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Outline
• Part 1: Integrating ML into traditional safety engineering processes

• Scenario-based data collection
• Verification-based data collection
• Risk quantification

• Part 2: ML in open worlds: Safety as Control
• Detecting anomalies, near misses, and departures from the Operational 

Design Domain
• Adaptation strategies

• Part 3: Safety as Continual Redesign
• Design is never finished
• Resilient systems are “Poised to adapt”
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Traditional Safety Engineering
• Define the operational design domain (ODD)
• Develop functional, non-functional, and safety requirements

• Scenario analysis: harms, severity, probability
• Determine socially acceptable risk

• Top-down design
• Decompose functional, non-functional, and safety requirements 
• Decompose the design into subsystems, subcomponents, subroutines, etc.
• Introduce safety mitigations as needed (e.g., redundant subsystems)
• Develop verification methods (tests, formal checks)

• Verification: The system meets the requirements (safety cases; software 
testing, model-based verification)

• Validation: Checking that the system performance meets the application 
needs

• Certification and documentation: Regulatory requirements
• Deployment

• Maintenance and Monitoring: Ensuring all components are performing at 
required levels. 
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• Rear collision
• Side collision
• Drive off road

Harms:
• Death
• Severe injury
• Physical damage
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Contrast: Traditional Machine Learning Methodology
• Aggregate data from as 

many sources as possible
• Data was often collected for 

other purposes
• “Big Data” is “the new oil”
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Consequences of this Methodology

• No guarantee that the Operational Domain is covered well
• No guarantee that the ML system will learn a model that meets the 

safety requirements
• Learning Theory only provides statistical guarantees for inputs drawn 

from the same distribution as the training data
• If the actual distribution in operations concentrates on a region of 

poor coverage, error can be arbitrarily large/serious
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Achieving Distribution-Independent Accuracy 
in Machine Learning Components

• Deliberately collect training data to attain good coverage of all cases 
(including corner cases) 

• Risk-driven sampling techniques (e.g., [Wang, et al., 2023])

• Verify approximation quality of the learned model
• Collect additional examples as needed
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Sampling via Surrogate Model Optimization
(also known as Bayesian Optimization)

• Collect an initial real-world sample and train the ML 
component

• Build and validate a simulation model (“digital twin”)

Repeat
• Fit the ML model
• Fit surrogate model (e.g., Gaussian Process)

• Provides estimates of “epistemic uncertainty” 
• Select a batch of new cases using an “acquisition function”

• Collect training example for each case using simulation

Until target metrics are attained

• Metrics of interest: 
• Coverage of the state space
• Good coverage of hazardous states

ASU April 2025 15

Cd
ip

ao
lo

96
 -

O
w

n 
w

or
k,

 C
C 

BY
-S

A 
4.

0

https://commons.wikimedia.org/w/index.php?curid=47589433


Example: Generating an Adversarial 
Scenario with AdvSim
[Wang, et al., 2023]

• Given: original trajectory from expert driver
• trajectories of all “actors” (vehicles, pedestrians, 

cyclists), LiDAR data, map
• Select one or more vehicles and perturb their 

behavior to maximize an adversarial loss for 
the end-to-end system

• collisions, law violations, passenger discomfort
• Perturbation is at the level of a kinematic 

trajectory (acceleration and curvature)
• Simulate the perturbed LiDAR data
• Run the current end-to-end system 
• Score the adversarial loss
• Repeat 𝑁𝑁 times and keep the perturbation 

with the largest adversarial loss
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AdvSim Results
• 376% increase in collisions
• Small increases in discomfort
• Decreases in accuracy of 

perception and trajectory 
predictions
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Updating the Model
• Retrain on the original data + 

adversarial cases
• Collisions reduced to 17.7%

• To be determined: What improvement 
is possible with more iterations?
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Notes
• AdvSim operates at the semantic level (agent behavior)

• Much smaller search space than searching in image space
• Requires high fidelity simulation of imaging

• Adversarial collision rate is much higher than expected rate under 
normal driving conditions

• See below
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Verifying Correct Behavior of ML Component
• How can we gain assurance that the ML 

system has learned the correct function?
• We have no explicit specification of 

correctness aside from the training data
• Are there regions where the learned 

function behaves badly?
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Thesis proposal 1: 
Bound the difference between the fitted function and linear 
interpolation of the training data
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𝑥𝑥1
𝑥𝑥2• Consider two adjacent training examples 

𝑥𝑥1 and 𝑥𝑥2
• Let 𝛼𝛼 ∈ 0,1

max
𝛼𝛼

𝑓𝑓 𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2
−

𝛼𝛼𝛼𝛼 𝑥𝑥1 + 1 − 𝛼𝛼 𝑓𝑓(𝑥𝑥2)

