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TAKE HOME MESSAGE

• LLMs have many flaws
• Industry is spending a lot of money trying to work around the flaws
• We should build a new kind of large model that does not have these 

flaws
• AI is far from being solved
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Large LLMs exhibit surprising capabilities

• Carry out conversations and answer questions covering a wide range 
of human knowledge
– Our first case of creating a broadly-knowledgeable AI system

• Summarize and revise documents
• Write code (Python, SQL, Excel) from English descriptions
• Learn new tasks from a small number of training samples via “in-

context learning”
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Large LLMs have many shortcomings (1)

• They produce incorrect and self-contradictory answers
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GPT-4 Hallucination Rate is 40% on adversarial questions(GPT-2 Lake & Murphy, 2022)

GPT-4 Technical Report



Large LLMs have many shortcomings (2)

• They produce incorrect and self-
contradictory answers

• They produce dangerous and socially-
unacceptable answers (e.g., 
pornography, racist rants, instructions 
for committing crimes)
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12/4/2022; appears to have been fixed subsequently
https://twitter.com/spiantado/status/1599462375887114240
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Large LLMs have many shortcomings (3)

• They produce incorrect and self-
contradictory answers

• They produce dangerous and socially-
unacceptable answers (e.g., 
pornography, racist rants, instructions 
for committing crimes)

• Training, Retraining, and Inference are 
extremely expensive

• Knowledge cannot be easily updated 
(facts are stored in the network weights)
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Large LLMs have many shortcomings (4)

• They produce incorrect and self-
contradictory answers

• They produce dangerous and socially-
unacceptable answers (e.g., 
pornography, racist rants, instructions 
for committing crimes)
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extremely expensive
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• Lack of attribution: No easy way to 
determine which source documents are 
responsible for the answers
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Large LLMs have many shortcomings (5)

• They produce incorrect and self-
contradictory answers

• They produce dangerous and socially-
unacceptable answers (e.g., 
pornography, racist rants, instructions 
for committing crimes)

• Training, Retraining, and Inference are 
extremely expensive

• Knowledge cannot be easily updated 
(facts are stored in the network weights)

• Lack of attribution: No easy way to 
determine which source documents are 
responsible for the answers

• Poor non-linguistic knowledge
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Marton Trencseni - Sat 17 December 2022
https://bytepawn.com/testing-gpt-3-spatial-reasoning-and-comprehension.html

https://bytepawn.com/testing-gpt-3-spatial-reasoning-and-comprehension.html


Large LLMs have many shortcomings (6)

• Dialogues can go “off the rails”
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Large LLMs have many shortcomings (6)
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Large LLMs have many shortcomings (7)

• Dialogues can go “off the rails”
• Systems have poor planning and 

reasoning skills
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abilities of large language models – a critical 
investigation



What Causes These Problems?

Core Problem: 
Large Language Models are not knowledge bases
Instead, they are probabilistic models of knowledge bases
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Analogy: Databases versus Statistical Models of Databases

Statistical models of databases: 
• Data cleaning

– A person with age “2023” is probably an error

• Query Optimization
– Estimate the sizes of intermediate tables when 

executing a query plan
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Large Language Models : Knowledge Bases :: Statistical DB Models : Databases

ID Name State

49283 Phil Knight Oregon

33924 Mark Zuckerberg California

42238 Sundar Pichai California

88499 Marc Benioff California

Query: What state does Karen Lynch work in?
Database system: 

Unknown
Probabilistic model: 

California (75%)
Oregon (25%)

Correct answer:
Rhode Island

We want knowledge bases, not statistical 
models of knowledge bases



LLMs are extremely sensitive to task and content probability

• LLMs perform much worse on 
rare tasks

• LLMs perform much worse on 
rare outputs
– If the true answer is unusual, LLMs 

will substitute a higher probability 
answer instead

– “auto-correcting the world”
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McCoy, R. T., et al. (2023). Embers of Autoregression: Understanding Large Language Models Through the Problem They are Trained to Solve. 
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Current Efforts to Address Problems: Retrieval-Augmented LMs (RAG)

