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Outline

* Part 1: Integrating ML into traditional safety engineering processes
* Scenario-based data collection
* Verification-based data collection
* Risk quantification

* Part 2: ML in open worlds: Safety as Control

* Detecting anomalies, near misses, and departures from the Operational
Design Domain

* Adaptation strategies

* Part 3: Safety as Continual Redesign
e Design is never finished
* Resilient systems are “Poised to adapt”



raditional Safety Engineering

Define the operational design domain (ODD)

Develop functional, non-functional, and safety requirements
e Scenario analysis: harms, severity, probability
* Determine socially acceptable risk

Top-down design
* Decompose functional, non-functional, and safety requirements
 Decompose the design into subsystems, subcomponents, subroutines, etc.

* Introduce safety mitigations as needed (e.g., redundant subsystems)
* Develop verification methods (tests, formal checks)

Verification: The system meets the requirements (safety cases; software
testing, model-based verification)

Valicéllation: Checking that the system performance meets the application
needs

Certification and documentation: Regulatory requirements

Deployment

* Maintenance and Monitoring: Ensuring all components are performing at
required levels.
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raditional Safety Engineering

* Define the operational design domain (ODD)

* Develop functional, non-functional, and safety requirements
e Scenario analysis: harms, severity, probability

Determine socially acceptable risk

* Top-down design

Decompose functional, non-functional, and safety requirements
Decompose the design into subsystems, subcomponents, subroutines, etc.
Introduce safety mitigations as needed (e.g., redundant subsystems)
Develop verification methods (tests, formal checks)
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raditional Safety Engineering Semi Driving on Freeway

Define the operational design domain (ODD)

Develop functional, non-functional, and safety requirements Somcemtel veriiation Orend
* Scenario analysis: harms, severity, probability Project Requirements Validation System
* Determine socially acceptable risk Definition and Verification
Architecture and Validation
Top-down design _ Integration, _
« Decompose functional, non-functional, and safety requirements Design Verification Testand

Integration
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Contrast: Traditional Machine Learning Methodology

* Aggregate data from as
many sources as possible

e Data was often collected for
other purposes

e “Big Data” is “the new oil”

IM&AGENET

14,197,122 images, 21841 synsets indexed

About

[Deng, et al, 2009]

Composition of the Pile by Category

* Academic * Internet * Prose * Dialogue * Misc

PubMed Central

[Gao, et al, 2020]

ArXiv
PMA
USPTO Phil  [NIH |OpenWebText2

The Pile: An 800GB Dataset of Diverse Text for Language Modeling
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Consequences of this Methodology

* No guarantee that the Operational Domain is covered well

* No guarantee that the ML system will learn a model that meets the
safety requirements

* Learning Theory only provides statistical guarantees for inputs drawn
from the same distribution as the training data

* If the actual distribution in operations concentrates on a region of
poor coverage, error can be arbitrarily large/serious

We need a new methodology




Achieving Distribution-Independent Accuracy
in Machine Learning Components

e Deliberately collect training data to attain good coverage of all cases
(including corner cases)

» Risk-driven sampling techniques (e.g., [Wang, et al., 2023])

* Verify approximation quality of the learned model
* Collect additional examples as needed



Sampling via Surrogate Model Optimization
(also known as Bayesian Optimization)

Prediction with Uncertainty

1.5

* Collect an initial real-world sample and train the ML
component

e Build and validate a simulation model (“digital twin”)

Repeat
* Fit the ML model
* Fit surrogate model (e.g., Gaussian Process)
* Provides estimates of “epistemic uncertainty”
* Select a batch of new cases using an “acquisition function” -1.5
* Collect training example for each case using simulation

Until target metrics are attained

* Metrics of interest:
* Coverage of the state space
* Good coverage of hazardous states
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https://commons.wikimedia.org/w/index.php?curid=47589433

Example: Generating an Adversarial
Original Scenario

Scenario with AdvSim

[Wang, et al., 2023]
e Given: original trajectory from expert driver I =
* trajectories of all “actors” (vehicles, pedestrians, = .
cyclists), LiDAR data, map ® o %
» Select one or more vehicles and perturb their
behavior to maximize an adversarial loss for AdvSim Scenario
the end-to-end system
 collisions, law violations, passenger discomfort
* Perturbation is at the level of a kinematic =
trajectory (acceleration and curvature) T} w.._.....
Simulate the perturbed LiDAR data == %
* Run the current end-to-end system " ot
e Score the adversarial loss
Perturbed Trajectory Ego-vehicl
* Repeat N times and keep the perturbation — go:me

with the largest adversarial loss

Perturbed vehu:le Collided actor

Rummsmsnssmsmmsmsnammena® 0 Remsssssssssssssssesd



AdvSim Results

e 376% increase in collisions
* Small increases in discomfort

* Decreases in accuracy of
perception and trajectory
predictions
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Updating the Model

* Retrain on the original data +
adversarial cases

e Collisions reduced to 17.7%

* To be determined: What improvement
is possible with more iterations?
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Notes

* AdvSim operates at the semantic level (agent behavior)
 Much smaller search space than searching in image space
* Requires high fidelity simulation of imaging
* Adversarial collision rate is much higher than expected rate under
normal driving conditions
* See below



Verifying Correct Behavior of ML Component

* How can we gain assurance that the ML
system has learned the correct function?