• If this is small, the function behaves well 
in between the training data

• This can be solved by the methods of 
[Singh, et al. 2021] (but those may not 
scale)



Interpolating in the Right Space

• This looks great in 1 dimension …
• We need to interpolate in a semantic 

space (like AdvSim)
• For each known training case, identify the 
𝑘𝑘 most similar cases, where 𝑘𝑘 ≈ the 
number of parameters in a scenario

• Consider all convex combinations of those 
𝑘𝑘 + 1 cases to find the maximum 
discrepancy between a linear 
interpolation and the fitted neural 
network
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Verification-Based Active Learning

• 𝛼𝛼𝑞𝑞 ≔ argmax
𝛼𝛼

𝑓𝑓(𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2)
−

𝛼𝛼𝛼𝛼 𝑥𝑥1 + 1 − 𝛼𝛼 𝑓𝑓(𝑥𝑥2)
• Generate a new example at 
• 𝑥𝑥𝑞𝑞 = 𝛼𝛼𝑞𝑞𝑥𝑥1 + 1 − 𝛼𝛼𝑞𝑞 𝑥𝑥2
• Obtain 𝑦𝑦𝑞𝑞
• Retrain the network on 𝑥𝑥𝑞𝑞 ,𝑦𝑦𝑞𝑞
• Repeat until no failure regions can be 

found
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Estimating Risk = Probability of Harm
• If we have discarded the data distribution, how can we estimate risk?
• Answer: Simulate system operation and measure the probability of harm
• Challenges:

• We must be able to simulate system operation
• Harms are very rare

• Solution: 
• Fit a probabilistic model 𝑃𝑃(𝑠𝑠) of normal operations

• Probability of initial states
• Probability of system behavior
• Probability of the behaviors of other agents

• Develop a proposal distribution 𝑄𝑄 𝑠𝑠 that greatly increases the probability of harms
• Reuse our design data?

• Simulate according to 𝑄𝑄(𝑠𝑠)
• Apply importance reweighting 𝑃𝑃 𝑠𝑠

𝑄𝑄 𝑠𝑠
to each hazardous state 𝑠𝑠 that is observed
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Bayesian Risk Estimation
[Moss, Kochenderfer, Gariel, Dubois, 2024]

• Apply Surrogate Model Optimization to discover failure regions
• Combine three “acquisition functions”

• Explore regions of high operational likelihood 𝑃𝑃(𝑥𝑥) and high epistemic 
uncertainty

• Explore regions near the boundaries of failure regions (hazards)
• Explore the interiors of the failure regions
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Example: Runway Detection
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57.2% of samples were in failure regions
𝑝̂𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 5.8 × 10−3

Only 0.6% of Monte Carlo samples are in 
failure regions 



With these tools, ML can be integrated into the 
safety engineering process

ASU April 2025 27

N.B. No single validation 
method suffices to 
ensure safety. See 
[Kochenderfer, et al., 
Algorithms for 
Validation 
(forthcoming)]

• Define the operational design domain (ODD)
• Develop functional, non-functional, and safety requirements

• Scenario analysis: harms, severity, probability
• Determine socially acceptable risk

• Top-down design
• Decompose functional, non-functional, and safety requirements 
• Decompose the design into subsystems, subcomponents, subroutines, etc.
• Introduce safety mitigations as needed (e.g., redundant subsystems)
• Develop verification methods (tests, formal checks)

• Verification: The system meets the requirements (safety cases; software 
testing, model-based verification)

• Validation: Checking that the system performance meets the application 
needs

• Certification and documentation: Regulatory requirements
• Deployment

• Maintenance and Monitoring: Ensuring all components are performing at 
required levels. 



Outline
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Systems View of Safety
[Leveson 2011: Engineering a Safer World]

• Safety is a control problem
• Maintain the safety of the system in the presence of disturbances

• What is the “controller”?
• The human organizations that build, operate, and maintain it
• Government regulators
• Elected officials

• What are the “disturbances”? 
• Budget cuts and staff reductions

• Systems tend to migrate toward the edges of safety
• Unknown unknowns

• Environmental Novelty

• The controller must detect and compensate for these 
disturbances

• Today: It is the exclusively the humans who do this
• Can AI help?
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Unknown Unknowns: 
Detecting Novel Failure Modes 

• Key performance indicators [Weick, et al., 1999]
• Number of anomalies detected
• Number of near misses detected

• These provide evidence of novel failure modes before
they cause harms

• What is the status of AI methods for detecting 
anomalies and near misses?
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Anomaly Detection in Computer Vision

• Extensively studied for the 
past 10+ years

• [Ruff, et al., 2021; Dietterich & 
Guyer, 2022]

• Advances in deep learning and 
vision foundation models have 
produced major 
improvements

