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Invasive Species Management in River 
Networks 

Tamarisk: invasive tree from the 
Middle East 
 Has invaded over 3 million acres in 

the western United States 
 Out-competes native vegetation for 

water 
 Reduces biodiversity 

 

What is the best way to manage 
a spatially-spreading organism? 

 

3 C.C. Shock, Oregon State University 



Existing Approaches in Natural 
Resource Economics 
Model one-dimensional “landscape” 
Spread is only to nearest neighbors 
State variables only consider the presence/absence of the 

invading species 
 Ignore competition between native and invader 
 Ignore “propagule pressure” (relative abundance and germination 

success of seeds from different species) 
Resulting optimal policies construct “barriers” to contain the spread 

 
Some work on more realistic models, but only by replacing 

stochastic transitions with expectations and treating the system as 
deterministic. 
 
Opportunity to advance the field by providing better MDP tools! 
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Markov Decision Process 
Tree-structured river network 
Each edge 𝑒𝑒 ∈ 𝐸𝐸 has 𝐻𝐻 “sites” where a 

tree can grow. 
Each site can be 
 {empty, occupied by native, occupied by 

invasive} 
 # of states is 3𝐸𝐸𝐸𝐸 

Management actions 
Each edge: {do nothing, eradicate, plant, 

restore (=eradicate + plant)} 
 # of actions is 4𝐸𝐸 

𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
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Dynamics and Objective 
Dynamics: 
 In each time period 
 Natural death 
 Seed production 
 Seed dispersal (preferentially downstream) 
 Seed competition to become established 
 Couples all edges because of spatial spread 
 Inference is intractable 

 
Objective: 
Minimize expected discounted costs 

(cost of invasion + cost of management) 
Subject to annual budget constraint  

 
 

𝑒𝑒1 𝑒𝑒2 

𝑒𝑒3 
𝑒𝑒4 

𝑒𝑒5 

n 
n 

t 
n n 
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Computational Approach 
Transition function can be represented as DBN 
Exact inference in intractable (because we must consider 

competition from all seeds that arrive at a given slot) 
Sampling is easy 

 
For each (𝑠𝑠,𝑎𝑎), draw enough samples to estimate 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) 

with sufficient accuracy 
Then apply value iteration to solve the MDP 
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Examples of the Results 
Optimal policy in an edge depends on 

the state of other edges 
Case 1: Optimal action is to 

ERADICATE and then PLANT at the 
“middle” level 
Case 2: Optimal action is to 

ERADICATE and then PLANT in the 
top left 

Reason? 
 In Case 2, we already have a partial 

barrier, so there is budget available 
to plant natives in the top level to 
protect against eradication failure 
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Case 1 

Case 2 



Example of Results (2) 
Exogenous arrivals change the policy 
 seeds of the invader arrive uniformly at 

random across the landscape (e.g., 
dropped by birds, transported by fishermen) 

With no exogenous arrivals, if the 
starting state has an invaded edge, then 
the optimal policy just performs 
ERADICATE 
 If there are exogenous arrivals, it 

performs RESTORE.  
 In general, under exogenous arrivals, 

the optimal policy works harder to fill the 
landscape with native species as a 
preventative measure 
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Example of Results (3) 
Prevention is Cheaper than Recovery 
 In an empty river system with exogenous 

arrivals, the optimal policy PLANTs native 
species starting upstream and working 
downstream (if necessary) 
This is much cheaper than waiting until an 

invasion arrives and then fighting it via 
ERADICATION 
Why: Budget constraints make it impossible to 

