

DISCOVERING AND MOVING EXOGENOUS STATE VARIABLES AND REWARDS FOR REINFORCEMENT LEARNING

Tom Dietterich (Oregon State)

George Trimponias (Huawei Noah's Ark Lab)

Zhitang Chen (Huawei Noah's Ark Lab)

Oregon State
University

Motivation

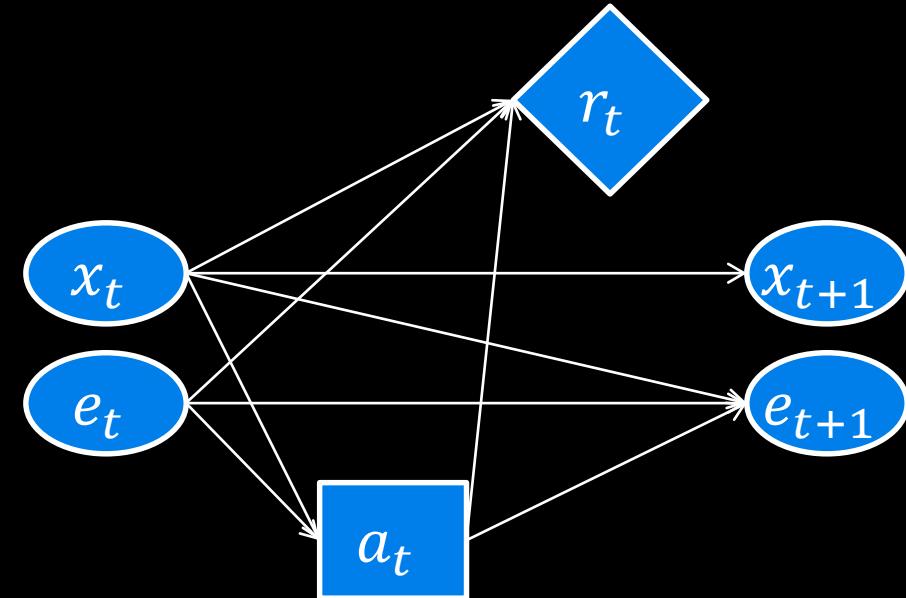
- Consider training your car to drive you to work every day
- MDP
 - states: car location + traffic
 - actions: turns to make
 - cost: total time to reach the office
- Problem:
 - Your actions only control part of the cost. Most of the cost is determined by what other drivers are doing

Consequences

- The cost of any policy π will have high variance
- This will require smaller learning rates and larger training samples
- Policy gradient will require tiny step sizes
 - Needs to average over many trajectories to estimate $\nabla_{\theta} V^{\pi}(s_0; \theta)$
- Q learning will require tiny learning rate
 - Needs to average over many transitions to estimate $Q(s, a)$

Exogenous State MDP

- MDP state can be partitioned into $s = (x, e)$, where x is exogenous and e is endogenous



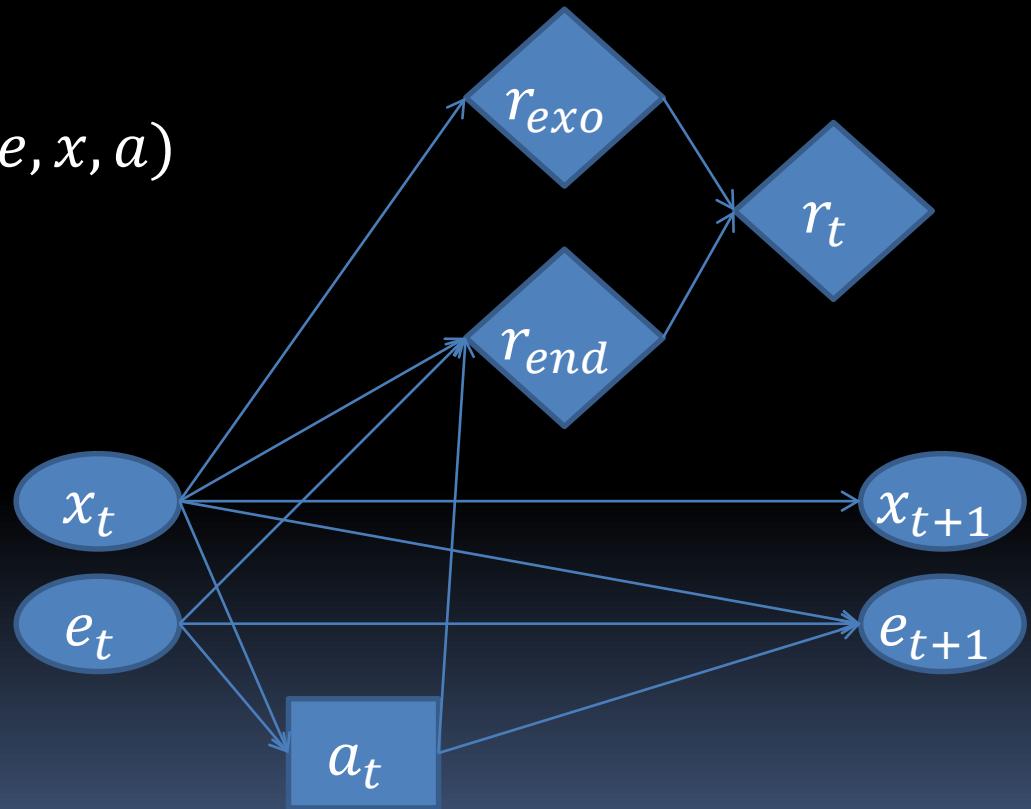
- Transitions:
 - $P(x_{t+1}, e_{t+1} | x_t, e_t, a_t) = P(e_{t+1} | x_t, e_t, a_t)P(x_{t+1} | x_t)$