• No method can guarantee to 
detect all novelty
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Detecting Novel Hazards
• Perception Failures

• Novel objects 
• Novel imaging conditions
• Insufficient sensors

• Control Failures
• Near misses
• Collisions
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Novelty Detection in Machine Learning

• Distance-Based Methods
• Define a distance 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
• Given a query 𝑥𝑥𝑞𝑞, compute

min
𝑥𝑥∈𝐷𝐷

𝑑𝑑(𝑥𝑥𝑞𝑞 , 𝑥𝑥)

• Density-Based Methods
• Fit a probability density 𝑃𝑃(𝑥𝑥𝑖𝑖)
• Given a query 𝑥𝑥𝑞𝑞 compute

− log𝑃𝑃 𝑥𝑥𝑞𝑞
• Densities are always dependent on 

distances
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Deep Anomaly Detection
• An important advantage of deep learning is that it learns its own 

internal features
• Euclidean distance in pixel space is not useful

• Problem: It only learns the internal features that it needs for the 
training task. These features may not separate novel queries 𝑥𝑥𝑞𝑞 from 
nominal data
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Experiment: 
Deep Learned Features in Computer Vision
• DenseNet with 384-dimensional 

latent space.  

• CIFAR-10: 6 known classes, 4 novel 
classes

• Light green: novel classes

• Darker greens: known classes

• Images from known classes are 
“pulled out” from the center of the 
space

• Most novel-class images stay 
toward the center of the space; 
others overlap with known classes

• Novel images are “inliers” 
36

Dietterich & Guyer, 2022
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The Learned Representation is Promising
But Not a Complete Solution

• Many novel-class images are  
mapped into clusters of known 
images

• The learned representation can’t 
detect the novelty
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How can we learn better features?

• Foundation Model Approach: 
• Train on all the data we can find
• Artificially introduce variation through augmentations

• Rotations, flips, simulated snow, rain, pixel noise, etc.
• Synthetic data

• The deep representation learns to “see” (represent) the 
known world

• A OneWheel will still be novel, but the model should have the 
right features to represent it and thereby separate it from all 
known objects
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Detecting Near Misses
• Case 1: Known Hazards

• During the design process, we have defined 
hazardous states and introduced margins of 
safety around them

• Come too near to another object
• Extreme steering and braking

• Design should include sensors to detect 
when we enter those safety margin regions
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Thesis Proposal 2:

Case 2: Counterfactual Near Misses
• Automatic Vehicle safety conditions

• At least 2m separation between vehicle and 
pedestrians, cyclists, stationary obstacles

• Pedestrian sees car coming and jumps out of 
the way

• Car determines that it met the required 2m 
separation  “no problem”

• Counterfactual: There would have been a 
safety violation if the pedestrian had not taken 
evasive action

• Pearl’s Theory of Causality provides the formal 
basis for computing counterfactual near 
misses [Pearl, 2009; Pearl & MacKenzie, 2018]
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Automated Diagnosis and Repair

• Given a detected anomaly or hazard, what components contributed 
and how should they be modified?

• Diagnostic system requires 
• A causal model of the system including information flows
• Reasoning capability to hypothesize potential contributing components

• Repairs can range from simple retraining of ML components to entire 
system redesign

• What repairs can be safely applied by the AI system itself?
• Adding a new hazard region into the path planner
• Preparing training data to update the perceptual system and controllers
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Outline
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Creating Resilient Systems
• Engineered systems are “robust yet fragile”

• Robust to the known hazards
• Vulnerable to novel failure modes

• Optimization for cost, weight, etc. results in 
designs near the edge of the feasible region

• Highly Optimized Tolerances (HOT) theory. 
Carson & Doyle (2002)
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Creating Resilient Systems
• David Woods: A resilient system is one that is 

“poised to adapt”
• [Woods, 2024a, 2024b]

• An AI perspective:
• The entire design process should be regarded as 

one path through a design space
• Adaptation requires following new paths through 

that space
• Build AI tools for continual design
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required



Summary
• ML and traditional safety engineering: Managing Known Hazards

• High-fidelity simulation
• Risk-driven generation of training data and test cases
• Verification methods to ensure distribution-independent generalization

• Thesis proposal 1: Verification of fitted function properties
• Importance sampling for risk estimation

• Safety as Control
• Novel hazards as system disturbances
• KPIs: Anomalies and Near Misses
• AI methods for anomaly detection are mature
• Counterfactual Near Misses: Unstudied

• Thesis proposal 2: Counter-factual Near Misses
• AI tools for diagnosis and repair can help

• Safety as Resilience: “Poised to Adapt”
• The design space and design process “kept on standby” so that they can be invoked 

whenever adaptation is required
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