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Outline

* Part 1: Integrating ML into traditional safety engineering processes
* Scenario-based data collection
 Verification-based data collection
* Risk quantification

* Part 2: ML in open worlds: Safety as Control

* Detecting anomalies, near misses, and departures from the Operational
Design Domain

e Adaptation strategies

* Part 3: Safety as Continual Redesign
* Automating the adaptation process requires automating the design process
* “Poised to adapt”
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Define the intended scope of the system
Define the operational domain (OD)
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Hazard Analysis of each scenario

Semi Driving on Freeway
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Scenario: Cut in front from left
* Front collision

* Rear collision

* Side collision

* Drive off road

Harmes:

e Death

* Severe injury

* Physical damage
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Acceptable Risk of Death:
1in 108 hours




raditional Safety Engineering Sermi Driving o Freeway
Define the intended scope of the system ‘

Define the operational domain (OD)

Decompose OD into scenarios Scenario: Cut in front from left
Hazard Analysis of each scenario * Front collision

Risk Assessment (likelihood and severity of each harm). Identification of socially * Rear collision

acceptable risk * Side collision

Mitigation Development: Determine the strategy for achieving socially acceptable * Drive off road

risk. Identify the fallback conditions: Minimum Risk Condition

Feed forward control

* Minimum following
distance

* Decelerate when overtaken

* Decelerate or change lanes
when tail-gated
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Brake light reliability
Controller response time
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Contrast:
Traditional Machine Learning Methodology

* Aggregate data from as many

sources as possible | M .. G E

e Data was often collected for other

pu rposes 14,197,122 images, 21841 synsets indexed

* Split into train/validate/test About

* Train deep learning model

* Tune hyperparameters on the
“validation” data

* Evaluate on the test data



Consequences of this Methodology

* No guarantee that the Operational Domain is covered well

* Learning Theory only provides statistical guarantees for inputs drawn
from the same distribution as the training data

* If the actual distribution in operations concentrates on a region of
poor coverage, error can be arbitrarily large/serious

We need a new methodology




Achieving Distribution-Independent Accuracy
in Machine Learning Components

* Deliberately collect training data to attain good coverage of all cases
(including corner cases)

* Risk-driven sampling techniques

* Verify approximation quality of the learned model
* Collect additional examples as needed



Sampling via Surrogate Model Optimization
(also known as Bayesian Optimization)

1.5

Prediction with Uncertainty

* Collect an initial real-world sample and train the ML
component

e Build and validate a simulation model (“digital twin”)

Repeat >
* Fit surrogate model (e.g., Gaussian Process)

* Provides estimates of “epistemic uncertainty”
* Select a batch of new cases using an “acquisition function”

* Collect training example for each case using simulation

* Update the ML component model ~15

* Update the surrogate model

Until target metrics are attained

* Metrics of interest:
* Reasonable coverage of the state space
* Good coverage of hazardous states
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https://commons.wikimedia.org/w/index.php?curid=47589433

Generating an Adversarial Scenario

with AdvSim Original Scenario

[Wang, et al., 2023]
e Given: original trajectory from expert driver {
I
* trajectories of all “actors” (vehicles, pedestrians, (= t_’i
cyclists), LiDAR data, map ® o %
» Select one or more vehicles and perturb their
behavior to maximize an adversarial loss for AdvSim Scenario
the end-to-end system
 collisions, law violations, passenger discomfort
e Perturbation is at the level of a kinematic _ -
trajectory (acceleration and curvature) ?! :-ﬁ_._.....
Simulate the perturbed LiDAR data == %
e Run the current end-to-end system o ot
e Score the adversarial loss
Perturbed Trajectory E hicl
* Repeat N times and keep the perturbation 1 T J ’ go:me

with the la rge st adversarialloss e j

Perturbed vehlcle Collided actor

H H
----------------------------------------------



AdvSim Results

e 376% increase in collisions
* Small increases in discomfort

* Decreases in accuracy of
perception and predicted
trajectories
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Updating the Model

e Retrain on the original data +
adversarial cases

e Collisions reduced to 17.7%

* To be determined: What improvement
is possible with more iterations?

