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Outline

* Part 1: Integrating ML into traditional safety engineering processes
e Scenario-based data collection
e Verification of function behavior

* Part 2: Safety as Control
* Detecting anomalies and near misses

* Part 3: Safety as Continual Redesign
* Design is never finished
* Resilient systems are “Poised to adapt”



raditional Safety Engineering

* Define the operational design domain (ODD)
* Decompose ODD into scenarios
* Hazard Analysis of each scenario

* Risk Assessment (likelihood and severity of each
harm).

* |dentification of socially acceptable risk

* Design the system to achieve the socially acceptable
risk

* Validate that the system meets the safety
requirements

Semi Driving on Freeway

=

Acceptable Risk of Death:
1 in 108 hours

[Verma, et al., 2010]




Contrast: Traditional Machine Learning Methodology

e Aggregate data from as
many sources as possible

e Data was often collected for
other purposes

e “Big Data” is “the new oil”

IMSAGENET

14,197,122 images, 21841 synsets indexed

About

[Deng, et al, 2009]

Composition of the Pile by Category

* Academic * Internet * Prose * Dialogue * Misc

PubMed Central

StackExchange

ArXiv
PMA
USPTO Phil  [NIH |OpenWebText2 Wikipedia m. YT

[Gao, et al, 2020]

The Pile: An 800GB Dataset of Diverse Text for Language Modeling

IASEAI 2025



Consequences of this Methodology

* No guarantee that the Operational Design Domain is covered well

* No guarantee that the ML system will learn a model that meets the safety
requirements

* Learning Theory only provides statistical guarantees for inputs drawn from
the same distribution as the training data

* If the actual distribution in operations concentrates on a region of poor
coverage, error can be arbitrarily large/serious

We need a new methodology




Achieving Distribution-Independent Accuracy
in Machine Learning Components

* Deliberately collect training data to attain good coverage of all
scenarios

e Risk-driven sampling techniques (e.g., [Wang, et al., 2023])

* Verify approximation quality of the learned model
* Collect additional examples as needed



Verifying Correct Behavior of ML Component

* How can we gain assurance that the ML
system has learned the correct function?

1.0

* We have no explicit specification of
correctness, but we can detect bad
behavior "

training data

——IJearned network
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Proposal: Bound the difference between the fitted
function and linear interpolation of the training data

* Consider two adjacent training examples X,
x1 and x5
* Letax € |0,1] |

flax; + (1 —a)x,) .

0.2

training data

max

——|earned network

0.0 0.2 0.4 0.6 0.8 1.0

* If this is small, the function behaves well
in between the training data

e This can be solved bg the methods of
[Sir}g;\, et al. 2021] (but those may not
scale
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With these tools, ML can be integrated into
the standard safety engineering process

* Deliberately collect training data to attain good coverage of all
scenarios

e Risk-driven sampling techniques (e.g., Wang, et al., 2023)

* Verify approximation quality of the learned model
* Collect additional examples as needed

* N.B. No single validation method suffices to ensure safety. See
[Kochenderfer, et al., Algorithms for Validation (forthcoming)]



Outline

* Part 2: Safety as Control
* Detecting anomalies and near misses

* Part 3: Safety as Continual Redesign
* Design is never finished
* Resilient systems are “Poised to adapt”



Systems View of Safety

[Leveson 2011: Engineering a Safer World]

Safety is a control problem

* Maintain the safety of the system in the presence of disturbances

What is the “controller”?

* The human organizations that build, operate, and maintain it

* Government regulators
* Elected officials

What are the “disturbances”?

e Budget cuts and staff reductions

* Systems tend to migrate toward the edges of safety
e Unknown unknowns

* Environmental Novelty

The controller must detect and compensate for these

disturbances

* Today: It is the exclusively the humans who do this
* Can Al help?
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Unknown Unknowns:
Detecting Novel Failure Modes

* Key performance indicators [Weick, et al., 1999]
* Number of anomalies detected
e Number of near misses detected

* These provide evidence of novel failure modes before
they cause harms

* What is known about Al methods for detecting
anomalies and near misses?



Anomaly Detection in Computer Vision

e Extensively studied for the
past 10+ years

e [Ruff, et al., 2021; Dietterich &
Guyer, 2022]

e Advances in deep learning and
vision foundation models have
produced major
Improvements

* No method can guarantee to
detect all novelty

Unforeseen obstacle due to weather conditions
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Detecting Near Misses

e Case 1: Known Hazards

* During the design process, we have defined Hazards
hazardous states and introduced margins of
safety around them

* Come too near to another object
* Extreme steering and braking %
* Design should include sensors to detect
when we enter those safety margin regions

Safety
Margins

Operational
Design
Domain




Case 2: Counterfactual Near Misses

Automatic Vehicle safety conditions

* At least 2m separation between vehicle and
pedestrians, cyclists, stationary obstacles

Pedestrian sees car coming and jumps out of
the way

Car determines that it met the required 2m
separation = “no problem”

Counterfactual: There would have been a
safety violation if the pedestrian had not taken
evasive action

Pearl’s Theory of Causality provides the formal
basis for computing counterfactual near misses
[Pearl, 2009; Pearl & MacKenzie, 2018]
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Outline

* Part 3: Safety as Continual Redesign
* Design is never finished
* Resilient systems are “Poised to adapt”



Creating Resilient Systems

* Engineered systems are “robust yet fragile”
 Robust to the known hazards
* Vulnerable to novel failure modes

e Optimization for cost, weight, power, etc. Known Hazards %
results in designs near the edge of the %
feasible region

* Highly Optimized Tolerances (HOT) theory.
[Carson & Doyle, 2002]

Chosen Design %

Unknown Hazard



Creating Resilient Systems

e David Woods: A resilient system is one that is
“poised to adapt”

 [Woods, 20244, 2024b]

* An Al perspective:

* The entire design process should be regarded as
one path through a design space

» Adaptation requires following new paths through
that space

e Build Al tools for continual design

Design Path

The design space and design process
should be “kept on standby” so that they
can be resumed whenever adaptation is
required

IASEAI 2025
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Summary

* ML and traditional safety engineering: Managing Known Hazards

* ML needs to develop verification methods to ensure distribution-independent
generalization

e Safety as Control
* Novel hazards as system disturbances
* KPls: Anomalies and Near Misses
e Al methods for anomaly detection are mature
* Al needs methods for detecting counter-factual near misses

 Safety as Resilience: “Poised to Adapt”

* The design space and design process “kept on standby” so that they can be
invoked whenever adaptation is required



Implications for safety of general-purpose Al

* Very wide range of potential harms

* No defined operational design domain (ODD) except in narrow
vertical applications

* Extremely frequent technology disruptions that change the scope of
the system and the potential harms

* Poorly-developed “controller” for maintaining safety

* Organizations responsible for managing the systems after deployment
(commercial and governmental)

e Regulatory frameworks
* Nation state competition
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