ERADICATE everywhere at once, which 
allows the invader to spread quickly. Then it 
can only be slowly eliminated by repeated 
ERADICATE actions 
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Summary 
MDP tools can have a big impact in helping ecosystem 

managers discover and analyze optimal management 
policies 
Simulator-defined MDPs are a natural way to deal with 

intractable transition models 
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More Challenging Setting 
Extremely expensive simulators from ecosystem 
management problems 
Drawing one sample from these simulators can take 
more time than performing value iteration on the 
whole MDP(!) 
We want to minimize the number of calls to the 
simulator 
We want PAC bounds on the optimality of the policy 
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Policy Evaluation 
Given:  
An MDP 𝑆𝑆,𝐴𝐴,𝑃𝑃,𝑅𝑅, 𝛾𝛾 ;   
  𝑅𝑅 𝑠𝑠,𝑎𝑎 ∈ 0,𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 ; 𝛾𝛾 ∈ (0,1) 
A starting state 𝑠𝑠0 
A fixed policy 𝜋𝜋 
A simulator 𝐹𝐹: 𝑆𝑆 × 𝐴𝐴 ↦ 𝑅𝑅 × 𝑆𝑆 that samples as 
 𝑅𝑅 𝑠𝑠,𝑎𝑎   ; deterministic 
 𝑠𝑠′ ∼ 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎  
A sampling budget 𝐵𝐵 
Find: 
A tight confidence interval on 𝑉𝑉𝜋𝜋 𝑠𝑠0  

Notation: 
 Δ𝑉𝑉𝜋𝜋 𝑠𝑠0 = 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝜋𝜋 (𝑠𝑠0) is the width of the confidence 

interval 
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Confidence Interval Methods 
Global (full-trajectory) Methods 
Hoeffding Bound: GCV(H) 
Empirical Bernstein Bound: GCV(B) 
Local (extended value iteration) Methods 
Hoeffding Bound: LCVI(H) 
EBB:LCVI(B) 
Weissman Multinomial Confidence Region: LCVI(W) 
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Confidence Interval Methods 
Global methods 
Choose a depth 𝐻𝐻 
Draw 𝑁𝑁 = ⌊𝐵𝐵 𝐻𝐻⁄ ⌋ trajectories. Let 𝑣𝑣𝑖𝑖 be cumulative 

discounted return from trajectory 𝑖𝑖 

𝑉𝑉� 𝑠𝑠0 = 1
𝑁𝑁
∑ 𝑣𝑣𝑖𝑖𝑁𝑁
𝑖𝑖=1  be the average of these values 

Compute the confidence interval from 𝑣𝑣1, … , 𝑣𝑣𝑁𝑁  
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Global Hoeffding Bound 
(Hoeffding, 1963) 

𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 + 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
log 2/𝛿𝛿
2𝑁𝑁

+ 𝛾𝛾𝐸𝐸𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 − 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
log 2/𝛿𝛿
2𝑁𝑁

  

 
𝛾𝛾𝐸𝐸𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum possible reward we lose by 
truncating the trajectory at depth 𝐻𝐻 
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Global Empirical Bernstein Bound 
(Audibert, Munos, Szepesvari, 2009) 

𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 + 2𝑉𝑉𝑚𝑚𝑢𝑢� 𝑠𝑠0 log 3/𝛿𝛿
𝑁𝑁

+ 3𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3/𝛿𝛿
𝑁𝑁

+ 𝛾𝛾𝐸𝐸𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚  

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 𝑠𝑠0 = 𝑉𝑉� 𝑠𝑠0 − 2𝑉𝑉𝑚𝑚𝑢𝑢� 𝑠𝑠0 log 3 𝛿𝛿⁄
𝑁𝑁

− 3𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3/𝛿𝛿
𝑁𝑁

  

 
Here  

𝑉𝑉𝑎𝑎𝑉𝑉� 𝑠𝑠0 =
1
N
� 𝑣𝑣𝑖𝑖 − 𝑉𝑉� 𝑠𝑠0

2
𝑁𝑁

𝑖𝑖=1

 

Key idea is that if the variance is small, this can be 
tighter 
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Extended Value Iteration with the 
Local Hoeffding Bound 
(Even-Dar, Mannor, Mansour 2003,2006) 
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At each state 𝑠𝑠 

𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

+ 𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
log 2|𝑆𝑆|/𝛿𝛿
2𝑁𝑁(𝑠𝑠)

 

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

− 𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
log 2|𝑆𝑆|/𝛿𝛿
2𝑁𝑁(𝑠𝑠)

