRAD sensor (d) PRES sensor
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Joint Probability Distribution

Consider a single station at time ¢t
Let i Index the sensors at the station

Let j index the views and v/ (t) be the view tuples involving time t

P(S(t)|Aw), r(t))
HP(St‘st 1,rt)P(st 1)1_[P vf(t) ‘parents(vl (t)))

|
Spontaneous state changes Extent to which the sensor states
State changes caused by repair visits explain the observed anomaly scores
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Anomaly Detection

=Collect data for 2019

= Divide the year into blocks of 20 days
= Jan 1 -2 Jan 20; Jan 21> Feb 10; Feb 112> Mar 2; etc.

= Compute features from the observations in each hour
= mean, variance, max, min, median

= Fit an Isolation Forest to the data points for each view in each block

=Scoring 2020

= Use the isolation forest from the corresponding 20-day period
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Fitting the Conditional Probability Model |

*P(A(v)| s%, ..., s™)
= There are 2V configurations!

* Reducing the number of parent
configurations
= Let nbs(s?, ..., s™) = “number of broken sensors”

= Model the anomaly score as a function of the
number of broken sensors

P(A(W)| st ..., sM) = P(A(Ww)|nbs(st, ..., sN) =)

= Only N + 1 configurations!

DSA Kampala 2020 41



To fit P(A(v)|nbs), we need training
data for broken sensors

There is not enough real data

Engineering solution:
Insert simulated faults into the data
Compute anomaly scores
Fit Gaussian distribution to the scores

E)—

1000 1500 2000 2500 3000
Intervals
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Examples of Fitted P(A(v)|nbs(s?, ..., s™)) |

# of broken sensors
0
1

0.450 0.475 0.500 0.525 0.550 0.575 0.600 0.625
Anomaly score of view: (['RELH'])

Relative Humidity

May be able to improve
performance by fitting a non-
Gaussian distribution
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# of broken sensors
0
1

0.50 0.55 0.60
Anomaly score of view: [(['TAIR"]}

(a) Single sensor and single station view, |S| =1

# of broken sensors
0
1
2

0.50 0.55 0.60 0.65
Anomaly score of view: [(['TAIR"]}

{e) Multi-station sensor view, |S| = 2

# of broken sensors
1

0
2
3

0.50 0.55 0.60
Anomaly score of view: [["TAIR'])

(b) Single variable over temporal scale view, |S| =1

# of broken sensors
0
2
1

o - T T T T
0.450 0.475 0500 0.525 0550 0575 0600 0625 0,650
Anomaly score of view: ([ TAIR', "RELH']}

{d) Multi-sensor single station view, with |5 = 2



Run Time Quality Control |

= Assemble incoming data into view tuples
=Compute anomaly score for each view tuple

= Perform probabillistic inference to determine which sensor states best
explain the observed anomaly scores:

arg max P(S|A(V))
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Inferring the Sensor States

=|deal MAP inference
S§* = arg mSaX P(Si.r =S| A(VLr))

=Exact inference is intractable: N sensors and T timesteps
requires scoring 2! configurations

=To overcome this, we introduce two approximations
= SearchMAP [Dereszynski 2012] for computing the MAP assignment
= Filter-and-Commit (FAC) for incremental MAP inference
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SearchMAP

st ={0,0,0}
Score: -8.03

st ={1,0,0}

st ={0,1,0} st ={0,0,1}
Score: —7.53 Score: —5.3

Score: —4.10

Greedy algorithm
Flip sensor states until no single flip increases the likelihood
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SearchMAP

st ={0,0,0}
Score: -8.03

st ={0,1,0} st ={0,0,1}
Score: —7.53 Score: —5.3

st ={10,1}
Score: -2.41
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SearchMAP

st ={0,0,0}
Score: -8.03

st ={0,1,0} st ={0,0,1}
Score: —7.53 Score: —5.3

st ={1,1,0} st ={1,0,1}
Score: —5.53 Score: -2.41

st ={0,0,1}
Score: —5.3
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SearchMAP

st ={0,0,0}
Score: -8.03

st ={0,1,0} st ={0,0,1}
Score: —7.53 Score: —5.3

st ={1,1,0} st ={1,0,1}
Score: —5.53 Score: -2.41

MAP
configuration

st ={0,0,1}

Score: —5.3
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Filter-and-Commit (FAC)