1.0

* We have no explicit specification of _os
correctness aside from the training data

0.6

* Are there regions where the learned
function behaves badly?

0.0

training data

——IJearned network

0.6 0.8



Thesis proposal 1:

Bound the difference between the fitted function and linear

interpolation of the training data

* Consider two adjacent training examples
x1 and x5

* Leta € |0,1]

flaxy + (1 —a)x,)
max —

* If this is small, the function behaves well
in between the training data

e This can be solved bg the methods of
[Sir}gl)w, et al. 2021] (but those may not
scale
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Interpolating in the Right Space

* This looks great in 1 dimension ...

* We need to interpolate in a semantic
space (like AdvSim)

* For each known training case, identify the
k most similar cases, where k = the
number of parameters in a scenario

e Consider all convex combinations of those
k + 1 cases to find the maximum
discrepancy between a linear
interpolation and the fitted neural
network

14
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Verification-Based Active Learning

flax; + (1 —a)xy)

* a4 = argmax
a

* Generate a new example at
*Xg = QgXq + (1 — aq)xz

* Obtain y,

* Retrain the network on (xq,yq) -
* Repeat until no failure regions can be training data

——retrained

found

0.0
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Estimating Risk = Probability of Harm

* If we have discarded the data distribution, how can we estimate risk?
* Answer: Simulate system operation and measure the probability of harm

* Challenges:
 We must be able to simulate system operation
* Harms are very rare

* Solution:

* Fit a probabilistic model P(s) of normal operations
* Probability of initial states
* Probability of system behavior
* Probability of the behaviors of other agents

« Develop a proposal distribution Q (s) that greatly increases the probability of harms
* Reuse our design data?

* Simulate according to Q(s) hes)

* Apply importance reweighting W‘Z) to each hazardous state s that is observed



Bayesian Risk Estimation
[Moss, Kochenderfer, Gariel, Dubois, 2024]

* Apply Surrogate Model Optimization to discover failure regions

 Combine three “acquisition functions”

* Explore regions of high operational likelihood P(x) and high epistemic
uncertainty

* Explore regions near the boundaries of failure regions (hazards)
* Explore the interiors of the failure regions



Example: Runway Detection
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e
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number of samples

57.2% of samples were in failure regions
ﬁfail = 5.8 X 10_3

Only 0.6% of Monte Carlo samples are in
failure regions
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With these tools, ML can be integrated into the

safety engineering process

Define the operational design domain (ODD)

Develop functional, non-functional, and safety requirements
* Scenario analysis: harms, severity, probability
* Determine socially acceptable risk

Top-down design
 Decompose functional, non-functional, and safety requirements
 Decompose the design into subsystems, subcomponents, subroutines, etc.
* Introduce safety mitigations as needed (e.g., redundant subsystems)
» Develop verification methods (tests, formal checks)

Verification: The system meets the requirements (safety cases; software
testing, model-based verification)

VaIicéIation: Checking that the system performance meets the application
needs

Certification and documentation: Regulatory requirements

Deployment

* Maintenance and Monitoring: Ensuring all components are performing at
required levels.

N.B. No single validation
method suffices to
ensure safety. See
[Kochenderfer, et al.,
Algorithms for
Validation
(forthcoming)]



Outline

* Part 2: ML in open worlds: Safety as Control

* Detecting anomalies, near misses, and departures from the Operational
Design Domain

* Adaptation strategies

* Part 3: Safety as Continual Redesign
e Design is never finished
* Resilient systems are “Poised to adapt”



Systems View of Safety

[Leveson 2011: Engineering a Safer World]

Safety is a control problem

* Maintain the safety of the system in the presence of disturbances

What is the “controller”?

* The human organizations that build, operate, and maintain it

* Government regulators
* Elected officials

What are the “disturbances”?

* Budget cuts and staff reductions

* Systems tend to migrate toward the edges of safety
* Unknown unknowns

* Environmental Novelty

The controller must detect and compensate for these

disturbances

* Today: It is the exclusively the humans who do this
* Can Al help?

® ® e Government
H regulators

([ P4 System

[ J
m update team

Safety

I A
@
- monitor

.
Driver
4

D

Al controller
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Unknown Unknowns:
Detecting Novel Failure Modes

» Key performance indicators [Weick, et al., 1999]
e Number of anomalies detected
* Number of near misses detected

* These provide evidence of novel failure modes before
they cause harms

* What is the status of Al methods for detecting
anomalies and near misses?