Actions only affect e_{t+1}
 x evolves independently
but is still Markov

Analysis

- Assumption: Reward Decomposes Additively

$$r(e, x, a) = r_{exo}(x) + r_{end}(e, x, a)$$



Exo-Endo Decomposition

- Theorem 1: Any exogenous MDP can be decomposed into an exogenous Markov Reward Process and an endogenous MDP

$$V^*(e, x) = V_{exo}^*(x) + V_{end}^*(e, x)$$

$$V_{exo}^*(x) = r_{exo}(x) + \gamma \mathbb{E}_{x' \sim P(x'|x)} [V_{exo}^*(x')]$$

$$\begin{aligned} V_{end}^*(e, x) \\ = \max_a r_{end}(e, x, a) + \gamma \mathbb{E}_{x' \sim P(x'|x)} \mathbb{E}_{e' \sim P(e'|e, x, a)} [V_{end}^*(e', x')] \end{aligned}$$

Corollary

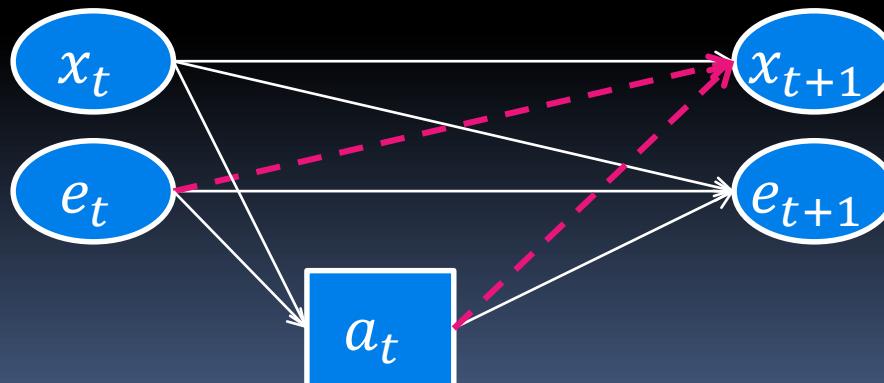
- Corollary: Any optimal policy for the endogenous MDP is an optimal policy for the original MDP

When is it easier to solve the Endogenous MDP?

- Answer: When the variance of the return of the Endogenous MDP is less than the variance of the return of the original MDP
- Covariance Condition:
 - Let $B(\tau)$ denote the cumulative discounted reward along trajectory τ
 - $\text{Var}[B_{exo}(\tau)] > -2\text{Cov}[B_{end}(\tau), B_{exo}(\tau)]$
- Paper derives Bellman updates for variance and covariance of the return

Estimating the Endo-Exo Decomposition

- Suppose we have a database of transitions $\{(s_i, a_i, r_i, s'_i)\}_{i=1}^n$ gathered by executing one or more exploration policies on the MDP
- Linear case \Rightarrow additive decomposition:
$$x = W^\top s; e = s - WW^\top s$$
- Find W to satisfy $I(x_{t+1}; (e_t, a_t) | x_t) = 0$