Temperature




Focus time: 0 Commit time: O

Observation time: 2




Commit time: 1

Focus time: 1

Observation time: 3




Observation time: 4 Focus Time: 2 Commit time:; 2

A(v1(2:4))

=

51(5)

A(v3(4)) @(5))
s2(5)

A(v2(2:4))




Observation time: 5 Focus Time: 3 Commit time: 3

A(v1(2:4)) BA(V1(3:5))

A(v2(2:4)) A(v2(3:5))




Controlling
False Alarms vs.
Missed Alarms

Introduce two parameters:
* P(z,(t) = 0|sy = ok) = myy
* P(z,(t) = 0|sy = broken) = Tproken

The difference determines the relative
penalty/bonus for assigning s; = ok vs
s1 = broken

Example s, (2):
z,(2) = 0 is always “observed”

20 o @ ©“6) &w &

Temperature  A(v;(0:2)) A(v1(1:3)) A(v1(2:4)) A(v41(3:5))
NN\
$1(0)—=5:(1)— —15:(3)—>15:(4)—5:(5)

T&l bbb L

Reln | AWs(0) Avs(1)) A(vs(2)) A(vs(3)) Alvs(4) A(vs(5))

I I 1 1 [ [

$2(0)—>152(1)>152(2)—>152(3)>52(4)—>152(5)

N\ L oo/

Relative Hum A(v,(0:2)) A(v,(1:3)) A(v,(2:4)) Aw,(3:5))
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Experimental Evaluation: Experiment Design |l

= Data: Oklahoma Mesonet

=4 stations:
= OKCE. OKCN. OKCW. NRMN View type State/period | Total #views

- 2 yea rs Single sensor view
= 5 minute reporting interval
= Hourly sensor state

Same sensor two station view

Two sensor single station view

Single sensor three hour view
= Sensors: Total views per block
= TAIR, RELH, SRAD, PRES

= Baseline:

= Single sensor view based
detection

= Metrics:
= Precision and recall

DSA Kampala 2020 o7



Fault types:
Flatline
Spike
Bias

Fault proportion:

1 11
5508

E—

500

DSA Kampala 2020

1000

1500
Intervals

2000

2500

3000
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Result: Sensor-DX improves precision I

Difference in precision of multi-view method versus single-view baseline

95% two-sided paired
differences bootstrap
confidence intervals
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O
e
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-
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Precision

PRES

RELH

SRAD

TAIR

DSA Kampala 2020

M Baseline
M Sensor-Dx

95% confidence
intervals

Sensor-DX
Improves
precision, but the
false alarm rate

will still be quite
high
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Precision-recall of m,; & mp,oren tradeoft |

0.5

0.45

Precision

o o
o N o w o
N (é)] w (&)] SN

(=]
RN
(6)]

=
—

0.05

-=-TAIR

===SRAD

==PRES
RELH

DSA Kampala 2020

*PRES (atmospheric
pressure) is best

=SRAD (solar radiation) is
much worse than the
others

= We believe that by
Incorporating theoretical
max SRAD we can greatly
improve this in future work
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Next Steps |

=|mproved probability model for P(A(v)|nbs)
*|mproved anomaly detection models based on Neighbor Regression
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Dealing with Non-Stationarity

=\Weather data is non-stationary
= 24-hour cycle (“diel”)
= 365-day cycle (“annual®)
= storm system: irregular 2-5 days
=Three approaches: S
= Model and remove the cycles
= Blocking

= Use neighboring stations that
experience the same cycles

Temperature (F)

-
o
—
=2
@
—_
[0
a
£
Q
=
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Neighbor Regression for Precipitation

= Precipitation is most important
variable:

= Sub-Saharan 95%, Latin America
90% & 65% of South East Asia relies
on rainfed Agriculture [Wani et al.,
2009]

= Anomaly detection for

precipitation is very difficult

= Rainfall is zero on most days

= Rainfall can be large

= Very non-Gaussian

RAIN (mm)