 

Perform value iteration on these formulas. The bounds on 𝑠𝑠0 
give the desired confidence interval 



Extended VI with EBB 
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At each state 𝑠𝑠 
𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠

= 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

+
2𝑉𝑉𝑎𝑎𝑉𝑉� 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 log 3|𝑆𝑆|/𝛿𝛿

𝑁𝑁(𝑠𝑠)

+
3𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3|𝑆𝑆|/𝛿𝛿

𝑁𝑁(𝑠𝑠)
 

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 𝑠𝑠

= 𝑅𝑅 𝑠𝑠 + 𝛾𝛾�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

−
2𝑉𝑉𝑎𝑎𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢� 𝑠𝑠 log 3 𝑆𝑆 𝛿𝛿⁄

𝑁𝑁 𝑠𝑠

−
3𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 log 3|𝑆𝑆|/𝛿𝛿

𝑁𝑁(𝑠𝑠)
 

Perform value iteration on these formulas. The bounds on 𝑠𝑠0 
give the desired confidence interval 



Weissman L1 Confidence Interval 
on the Multinomial Distribution 
(Weissman et al., 2003) 

Given the counts 𝑁𝑁 𝑠𝑠, 𝑠𝑠′  for state 𝑠𝑠, compute 
𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 = 𝑁𝑁 𝑠𝑠,𝑠𝑠′

𝑁𝑁 𝑠𝑠
 

Define a confidence interval 
𝐶𝐶𝐶𝐶 𝑁𝑁, 𝛿𝛿 = 𝑃𝑃� 𝑃𝑃� ⋅ 𝑠𝑠 − 𝑃𝑃� ⋅ 𝑠𝑠 1 < 𝜔𝜔}  

where 

𝜔𝜔 =
2 log(2 𝑆𝑆 −2) − log 𝛿𝛿/|𝑆𝑆|

𝑁𝑁 𝑠𝑠
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Extended VI with Weissman 
Multinomial Confidence Interval 
(Strehl & Littman, 2004; 2008) 
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𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾max
𝑃𝑃�∈𝐶𝐶𝐶𝐶

�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

 

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 𝑠𝑠 = 𝑅𝑅 𝑠𝑠 + 𝛾𝛾min
𝑃𝑃�∈𝐶𝐶𝐶𝐶

�𝑃𝑃� 𝑠𝑠′ 𝑠𝑠 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 (𝑠𝑠′)
𝑠𝑠′

 



Given a fixed budget 𝐵𝐵 how should 
trials be allocated? 

For global methods, the only question is the sampling horizon 
𝐻𝐻 
There is no closed form, but 𝐻𝐻 can be determined by solving 

a simple iteration 
Example: For global Hoeffding bound method: 

𝐻𝐻 =
1
2 ln ln 2

𝛿𝛿 −
1
2 ln2𝐵𝐵 − ln ln 1

𝜆𝜆
ln 𝜆𝜆

−
ln𝐻𝐻

2 ln 𝜆𝜆
 

Similar but more complex iteration for EBB 
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Optimal Horizon 𝐻𝐻 
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Width of the confidence interval for the 
starting state Δ𝑉𝑉(𝑠𝑠0);   [𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 1] 
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Allocation of Samples for Extended 
Value Iteration Methods: LCVI(H) 
Let 𝜇𝜇𝜋𝜋(𝑠𝑠) be the occupancy measure 

𝜇𝜇𝜋𝜋 𝑠𝑠 = 𝔼𝔼 �𝛾𝛾𝑡𝑡𝕀𝕀 𝑠𝑠𝑖𝑖 = 𝑠𝑠
∞

𝑡𝑡=0

𝑠𝑠0,𝜋𝜋  

Theorem. 𝑁𝑁 𝑠𝑠  samples should be allocated to state 𝑠𝑠 to minimize 

Δ𝑉𝑉 𝑠𝑠0 = �𝜇𝜇 𝑠𝑠 𝜋𝜋2𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚
ln 2 𝛿𝛿⁄
2𝑁𝑁(𝑠𝑠)