Anomaly Detection in Computer Vision

e Extensively studied for the
past 10+ years

e [Ruff, et al., 2021; Dietterich &
Guyer, 2022]

* Advances in deep learning and
vision foundation models have
produced major
Improvements

* No method can guarantee to
detect all novelty

Improvised obstacles due to pedestrian
pathway maintenance.
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Detecting Novel Hazards

* Perception Failures
* Novel objects
* Novel imaging conditions
* Insufficient sensors

e Control Failures
* Near misses
e Collisions



Novelty Detection in Machine Learning

e Distance-Based Methods
* Define a distance d(xl-,xj)

* Given a query x,, compute

mind(x,, x
XED (q' )

* Density-Based Methods
* Fit a probability density P(x;)
* Given a query x,; compute
—log P(xq)

* Densities are always dependent on

distances

mixture$y

mixture$x




Deep Anomaly Detection

* An important advantage of deep learning is that it learns its own
internal features

* Euclidean distance in pixel space is not useful

* Problem: It only learns the internal features that it needs for the
training task. These features may not separate novel queries x, from
nominal data



Experiment:
Deep Learned Features in Computer Vision

DenseNet with 384-dimensional
latent space.

CIFAR-10: 6 known classes, 4 novel
classes

Light green: novel classes

Darker greens: known classes

Images from known classes are
“pulled out” from the center of the
space

Most novel-class images stay
toward the center of the space;
others overlap with known classes

Novel images are “inliers”

20 -

6 Known
Classes

15

10 4

Dietterich & Guyer, 2022
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The Learned Representation is Promising
But Not a Complete Solution

* Many novel-class images are
mapped into clusters of known
Images 15 -

 =»The learned representation can’t 0]
detect the novelty 5 |
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How can we learn better features?

* Foundation Model Approach:
* Train on all the data we can find

* Artificially introduce variation through augmentations
* Rotations, flips, simulated snow, rain, pixel noise, etc.

e Synthetic data Source: onewheel.com

U 3 U4 P } v
A A P LT e 7, PR
(84 y.&é\\:- ; : 3B (:!‘:. y?
.': l'l’ .
..‘ Paree o T o) 3 :
L 'ls;?‘ e i £% By :
A t i 3 !
A L i . -

* The deep representation learns to “see” (represent) the
known world

* A OneWheel will still be novel, but the model should have the
right features to represent it and thereby separate it from all
known objects
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Detecting Near Misses

e Case 1: Known Hazards

* During the design process, we have defined
hazardous states and introduced margins of
safety around them

 Come too near to another object
e Extreme steering and braking

e Design should include sensors to detect
when we enter those safety margin regions

Hazards

Safety
Margins

Operational
Design
Domain




Thesis Proposal 2:

Case 2: Counterfactual Near Misses

e Automatic Vehicle safety conditions

* At least 2m separation between vehicle and
pedestrians, cyclists, stationary obstacles

e Pedestrian sees car coming and jumps out of
the way

* Car determines that it met the required 2m
separation = “no problem”

e Counterfactual: There would have been a
safety violation if the pedestrian had not taken
evasive action

e Pearl’s Theory of Causality provides the formal
basis for computing counterfactual near
misses [Pearl, 2009; Pearl & MacKenzie, 2018]

o

| [

|11y




Automated Diagnosis and Repair

* Given a detected anomaly or hazard, what components contributed
and how should they be modified?

* Diagnostic system requires
* A causal model of the system including information flows
* Reasoning capability to hypothesize potential contributing components

* Repairs can range from simple retraining of ML components to entire
system redesign
* What repairs can be safely applied by the Al system itself?

* Adding a new hazard region into the path planner
* Preparing training data to update the perceptual system and controllers



Outline

* Part 3: Safety as Continual Redesign
e Design is never finished
* Resilient systems are “Poised to adapt”



Creating Resilient Systems

* Engineered systems are “robust yet fragile”
e Robust to the known hazards
* VVulnerable to novel failure modes

* Optimization for cost, weight, etc. results in
designs near the edge of the feasible region

e Highly Optimized Tolerances (HOT) theory.
Carson & Doyle (2002)

Known Hazards

W

Chosen Design

3

Unknown Hazard



Creating Resilient Systems

* David Woods: A resilient system is one that is
“poised to adapt”

* [Woods, 202443, 2024b]

* An Al perspective:

* The entire design process should be regarded as
one path through a design space

e Adaptation requires following new paths through
that space

e Build Al tools for continual design

Design Path

The design space and design process
should be “kept on standby” so that they
can be resumed whenever adaptation is
required
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Summary

* ML and traditional safety engineering: Managing Known Hazards
* High-fidelity simulation
* Risk-driven generation of training data and test cases

* Verification methods to ensure distribution-independent generalization
* Thesis proposal 1: Verification of fitted function properties

* Importance sampling for risk estimation

 Safety as Control
* Novel hazards as system disturbances
KPls: Anomalies and Near Misses
Al methods for anomaly detection are mature
Counterfactual Near Misses: Unstudied

* Thesis proposal 2: Counter-factual Near Misses

Al tools for diagnosis and repair can help

» Safety as Resilience: “Poised to Adapt”

* The design space and design process “kept on standby” so that they can be invoked
whenever adaptation is required
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