ValgrAl 2024
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Notes

* AdvSim operates at the semantic level (agent behavior)
 Much smaller search space than searching in image space
* Requires high fidelity simulation of imaging
* Adversarial collision rate is much higher than expected rate under
normal driving conditions
* See below



Verifying Correct Behavior of ML Component

* The surrogate model assumes that the ML
components are generalizing smoothly
across the training data

1.0
0.8

0.6

* How can we gain assurance that this is
true?

training data

——IJearned network

* Are there regions where the learned
function behaves badly? X



Proposal: Bound the difference between the fitted

function and linear interpolation of the training data

* Consider two adjacent training examples

x1 and x5
* Letax € |0,1]

flax; + (1 —a)xy)
max

Tolaf () + (1= a)f (x2)

* If this is small, the function behaves well

in between the training data

* This can be solved bg thehmethods of
ut those may not

[Singh, et al. 2021] (
scale)
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Interpolating in the Right Space

* This looks great in 1 dimension ...

* We need to interpolate in a semantic
space (like AdvSim)

* For each known training case, identify the
k most similar cases, where k = the
number of parameters in a scenario

e Consider all convex combinations of those
k + 1 cases to find the maximum
discrepancy between a linear
interpolation and the fitted neural
network

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.0

0.2

0.4

training data

——I|earned network
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1.0



Verification-Based Active Learning

flaxy + (1 —a)xy)
* @y = argmax

“ o faf(x) + (A = a)f(x2) | FI

* Generate a new example at

*Xg = QgX1 + (1 — aq)xz
* Obtain y,

* Retrain the network on (xq,yq) gy

* Repeat until no failure regions can be
found




Estimating Risk = Probability of Harm

* If we have discarded the data distribution, how can we estimate risk?
* Answer: Simulate system operation and measure the probability of harm

* Challenges:
 We must be able to simulate system operation
* Harms are very rare

 Solution:

* Fit a probabilistic model P(s) of normal operations
* Probability of initial states
* Probability of system behavior
* Probability of the behaviors of other agents

* Develop a proposal distribution Q(s) that greatly increases the probability of harms
* Reuse our design data?

* Simulate according to Q(s)

P(s)

* Apply importance reweighting 0G) to each hazardous state s that is observed



Bayesian Safety Validation

[Moss, Kochenderfer, Gariel, Dubois, 2024]

* Apply Surrogate Model Optimization to discover failure regions

 Combine three “acquisition functions”

* Explore regions of high operational likelihood P(x) and high epistemic
uncertainty

* Explore regions near the boundaries of failure regions (hazards)
e Explore the interiors of the failure regions



Example: Runway Detection
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number of samples

57.2% of samples were in failure regions
ﬁfail = 5.8 X 10_3

Only 0.6% of Monte Carlo samples are in
failure regions
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With these tools, ML can be integrated into the
safety engineering process

Define the intended scope of the system

Define the operational domain (OD)

Decompose OD into scenarios

Hazard Analysis of each scenario

Risk Assessment (likelihood and severity of each harm).

I\_/IiI’Eigation Development: Determine the strategy for achieving socially acceptable
risk.

Safety Requirements Specification: defining the safety requirements for the
system including performance and reliability requirements.

Design and development to meet the requirements

Verification: The system meets the requirements (safety cases; software testing,
model-based verification)

Validation: Checking that the system performance meets the application needs

Maintenance and Monitoring: Ensuring all components are performing at
required levels.

Certification and documentation: Regulatory requirements



Outline

* Part 2: ML in open worlds: Safety as Control

* Detecting anomalies, near misses, and departures from the Operational
Design Domain

e Adaptation strategies

* Part 3: Safety as Continual Redesign
* Automating the adaptation process requires automating the design process
* “Poised to adapt”



Systems View of Safety

[Leveson 2011: Engineering a Safer World]

* A system (including the human organizations
that build, use, and operate it) can be
decomposed into a hierarchy of subsystems,
each with its own controller

* These systems are subject to many
disturbances

e Budget cuts and staff reductions
* Systems tend to migrate toward the edges of safety
* Environmental Novelty

* New regulations

e A safe controller must detect and compensate
for these disturbances

* Today: It is the exclusively the humans who do this
* Can Al help?
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Source: onewheel.com |

: - ' o Y
Detecting Novel Situations i A

* The perceptual system will inevitably

Unforeseen obstacle due to weather conditions Improvised obstacles due to pedestrian
pathway maintenance.