𝑠𝑠

 

Lemma: 𝑁𝑁 𝑠𝑠  samples should be allocated in proportion to 𝜇𝜇𝜋𝜋 𝑠𝑠 2 3⁄  
 
It is interesting that more samples are allocated at deeper states than for 
the global (trajectory-wise) methods, which allocate according to 𝜇𝜇𝜋𝜋 𝑠𝑠 . 
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Allocation of Samples for LCVI(B) 

Samples should be allocated to minimize 

Δ𝑉𝑉 𝑠𝑠0 = �𝜇𝜇 𝑠𝑠
𝑠𝑠

𝑐𝑐1𝑉𝑉𝑎𝑎𝑉𝑉 𝑠𝑠 + 𝑐𝑐1𝑉𝑉𝑎𝑎𝑉𝑉 𝑠𝑠

𝑁𝑁 𝑠𝑠
+

2𝑐𝑐2
𝑁𝑁 𝑠𝑠

 

where 
 𝑐𝑐1 = 2 ln 3 𝑆𝑆 /𝛿𝛿 and 𝑐𝑐2 = 3𝛾𝛾𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ln 3/𝛿𝛿 
𝑉𝑉𝑎𝑎𝑉𝑉 𝑠𝑠  is an upper bound on the variance of the return at 𝑠𝑠 
𝑉𝑉𝑎𝑎𝑉𝑉 𝑠𝑠  is a lower bound on the variance of the return at 𝑠𝑠 
These can be computed via Extended VI 
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Experimental Comparison 
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MDP Policy Notes 
Riverswim Optimal   
Six Arms Suboptimal   
Comb Lock Optimal some intermediate rewards 
CasinoLand Optimal added stochasticity 
  Edges Slots Policies 
Tamarisk 3 1   
Tamarisk 3 2 

× 
Restore upstream first 

Tamarisk 3 3 Eradicate upstream first 
Tamarisk 5 1 Eradicate leading edge 
Tamarisk 7 1   



Policy Evaluation: Results 
𝛿𝛿 = 0.05; 𝛾𝛾 = 0.95;𝐵𝐵 = 500,000 
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Global 
Bernstein is 
almost always 
best 
 
Local Bernstein 
wins twice and 
is by far the 
best local 
method 
 
 
 



Policy Optimization 
 Idea: Use trajectory-based confidence intervals to gain efficiency 
Challenge 1: As we optimize, the policy changes.  
 How can we compute trajectory-based confidence intervals using samples 

generated from previous policies? 
 Solution: Equivalent Trajectory Method 

 
Challenge 2: To perform policy improvement, we need to compute 
𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠,𝑎𝑎) for off-policy actions 𝑎𝑎.  
 This requires local upper confidence limits for each 𝑄𝑄 𝑠𝑠,𝑎𝑎  
 Solution: Use local (extended value iteration) methods for 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠,𝑎𝑎) and 

use a trajectory bound for 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢(𝑠𝑠0) 
 

Result: The Local-Global Confidence Value algorithm (LGCV) 
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Policy Optimization 
Local-Global Confidence Value (LGCV) algorithm 
Repeat: 
Draw a minibatch of samples to reduce 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠0) 
and/or increase 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢(𝑠𝑠0) 
Compute 𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑠𝑠, 𝑎𝑎) via extended value iteration 
(EBB) 
Compute 𝜋𝜋𝑈𝑈𝐶𝐶𝑈𝑈 𝑠𝑠 ≔ arg max

𝑚𝑚
𝑄𝑄𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠,𝑎𝑎  ∀𝑠𝑠 

Compute 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝜋𝜋𝑈𝑈𝑈𝑈𝑈𝑈 𝑠𝑠0  via a trajectory-wise bound using 
equivalent trajectories 
Terminate when 
       𝛥𝛥𝑉𝑉 𝑠𝑠0 = 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑠𝑠0 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢 𝑠𝑠0 ≤ 0.1 × 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 
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Equivalent Trajectories 