• Retrieval-Augmented Language Models
– Use input sequence to search external document 

collections or knowledge graphs
– Fuse results with the query to generate the answer
– Bing probably implements this

• Benefits
– Network can be 10x smaller (RETRO)
– External documents can be updated without 

retraining
– Reduces hallucination
– Answer can be attributed to source documents

• Issues
– Implicit world knowledge (in LLM) can interfere with 

knowledge from retrieved documents to cause 
hallucinations

– Evaluations (Bing, NeevaAI, perplexity.ai, YouChat) 
show 48.5% of generated sentences are not fully 
supported by retrieved documents and 25.5% of cited 
documents are irrelevant (Liu, et al. 2023)

– Vulnerable to poisoning of external knowledge 
sources (“prompt injection”)
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RETRO: Borgeaud, et al. 2021; 2022



Improving Consistency

• Ask multiple, logically-related 
questions and apply MaxSAT solver to 
find the most coherent belief

• Self-Refinement: Ask model to 
critique and refine its own output

• Neither of these addresses the 
underlying cause of the inconsistency
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Bhagavatula, et al, 2022

Madaan, et al., 2023



Tuned Language 
Model

Reducing Dangerous and Socially Inappropriate Outputs 

• Reinforcement-learning from human 
feedback

– Step 1: Collect feedback on suitability of 
generated output

– Step 2: Train a reward model (preference 
model)

– Step 3: Tune the language model via 
reinforcement learning to maximize the 
reward while changing probabilities as little 
as possible

• Shortcomings
– Reduces, but does not eliminate toxic and 

dangerous outputs
– Definition of “inappropriate” will reflect 

human biases and is not inspectable; leads 
to political controversy

– RLHF seriously damages output calibration
• Additional approaches:

– Train a second language model to recognize 
inappropriate content

– Constitutional AI (Bai, et al. 2023)
– See also: Direct Preference Optimization 

(Rafailov, et al., 2023)
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Learning and Applying Non-Linguistic Knowledge

Multi-modal networks
• Kosmos-1, Flamingo, GPT-4V: Trained on text and 

images. Strong few-shot learning capability on 
image tasks

• PaLM-E: Trained on text, images, state estimation, 
and robot actions. Output: text, robot commands. 

• Main focus: Few-shot learning for vision-language 
tasks

Calling out to external tools
• ToolFormer: Learn to invoke APIs for calendar, 

web search, calculator
• ChatGPT Plugins
• Adept.com: “automate any software process” 

(email, Salesforce, Google sheets, shopping)
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Integrate LLMs with an External Plan Verifier

Plan verifier VAL
• VAL checks for plan correctness
• VAL provides feedback on errors
• Feedback is added to GPT-4 context 

buffer
• Evaluation on 50 previously-failed 

planning instances shows big 
improvement!
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Valmeekam, et al. (2023) 



WHAT WE SHOULD BE DOING INSTEAD
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Modular AI Systems
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Language 
understanding & 

generation

Common sense 
knowledge

Factual world 
knowledge

Episodic Memory

Situation model

Planning Formal 
Reasoning

Meta-Cognition
Self-Monitoring 
Orchestration

Neuroscience suggests that separate brain regions 
are responsible for each of these functions

Mahowald, et al. 2023 “Dissociating language and thought in large language models: a cognitive perspective.” DSA 2024



Beyond Large Language Models
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• No hallucinations
• Easy to update
• Consistent
• Supports attribution

• Socially and Ethically 
acceptable outputs

• Maintains coherent, 
goal-directed 
dialogue

Unaddressed:
• Non-linguistic 

knowledge

• Planning failures



Representing Factual World Knowledge as a Knowledge Graph

“KTNV-TV (channel 13) is a 
television station in Las Vegas, 
Nevada, United States, affiliated 
with ABC. It is owned by the E. W. 
Scripps Company alongside 
Laughlin-licensed Ion Television
owned-and-operated station
KMCC (channel 34).”
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https://en.wikipedia.org/wiki/KTNV-TV: 
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https://en.wikipedia.org/wiki/E._W._Scripps_Company
https://en.wikipedia.org/wiki/Laughlin,_Nevada
https://en.wikipedia.org/wiki/Ion_Television
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End-to-End Training for Factual Knowledge

