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Outline

 Part 0: Robust Al and Robust Human Organizations

* Part 1: Competence Modeling
 Calibrated prediction intervals for reinforcement learning

e Part 2: Anomaly Detection
* Open category detection with guarantees



High Reliability Human Organizations

Todd LaPorte, Gene Rochlin, and Karlene Roberts (weick, et al., 1999)

* Preoccupation with failure
* Fundamental belief that the system has unobserved failure modes
* Treat anomalies and near misses as symptoms of a problem with the system

* Reluctance to simplify interpretations
* Comprehensively understand the situation

* Sensitivity to operations
 Maintain continuous situational awareness
e Commitment to resilience

* Develop the caloability to detect, contain, and recover from errors. Practice
improvisational problem solving

» Deference to expertise

* During a crisis, authority migrates to the person who can solve the problem,
regardless of their rank



Designing Al Systems to be HROs

 Maintain Situational Awareness

* Al methods are very good at integrating data from multiple sensors and
effectors to estimate a probability distribution over states

e Detect Anomalies and Near Misses
 Anomalies: Yes
* Near Misses: Research needed

* Generate Candidate Explanations for Anomalies & Near Misses
* Very little work: Research needed

* Improvise Solutions

* Improvisational problem solving that extends or operates outside the system
model



Assessment: Designing Al as an HRO

Situational Awareness A mature methods
Detect Anomalies and Near Misses B high-dimension, dynamics
Explain Anomalies and Near Misses D only basic techniques

Improvise Solutions F

I11A 2021



Designing a Human + Al Team as an HRO

* Even very powerful Al systems will be surrounded by a human team

e Situational Awareness

* Al can track the situation, but humans and Al must establish a shared mental model
of the situation: Research needed

* Humans must be aware of what version of the Al system they are using. When was it
last updated/retrained? Research needed

 Detect Anomalies and Near Misses

* Al system must understand and predict behavior of human team (and detect
anomalous behavior)

* Al and Humans must work together: interactive anomaly detection
* Generate Candidate Explanations for Anomalies & Near Misses
* Very little work: Research needed

* Improvise Solutions
* Al should support human improvisational problem solving: Research Needed

* Example: mixed-initiative planning



Assessment: Human + Al HROs

Situational Awareness C poor Ul, poor communication
Detect Anomalies and Near Misses C some work on user feedback

Explain Anomalies and Near Misses D only basic techniques

Improvise Solutions D mixed-initiative planning
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Part 1: Competence Modeling:

Prospective MDP Performance Guarantees

[D & Hostetler, unpublished]

Human decision maker must decide
whether to tell an Al assistant to execute
policy i starting in state s, for h steps

Al assistant provides a trajectory-wise
prediction interval that guarantees with
probability 1 — 6 that its behavior will be
inside the interval

So

—— How will you behave? ———

A

trajectory-wise
prediction interval
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Summary of the Approach

* Repeat N times
» Sample a starting state s, ~ Py(+)

* Execute m for h steps to obtain a
trajectory

* Apply our new technique

e Perform quantile regression to learn
two functions

_ ) : ) :
« F/1 (SO,E) an estimate of the 2 quantile
of the return attime t
- [9) . 6
« F1 (so, 1-— —) an estimate of the 1 — -
quantile of the return at time t
* Adjust these to obtain valid prediction

intervals using a new method,
SCALEDSDTRAJECTORY
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Quantile Regression

* P(y|x) depends arbitrarily on x
* F(ylx)

e cumulative distribution function
of yatx

* F7'(qlx)
 the value of y such that
F(ylx) =q =
* Many algorithms for quantile
regression

* We employ Quantile Random
Forests (Meinshausen, 2006) to

computethe §/2and1 — /2
quantiles
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Quantile Regression for Trajectories

Discrete time MDP with state space §, starting state
distribution Py, and fixed policy

h-step trajectory T
* sample sy ~ P,
* execute 1 for h steps
* collect states, actions, and rewards into T

Define a behavior function B(z, t) to summarize the
behavior of the policy at time ¢t

* some aspect of s;

* immediate reward

e cumulativerewardry; + -+ 141

e futurerewardr +71p4q + -+ 14

* b(7) = (B(T, 1), ..., B(t, h)) is the “behavior vector” of T

Fit quantile regression functions for each time step

« F71(sy,8/2) an estimate of the §/2 quantile of the return at
timet

* F71(so,1— 6/2) an estimate of the 1 — §/2 quantile of the
return at time t

Cumulative Reward
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Conformal Guarantees