ValgrAl 2024
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Detecting Novel Hazards

* Perception Failures
* Novel objects
* Novel imaging conditions
* Insufficient sensors

e Control Failures
e Near misses
e Collisions



Novelty Detection in Machine Learning

e Distance-Based Methods
* Define a distance d(xl-, xj)

* Given a query x,, compute

mind(x,, x
XED (q' )

* Density-Based Methods
* Fit a probability density P(x;)
* Given a query x, compute
—log P(xq)

* Densities are always dependent on

distances

mixture$y

mixture$x




Deep Anomaly Detection

* An important advantage of deep learning is that it learns its own
internal features

* Euclidean distance in pixel space is not useful

* Problem: It only learns the internal features that it needs for the
training task. These features may not separate novel queries x,



Experiment:
Deep Learned Features in Computer Vision

DenseNet with 384-dimensional
latent space.

CIFAR-10: 6 known classes, 4 novel
classes

Light green: novel classes

Darker greens: known classes

Images from known classes are
“pulled out” from the center of the
space

Most novel-class images stay
toward the center of the space;
others overlap with known classes

Novel images are “inliers”

20 -

6 Known
Classes

15

10 4

Dietterich & Guyer, 2022
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The Learned Representation is Promising
But Not a Complete Solution

* Many novel-class images are
mapped into clusters of known
Images 15 4

= The learned representation can’t
detect the novelty 5 |

20 -

10 4

ValgrAl 2024



How can we learn better features?

* Foundation Model Approach:
* Train on all the data we can find

* Artificially introduce variation through augmentations
* Rotations, flips, simulated snow, rain, pixel noise, etc.

e Synthetic data

* The deep representation learns to “see” (represent) the
known world
A Onewheel will still be novel, but the model should have the

right features to represent it and thereby separate it from all
known objects



Detecting Near Misses

* During the design process, we have defined hazardous states
 Come too near to another object
e Extreme steering and braking

* Design should include sensors to detect these

* Detecting counterfactual near misses

 Example: Pedestrians repeatedly take evasive action to step out of the way of
the automated vehicle = no hazardous state

» System needs to be able to detect ways the ego vehicle forces other vehicles
to avoid hazards



Automated Diagnosis and Repair

* Given a detected anomaly or hazard, what components contributed
and how should they be modified?

* Diagnostic system requires
* A causal model of the system including information flows
* Reasoning capability to hypothesize potential contributing components

* Repairs can range from simple retraining of ML components to entire
system redesign
* What repairs can be safely applied by the Al system itself?

* Adding a new hazard region into the path planner
* Preparing training data to update the perceptual system and controllers

* DARPA SAIL-ON program did initial work on this problem



Outline

* Part 3: Safety as Continual Redesign
* Automating the adaptation process requires automating the design process
* “Poised to adapt”



Creating Resilient Systems

* Engineered systems are “robust yet
fragile”
* Robust to the known hazards
* Vulnerable to novel failure modes

* Optimization for cost, weight, etc. results
in designs near the edge of the feasible
region

* Highly Optimized Tolerances (HOT) theory.
Carson & Doyle (2002)

Chosen Design

%j_%é%

Unknown Hazard

|

Margin of Safety from
Known Hazards



Creating Resilient Systems

 David Woods: A resilient system is one that is Design Space

“poised to adapt”

e Surprises are often not visible through standard
sensors/communication paths

* Organizations must practice communicating and Design Path
adapting to confront novelty

* An Al perspective:
* The entire design process should be regarded as

one path through a design space initial  Revised
» Adaptation requires following new paths through Design  Design
that space

* The design space and design process should be
“kept on standby” so that they can be invoked
whenever adaptation is required
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Summary

ML and traditional safety engineering: Managing Known Hazards
* High-fidelity simulation
e Risk-driven generation of training data and test cases
* Verification methods to ensure distribution-independent generalization
* Importance sampling for risk (probability of harm) estimation

 Safety as Control
* Novel hazards as system disturbances
* Engineering to detect novel hazards

* Al tools can help:
* Anomaly detection and near-miss detection
* Diagnosis and repair

e Safety as Resilience: “Poised to Adapt”

* The design space and design process “kept on standby” so that they can be invoked
whenever adaptation is required
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