Station ADAX from Oklahoma Mesonet
DSA Kampala 2020 o4



Problem setting

Notation
= Let 54, Sy, ..., S, a network of weather stations

= Let R(s, t) rainfall measured at station s at time
t

(s)(t) denote vector of rainfall at time t for k
nelg boring stations

Goal:
= Detect rain gauge blockage at station S

Approach: .
= Define a set 17(s) of k stations similar to s _ | ¥ cronsor
= Fit a model f to predict R(s, t) given Tn(s) (t) ' VIR N b
= Compare prediction to observation
"p= Yy —9 “residual’
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Single station unconditional mixture model |

P(R(s,t) =1) = (1 = p)&o(r) + p1N(log(); p,0%)
P(R(s,t) =1)

r=20 r>20

(1 —pq1)d, p N (log(r), u, 02) p; = probability of rainy day R(s,t) > 0

02 R '] . . B __IIII IIIII-_—
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Condition on the Neighboring Stations 7 |

"rp): observations from neighboring stations at time ¢

"P(R(s,t) =7 |r (1)) =

(1 — P1(7”n (t); a)) do r =
p1 (1 (2); @)N(log(r) ; Bo + B log(r (t) + €),0?) r> 0
=where:

" D1 (rn (t) ; a): logistic regression model with weight vector

"Bo, ,B{ , a?: Are parameters of the log-norm regression with covariates of log(r77 (t) + 6)
= ¢: small constant added to avoid log of zero
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Estimating parameters

= Two-stage procedure [Min & Agresti, 2002]
= To estimate «, fit the logistic regressiontoy =1ifr > 0elsey =0

'P(y — 1‘Tn (t); C() — 1_,_8—(0401“”77“))

= To estimate parameters of lognorm By, 81 and o2
= we restrict to case of R(s,t) = r(s) > 0and plug p;i(s,t) = P(y = 1|r,(t); )

2
1B) =) 1,0 llog(r(s>+e> - ) ﬁs'log(r(S’))—ﬁo]
t

s'en(s)

Residual

DSA Kampala 2020 08



Two ways of computing anomaly score
Method 1: score using p-value of mixture model I-

* MNORM.CDF(y) = —log[min{F(p(3)),1 — F(o(")}]

= p residual of neighbor regression model
“F(p) = (1 —p1) +p1®(p,0,0%)

MNORM.CDF DSA Kampala 2020 69



Method 2: Scoring based on NLL

— Mominal
— Anomalies

o
2
o
o
N
o
o
i
o
o
—
o

5 10
Log residual difference

in{(1 — p1)dy, , =0
P(R(s, t) = rlrn(t)) — {Zl;l({[(),ﬁ |§)1) 0,P1f (P, B [x)} )3:> )

“MNORM.NLL(r) = —log P(R(s,t) = r|n,(t))

= where f(p, B |x) residual fitted to probabilit% distribution

DSA Kampala 20
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Experimental Study

*Data:
= 2 year of Oklahoma mesonet data
= Synthetic faults inserted to simulate rain gauge blockage
=Research questions:
= RQ1: What is the best way of scoring anomaly?
= RQ2: Which model is best?
= Metrics:
* Prec@80: precision at 80% recall (detect 80% of blocked gauges)
= Average precision
=AUC
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Comparison of scoring functions on 3 metrics | |B

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

-0-AP

-0-AUC

-e-PR@0.8Rec

MNORM.CDF MNORM.NLL  KDE.NLL

MNORM.NLL is the best




Status and Next Steps |

= Precipitation model has been deployed on the TAHMO network

=Neighbor regression models for the other sensors
= solar radiation
= temperature
= temperature and relative humidity (joint)
= atmospheric pressure
= wind speed and direction (joint)
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Summary |

= TAHMO is creating a weather station network of unprecedented size
= QC must be automated as much as possible

=Existing QC Methods

= Rule-based (ad hoc)
= Probabilistic (requires modeling the sensor values when the sensor is broken)

*SENSOR-DX Approach

= Define multiple views

= Fit an anomaly detector to each view

= Probabilistic QC by modeling the anomaly scores of broken sensors
= Diagnostic reasoning to infer which sensors are broken

= Out-performs baseline methods substantially
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Summary (2): Neighbor Regression |

= Predict sensor readings at station s from a nearby stations n(s)

*For Precipitation, we learn a mixture model
= Logistic regression to predict the probability that R(s,t) > 0: p,

= Log-linear regression to predict the amount of precipitation R(s, t) based on the
amount at the neighbors

= Anomaly score computed using log likelihood of the prediction error (residual)
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