Romano, Patterson & Candes (NeurlPS 2019) Conformalized
Quantile Regression

Idea: Compute the “error” between the observed values y; and
the predicted quantile F~1(x;; q) and conformalize to get a
“correction”

Two data sets:
* Dj,: used for quantile regression F~1(x; q)
* D,: used for conformalization

For (x;,y;) €ED,; i=1,..,n
c =y —F (x5 q)
Sort to obtain c(q), ..., C(n)
Bound: hi(x) = F_l(x; q) + C([(1-8)(n+1)])

Let (X;,4+1, Vn+1) be a new data point _ - :
* Cn+1'= VYn+1 — F_l(xn+1' q) - - x

Claim: The c; values are exchangeable = rank of ¢, .1 will be
uniformly distributed in c(q), ..., C(n+1)

Therefore, Py 41 < hi(xp41)]1=1—-6



Conformal Guarantees in h dimensions:
Compute “exceedances” for each b;

* X; ¢ = max (O, Ft_l (So (Ti)»g) — b, bi,t - Ft_1 (SO(T)' 1 - S))

[lIA 2021



Conformalized Quantile Regression: SCALEDSDTRAJECTORY

* Compute 6, of the exceedances x.; at
time t using small additional data set

* Rescale exceedances: x;, == x; /8

* Compute c; for each trajectory in
calibration data set
* € = max X; ¢

* Compute order statistics ¢(y), ..., C(n)

* B = cqa-s)n+ 1))

log(s0(1)) = Fi *(so(7),6/2) — Bé,
hit(so(f)) = F M (so(1),1 - 6/2) + Bé;

Cumulative Reward

0
I

-20
l

Test Trajectory 60

-40
|

-60
l

-80
L

T
40

T
50

T T T
10 20 30




Theorem. The behavior vector b*(7*) will fall within the prediction
interval [lo(so(r*)), hi(so(r*))] with probability 1 — &, where the
probability is over the choice of random starting states s, ~ P, and any
randomness in the policy and MDP dynamics.

See also: Lei, Rinaldo & Wasserman (2013). Related result for general
functional data



Application:
Tamarisk Invasions in River Networks

States:
» 7 edge river network
* edge can be
* |:invaded with tamarisk tree
* N: occupied by native tree
* E:empty
Actions:
* Plant native
* Eradicate tamarisk
* Eradicate + Plant
* No-Op
Budget restricts us to one action on one edge per
time step

See Hall, Albers, Alkaee-Taleghan, Dietterich (2018)
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Tamarisk
Prediction
Interval
Coverage

Raw QR: 0/16
Strict: 16/16
Cl: 16/16
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MDP 2: Starcraft Battles

* Reinforcement Learning Scenario
 StarCraft battle

* Red forces will be receiving an unknown
number of reinforcements at t = 14

* Blue forces receive rewards for winning the
battle and for destroying Red units; negative
rewards for losing Blue units

* Value of the starting state is the sum of future
rewards

* Goal: Provide probabilistic guarantee on the
total Blue Team reward

A 2021
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Careful Interpretation of Prediction Intervals

* The 80% guarantee says that over all queries x, drawn from the same
distribution as the training trajectories, 80% of the time, the true 7,
will lie within the prediction interval

* |t is not a pointwise guarantee

* Theorem: A pointwise guarantee is impossible
e Barber, Candes, Ramdas, Tibshirani (arXiv 1903.04684)



Part 2: Runtime Open Category Detection

[Liu, Garrepalli, D, Fern: ICML 2018]

* Training data {(x;, y;)} for y; €
{1, ..., K} known categories Known

Classes
* Test data {(xj,yj)} for y; €
{1,..,K,K+1,.., K+ U}withU
unknown classes

* ML system should detect the
queries that belong to novel
categories B[B|C|

Technology

Volvo's driverless cars 'confused' by Novel

kangaroos Classes

A 2021




Method:
Reject Aliens Using Anomaly Detection

- D a :
Anomaly No "
>77?
X * Detector H Ax) Z1* H Classifier 1
.
Yes

Alien
Alarm

We will assume that a (good) anomaly detector A has been trained

[lIA 2021



Question:
How to set T without labeled data?