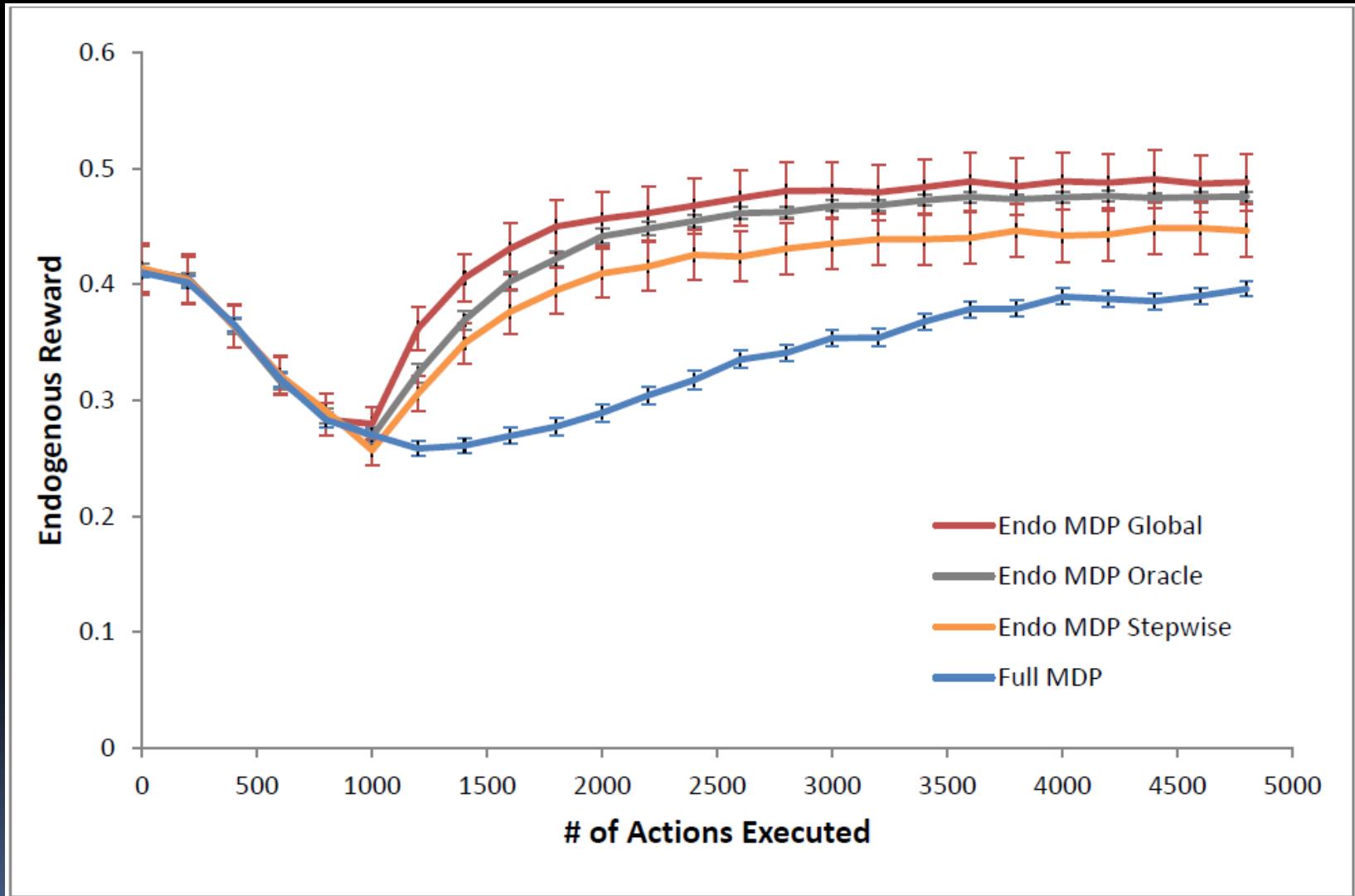
Two Algorithms

- Approximate $I(x_{t+1}; (e_t, a_t) | x_t)$ by the Partial Correlation Coefficient
- Global Algorithm
 - For each $1 \leq d_x \leq d$, compute a d -dimensional W
 - Solves d Steiffel Manifold optimizations of increasing size
- Stepwise Algorithm
 - Similar to PCA
 - Compute one column of W in each iteration
 - Solves d 1-dimensional Steiffel Manifold optimizations
- Matlab Manopt

Toy Problem 1: 30 Dimensions

- 15 dimensions are exogenous
- 15 dimensions are endogenous
- $X_{t+1} = M_x X_t + \varepsilon_x$
- $E_{t+1} = M_e \begin{bmatrix} E_t \\ X_t \\ A_t \end{bmatrix} + \varepsilon_e$
- $\varepsilon_x \sim \mathcal{N}(0, 0.09); \varepsilon_e \sim \mathcal{N}(0, 0.04)$
- $S_t = M \begin{bmatrix} E_t \\ X_t \end{bmatrix}$
- $R_x = -3 \text{avg}(X); R_e = \exp[-|\text{avg}(E_t) - 1|]$
- M, M_x, M_e are random matrices with elements $\sim \mathcal{N}(0, 1)$.
Rows normalized to sum to 0.99.
- $\beta = 1$, learning rate = 0.05. 2 hidden layers w/ 40 tanh units