Given:  
a set of previously-drawn samples 𝑁𝑁 𝑠𝑠,𝑎𝑎  for 
states 𝑠𝑠 ∈ 𝑆𝑆 and actions 𝑎𝑎 ∈ 𝐴𝐴 
 a policy 𝜋𝜋 
Find: 
a horizon 𝐻𝐻 
an equivalent number of trajectories 𝑇𝑇 
such that a trajectory-wise confidence interval is 
valid 
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Thought Experiment 
Select 𝐻𝐻 (somehow) 
Estimate 𝑃𝑃� 𝑠𝑠′ 𝑠𝑠,𝜋𝜋(𝑠𝑠)  from the samples 
Set 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) ≔ 𝑁𝑁(𝑠𝑠,𝜋𝜋(𝑠𝑠)) for all 𝑠𝑠 
Set 𝑇𝑇 = 0 the number of trajectories 
Repeat until 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) = 0 
 𝑠𝑠 ≔ 𝑠𝑠0 
 ℎ ≔ 0 
while ℎ < 𝐻𝐻 do 
 𝑠𝑠′~𝑃𝑃� 𝑠𝑠′ 𝑠𝑠,𝜋𝜋 𝑠𝑠  draw a sample 
 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) ≔ 𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) − 1 
 if (𝑀𝑀 𝑠𝑠,𝜋𝜋(𝑠𝑠) < 0) return(𝑇𝑇) 
 𝑠𝑠 ≔ 𝑠𝑠′;ℎ ≔ ℎ + 1 
 𝑇𝑇 ≔ 𝑇𝑇 + 1 
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Computed 𝔼𝔼 𝑇𝑇  via stratified MDP 

Select 𝐻𝐻 
Define an unrolled MDP 
states: (𝑠𝑠,ℎ) for 𝑠𝑠 ∈ 𝑆𝑆 and ℎ ∈ {1, … ,𝐻𝐻} 
actions: 𝑎𝑎 ∈ 𝐴𝐴 
 transitions 𝑃𝑃 𝑠𝑠′,ℎ + 1 𝑠𝑠,ℎ ,𝑎𝑎 = 𝑃𝑃(𝑠𝑠′|𝑠𝑠,𝑎𝑎) 
 rewards 𝑅𝑅 𝑠𝑠,ℎ ,𝑎𝑎 = 𝑅𝑅(𝑠𝑠,𝑎𝑎) 

 
Define 𝜌𝜌𝜋𝜋(𝑠𝑠, ℎ) to be the undiscounted occupancy 
measure for this MDP 
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Equivalent Number of Trajectories 
Let 𝑍𝑍𝜋𝜋 𝑠𝑠  be the expected number of visits to state 𝑠𝑠 under 

policy 𝜋𝜋 for trajectories of length 𝐻𝐻 

𝑍𝑍𝜋𝜋 𝑠𝑠 = �𝜌𝜌𝜋𝜋(𝑠𝑠,ℎ)
𝐸𝐸−1

ℎ=0

 

Easily computed by dynamic programming along with 𝑉𝑉𝜋𝜋 and the 
variance 𝑉𝑉𝑎𝑎𝑉𝑉𝜋𝜋 
 

Let the equivalent number of trajectories be 

𝑇𝑇𝜋𝜋 = min
𝑠𝑠

𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠
𝑍𝑍𝜋𝜋 𝑠𝑠

 

𝑠𝑠 is the state that gives the tightest constraint on the number of 
trajectories 
 

Claim: 𝑇𝑇𝜋𝜋 = 𝔼𝔼 𝑇𝑇  
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Computing the Horizon 𝐻𝐻 

Let 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = log𝛾𝛾
𝜖𝜖 1−𝛾𝛾
2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

  (the “𝜖𝜖 horizon time”)  

 
Choose the 𝐻𝐻 in 1, … ,𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚  that maximizes the 
“equivalent budget” 

