
Integrating machine learning 
into safety-critical systems

Thomas G. Dietterich
University Distinguished Professor (Emeritus)

Oregon State University
@tdietterich (X and BlueSky)

tgd@cs.orst.edu

IASEAI 2025 1



Outline
• Part 1: Integrating ML into traditional safety engineering processes

• Scenario-based data collection
• Verification of function behavior

• Part 2: Safety as Control
• Detecting anomalies and near misses

• Part 3: Safety as Continual Redesign
• Design is never finished
• Resilient systems are “Poised to adapt”

IASEAI 2025 2



Traditional Safety Engineering
• Define the operational design domain (ODD)
• Decompose ODD into scenarios
• Hazard Analysis of each scenario
• Risk Assessment (likelihood and severity of each 

harm). 
• Identification of socially acceptable risk
• Design the system to achieve the socially acceptable 

risk
• Validate that the system meets the safety 

requirements
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Semi Driving on Freeway

Acceptable Risk of Death:
1 in 108 hours

[Verma, et al., 2010]



Contrast: Traditional Machine Learning Methodology
• Aggregate data from as 

many sources as possible
• Data was often collected for 

other purposes
• “Big Data” is “the new oil”
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Consequences of this Methodology

• No guarantee that the Operational Design Domain is covered well
• No guarantee that the ML system will learn a model that meets the safety 

requirements
• Learning Theory only provides statistical guarantees for inputs drawn from 

the same distribution as the training data
• If the actual distribution in operations concentrates on a region of poor 

coverage, error can be arbitrarily large/serious
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We need a new methodology



Achieving Distribution-Independent Accuracy 
in Machine Learning Components

• Deliberately collect training data to attain good coverage of all 
scenarios

• Risk-driven sampling techniques (e.g., [Wang, et al., 2023])

• Verify approximation quality of the learned model
• Collect additional examples as needed
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Verifying Correct Behavior of ML Component
• How can we gain assurance that the ML 

system has learned the correct function?
• We have no explicit specification of 

correctness, but we can detect bad 
behavior
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Proposal: Bound the difference between the fitted 
function and linear interpolation of the training data

• Consider two adjacent training examples 
𝑥𝑥1 and 𝑥𝑥2

• Let 𝛼𝛼 ∈ 0,1

max
𝛼𝛼

𝑓𝑓 𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2
−

𝛼𝛼𝛼𝛼 𝑥𝑥1 + 1 − 𝛼𝛼 𝑓𝑓(𝑥𝑥2)

• If this is small, the function behaves well 
in between the training data

• This can be solved by the methods of 
[Singh, et al. 2021] (but those may not 
scale)
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With these tools, ML can be integrated into 
the standard safety engineering process
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• Deliberately collect training data to attain good coverage of all 
scenarios

• Risk-driven sampling techniques (e.g., Wang, et al., 2023)

• Verify approximation quality of the learned model
• Collect additional examples as needed

• N.B. No single validation method suffices to ensure safety. See 
[Kochenderfer, et al., Algorithms for Validation (forthcoming)]
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• Detecting anomalies and near misses

• Part 3: Safety as Continual Redesign
• Design is never finished
• Resilient systems are “Poised to adapt”

IASEAI 2025 11



Systems View of Safety
[Leveson 2011: Engineering a Safer World]

• Safety is a control problem
• Maintain the safety of the system in the presence of disturbances

• What is the “controller”?
• The human organizations that build, operate, and maintain it
• Government regulators
• Elected officials

• What are the “disturbances”? 
• Budget cuts and staff reductions

• Systems tend to migrate toward the edges of safety
• Unknown unknowns

• Environmental Novelty

• The controller must detect and compensate for these 
disturbances

• Today: It is the exclusively the humans who do this
• Can AI help?
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Unknown Unknowns: 
Detecting Novel Failure Modes 

• Key performance indicators [Weick, et al., 1999]
• Number of anomalies detected
• Number of near misses detected

• These provide evidence of novel failure modes before
they cause harms

• What is known about AI methods for detecting 
anomalies and near misses?
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Anomaly Detection in Computer Vision

• Extensively studied for the 
past 10+ years

• [Ruff, et al., 2021; Dietterich & 
Guyer, 2022]

• Advances in deep learning and 
vision foundation models have 
produced major 
improvements

• No method can guarantee to 
detect all novelty
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Source: Artificio.org



Detecting Near Misses
• Case 1: Known Hazards

• During the design process, we have defined 
hazardous states and introduced margins of 
safety around them

• Come too near to another object
• Extreme steering and braking

• Design should include sensors to detect 
when we enter those safety margin regions
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Case 2: Counterfactual Near Misses

• Automatic Vehicle safety conditions
• At least 2m separation between vehicle and 

pedestrians, cyclists, stationary obstacles
• Pedestrian sees car coming and jumps out of 

the way
• Car determines that it met the required 2m 

separation  “no problem”
• Counterfactual: There would have been a 

safety violation if the pedestrian had not taken 
evasive action

• Pearl’s Theory of Causality provides the formal 
basis for computing counterfactual near misses 
[Pearl, 2009; Pearl & MacKenzie, 2018]
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Creating Resilient Systems
• Engineered systems are “robust yet fragile”

• Robust to the known hazards
• Vulnerable to novel failure modes

• Optimization for cost, weight, power, etc. 
results in designs near the edge of the 
feasible region

• Highly Optimized Tolerances (HOT) theory. 
[Carson & Doyle, 2002]
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Creating Resilient Systems
• David Woods: A resilient system is one that is 

“poised to adapt”
• [Woods, 2024a, 2024b]

• An AI perspective:
• The entire design process should be regarded as 

one path through a design space
• Adaptation requires following new paths through 

that space
• Build AI tools for continual design
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The design space and design process 
should be “kept on standby” so that they 
can be resumed whenever adaptation is 
required



Summary
• ML and traditional safety engineering: Managing Known Hazards

• ML needs to develop verification methods to ensure distribution-independent 
generalization

• Safety as Control
• Novel hazards as system disturbances
• KPIs: Anomalies and Near Misses
• AI methods for anomaly detection are mature
• AI needs methods for detecting counter-factual near misses

• Safety as Resilience: “Poised to Adapt”
• The design space and design process “kept on standby” so that they can be 

invoked whenever adaptation is required
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Implications for safety of general-purpose AI

• Very wide range of potential harms
• No defined operational design domain (ODD) except in narrow 

vertical applications
• Extremely frequent technology disruptions that change the scope of 

the system and the potential harms
• Poorly-developed “controller” for maintaining safety

• Organizations responsible for managing the systems after deployment 
(commercial and governmental)

• Regulatory frameworks
• Nation state competition
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