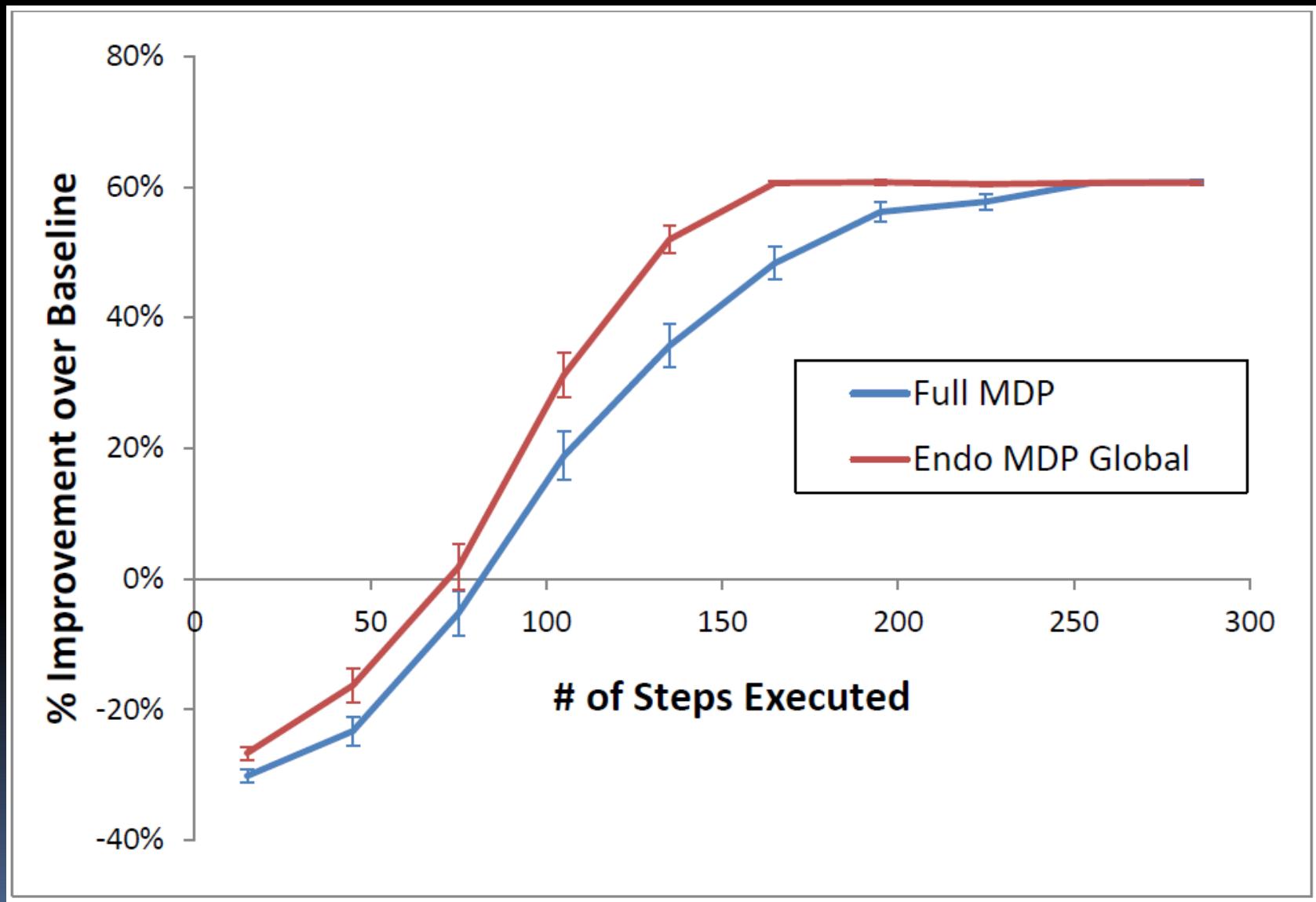
Results



Cell Network Optimization

- Adjust cell tower parameters to minimize # of users experiencing poor throughput
- Action: increase/reduce threshold on signal power for when to switch channel for a user
- Time step: 1 hour
- Data: 5 days, hourly, 105 cells, Huawei Customer
- Simulator: MFMC (Fonteneau et al 2012)
- discount factor 0.95
- features: # active users, avg # of users, channel quality index, small packets/total packets; small packet bytes / total packet bytes
- Reward function: $R_t = -P_t$ = fraction of customers with low bandwidth during period $(t, t + \Delta t)$
- Separate fixed horizon evaluation trials

Results



Summary

- Exogenous state can lead to high-variance rewards, which make RL slow
- An MDP with exogenous state can be decomposed into an exogenous MRP and an endogenous MDP
- Solving the endogenous MDP gives an optimal policy for the original MDP

Acknowledgments

- Dietterich's time was supported by a gift to OSU from Huawei, Inc.

Questions?