• Separate Language Skill from Factual World Knowledge
• Represent world knowledge as a knowledge graph over an extensible 

ontology
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LLM

Knowledge 
Graph

queries answers updates

𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 𝑦𝑦1, … ,𝑦𝑦𝑚𝑚
Input tokens Output tokens



Previous effort: NELL

• Never-Ending Learning (Mitchell, et al. 
2015)
– Extracted triples
– Collected and integrated evidence in 

favor of and against each triple
– Extended its initial ontology
– Inferred new relationships and their 

arguments (and argument restrictions)
• Ran from 2010-2018
• It is time for another NELL, but using 

LLMs!
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Recent Work

• Extracting knowledge graphs from LLMs
– Develop various prompting and fill-in-the-blank tasks to extract KG tuples

• Petroni, et al. 2019 “Language models as knowledge bases?”
• Applying LLMs to construct knowledge graphs from documents

– Must also construct the ontology of relation types (canonicalization)
• Zhang, B., & Soh, H. (2024). “Extract, Define, Canonicalize: An LLM-based Framework 

for Knowledge Graph Construction”
• Retrieval-Augmented Generation from Knowledge Graphs

• Wang, et al. 2020 “KEPLER: A Unified Model for Knowledge Embedding and Pre-
trained Language Representation”

• LlamaIndex (https://docs.llamaindex.ai/en/stable/) 
• LangChain + Neo4J (https://blog.langchain.dev/enhancing-rag-based-applications-

accuracy-by-constructing-and-leveraging-knowledge-graphs/)
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https://docs.llamaindex.ai/en/stable/
https://blog.langchain.dev/enhancing-rag-based-applications-accuracy-by-constructing-and-leveraging-knowledge-graphs/


Beyond knowledge graph tuples to Natural Language Dialogue

• Encoder:
– Given:

• conversation so far including most 
recent user utterance

• situation model
– system narrative plan + goals
– user partial narrative plan + goals
– beliefs + assertions of system and user
– how the conversation implements 

system + user narrative plans

– Do:
• update the situation model to reflect 

most recent user utterance

• Decoder:
– Given:

• updated situation model
– Do:

• extend the system narrative plan
• retrieve relevant knowledge from the 

knowledge graph
• generate the next system utterance

27DSA 2024

End-to-End Training for Next Phrase Prediction



Attaining Truthfulness

• The knowledge graph approach assumes there is a single, coherent, true 
model of the world
– People disagree on the truth
– Existing scientific evidence may not be conclusive
– There are cultural variations

• Possible approaches
– Build internally-coherent micro-worlds
– Support each assertion with an argument from evidence

• Our AI systems need to be able to reason about the trustworthiness of 
information sources
– Google has a whole team dedicated to rating the trustworthiness of web 

sites
– This has been a continual battle between spammers and the search 

engines
– It is getting worse with the advent of LLM-based systems
– Integrate evidence from multiple sources; digital signatures?
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Missing Aspects and Open Questions

• Missing forms of knowledge
– General rules that are difficult to 

capture as knowledge graph triples
– Actions that can be taken in the 

world
• preconditions
• results and side-effects
• costs

– Ongoing processes
• water flowing or filling a container
• battery discharging

• Meta-cognitive subsystem
– Self-monitoring for social 

acceptability
– Self-monitoring for ethical 

appropriateness
– Orchestration of planning, 

reasoning, memory, and language
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Summary

• Existing LLMs have many flaws
– They are statistical models of knowledge bases rather than knowledge bases
– They are expensive to update with new/changing factual knowledge
– They produce socially and ethically unacceptable outputs

• We should be building modular AI systems that
– separate linguistic skill from world knowledge
– marshal planning, reasoning, and knowledge to build situation models of 

narratives/dialogues
– record and retrieve from episodic memory
– create and update world knowledge

• There are many, many details to be worked out!!
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