𝐵𝐵𝑢𝑢 𝐻𝐻 = 𝐻𝐻𝑇𝑇𝜋𝜋 𝐻𝐻  
 
This can be done efficiently by starting with 
𝐻𝐻 = 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and working downwards 
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LGCV is PAC-RL 
Simultaneously, with probability at least 1 − 𝛿𝛿 
𝑉𝑉∗ 𝑠𝑠0 ≤ 𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0   
𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0 ≤ 𝑉𝑉∗(𝑠𝑠0) 
𝑉𝑉𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0 − 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑢𝑢𝑢𝑢𝜋𝜋 𝑠𝑠0 ≤ 𝜖𝜖 by construction 

 

We employ the Even-Dar et al. trick of using 𝛿𝛿𝑡𝑡 ≔
𝛿𝛿

𝑡𝑡 𝑡𝑡+1
 when 

calculating the 𝑡𝑡-th confidence interval.  
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Sample Allocation (Exploration) 
Collect a series of minibatches of size 𝑀𝑀𝐵𝐵 
Let 𝑁𝑁 = ∑ 𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠𝑠𝑠  
Choose Local Sampling vs. Global Sampling 
Local Sampling: 

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 𝑠𝑠 =
𝜇𝜇𝜋𝜋 𝑠𝑠 2 3⁄

∑ 𝜇𝜇𝜋𝜋 𝑠𝑠′ 2 3⁄
𝑠𝑠′

𝑁𝑁 + 𝑀𝑀𝐵𝐵  

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 𝑠𝑠 = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 𝑠𝑠 − 𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠 + 
Global Sampling: 

𝑁𝑁𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙 𝑠𝑠 =
𝜌𝜌𝜋𝜋 𝑠𝑠

∑ 𝜌𝜌𝜋𝜋 𝑠𝑠′𝑠𝑠′
𝑁𝑁 + 𝑀𝑀𝐵𝐵  

𝑁𝑁𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 𝑠𝑠 = 𝑁𝑁𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙 𝑠𝑠 − 𝑁𝑁 𝑠𝑠,𝜋𝜋 𝑠𝑠
+
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Local vs. Global Exploration 
Choose the exploration method (local vs. global) that most 
efficiently shrinks the confidence interval Δ𝑉𝑉(𝑠𝑠0).  
“efficiency” = expected improvement per sample 
Local sampling: ΔΔ𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙(𝑠𝑠0) 
 Use extended VI EBB formula assuming no change in variances 

Global sampling: ΔΔ𝑉𝑉𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙(𝑠𝑠0)  
 Use trajectory-wise EBB formula  assuming no change in variances 

 

Efficiency𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 =
ΔΔ𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙 𝑠𝑠0
∑ 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑚𝑚𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 (𝑠𝑠)𝑠𝑠

 

 

Efficiency𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙 =
ΔΔ𝑉𝑉𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙 𝑠𝑠0
∑ 𝑁𝑁𝑔𝑔𝑙𝑙𝑙𝑙𝑔𝑔𝑚𝑚𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 𝑠𝑠𝑠𝑠
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Policy Optimization Experiments 

Methods: 
Fiechter: Samples along trajectories to maximize the total 

shrinkage of local Hoeffding confidence intervals (Fiechter, 
1994) 

DDV:  Local Extended Value Iteration with EBB to greedily 
reduce Δ𝑉𝑉 𝑠𝑠0 .   Extends (Dietterich, Taleghan & Crowley, 2013) 

LGCV: Our new method 
 

Metric: # of samples required to drive ΔV s0 ≤ 0.1 ×
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 with probability 0.95 
Halted at 1 × 107 samples 
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Policy Optimization Results 
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Summary 
New algorithms for Monte Carlo policy evaluation 
Experiments show that in our benchmark problems, 
the Empirical Bernstein Bound is tighter than 
Hoeffding or Weissman 
Trajectory-wise EBB is usually tighter than the bound 

obtained by Extended Value Iteration using a local EBB at 
each state 

New PAC-RL algorithm for MDP planning 
Combines an upper bound based on EVI with local EBB 
And a lower bound based on equivalent trajectories and 

global EBB 
42 
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