Yes

IIIIIIII



Setting T to control false alarms / missed alarms

Typical Anomaly Score Plot

1e-03

* To achieve False Alarm Rate of 7, set
T to the 1 — 1 quantile of the A(x)
distribution for known classes

8e-04

A(x) for known classes

* |s there a way to control the Missed
Alarm Rate to be no more than n?
We need to estimate the n quantile
of the A (x) distribution for the
unknown classes

Ge-04

Density

4e-04

A(x) for unknown classes

2e-04

* We have no labeled data for the
unknown classes, that is why they

0e+00

are unknown! w0 | TMAR

TFAR [I) QOIOO
Anomaly Score




ldea: Use Unlabeled Data that
Contains Novel Class Examples

Nominal Distribution Mixture Distribution

Where
D, = Alien Distribution
a = Proportion of Aliens

Sample Sample

I11A 2021



Notation:

Let Fy(x) = CDF of A(Dy)
E,, (x) = CDF of A(D,,)
F,(x) = CDF of A(D,)

Dm = (1 — CZ)DO + C(Da
implies that
Fn(x) = (1 = a)Fo(x) + aF,(x)



CDFs of Nominal, Mixture, and Alien Anomaly Scores

1.00 -

Fy
0.75-
0.50 -

0.25-

0.00 -

0.00 0.25 0.50 0.75 1.00
Anomaly score

Fn(x) — (1 — a)Fy(x)
a

Fa(x) —
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We Only Have The Empirical CDFs

1.00 A

0.00 0.25 0.50 0.75 1.00
Anomaly score

Fn(x) — (1 = a)Fy(x)

ﬁa(x) = 0
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Choosing the estimate Ty, 45

EstimateTau(S, S,,, MAR, a):
* Anomaly scores of Sy: X1, X5, "+, X
* Anomaly scores of S, V1, V2, ", Vim

1.00

0.751

%MARZ max{u (S c/l(S) : Fa(u) < MAR},
where
S = {xl)xZ) ’“;xk;}ﬁ;}’z; )ym }

0.50

0.25

0.001

0.00 0.25 0.50 0.75 1.00
Anomaly score
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Theorem 1 (Finite Sample Guarantee)

Algorithm 1 will return a threshold 7,that achieves an alien detection rate of
at least 1 — (MAR + €) with probabi?ity 1-6

> i (O (5
— 2  1—-+1-6 \€ a !

Assume F, and F, continuous with convex support. |Sy| = |S,,| = n
Foranyeand 6 € (0,1).

1
€2 a?

The data size n required grows in O( log%)

[lIA 2021



Estimating the mixing proportion «

* The mixing proportion is not
identifiable in general

 However, under reasonable
assumptions, we can obtain an
estimate a, guaranteed with high
probability to be a lower bound
on «

* Comparison of five estimators

* bt_patrasen comes closest to
achieve the target recall of 0.95 on
six datasets

* Liu, Mondal, Dietterich (under
review)

1.00 - . est_name
’\\ bt_patrasen
- \ F’- i c_patrasen
0.75 =/ — c_roc
.- __1.;" — rocC
- AT | spy
0.50 /"j truth
0.25 -
0.00 -
= o o
o ®
r o @ % = 2
029 T S 5
a O & G 3
O
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Three Experimental Questions

1. How accurate is our estimate of Ty 4p?
2. How loose is the bound on n?
3. How good are Recall and FAR in practice?

A 2021



Q1: How accurate is our estimate of Tq?

1

0.95 ______-%-——-—E—IEL————E—!E——E—I--I-!-E:}—!—I—'—- (1_q)=0.95
S e § :
phobg |

Nt

0.8

Recall
e

0.75

ol

0.65
n= \100---10000 100 10000 100---10000, 100 - 10000 100 - 10000

v \f J %\E %TE’ “—\'*’
I | |
a=0.01 a =0.05 a=0.10 a=0.20 a = 0.50
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Q2: How loose is the bound on n?

I11A 2021

n*

1E+07 -~
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1E+06 1 -©-0.01
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Q3: How good are Recall and FPR in practice?
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©
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Q3: How good are Recall and FPR in practice?
UCI Datasets
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Q4: What is the impact of usinga’ > «?

0.4
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o
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Concluding Remarks

* Robust Al and High-Reliability Organizations
* Competence modeling for HRO teamwork
* Anomaly Detection

* Competence Modeling

 Calibrated prediction intervals for reinforcement learning
* Quantile regression (value function approximation) to predict bounds on reward
* Conformalization to obtain tight probabilistic guarantees

* Anomaly Detection

* Open category detection with guarantees
* Theoretical guarantees on missed alarm rate for novel-class queries
* Practical algorithms for estimating novelty proportion and setting alarm threshold
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