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Outline
• Part 1: Integrating ML into traditional safety engineering processes

• Scenario-based data collection
• Verification-based data collection
• Risk quantification

• Part 2: ML in open worlds: Safety as Control
• Detecting anomalies, near misses, and departures from the Operational 

Design Domain
• Adaptation strategies

• Part 3: Safety as Continual Redesign
• Automating the adaptation process requires automating the design process
• “Poised to adapt”
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Traditional Safety Engineering
• Define the intended scope of the system
• Define the operational domain (OD)
• Decompose OD into scenarios
• Hazard Analysis of each scenario
• Risk Assessment (likelihood and severity of each harm). Identification of socially 

acceptable risk
• Mitigation Development: Determine the strategy for achieving socially acceptable 

risk. Identify the fallback conditions: Minimum Risk Condition
• Safety Requirements Specification: defining the safety requirements for the 

system including performance and reliability requirements. Methods for testing 
and verifying each safety measure.

• Design and development to meet the requirements 
• Verification: The system meets the requirements (safety cases; software testing, 

model-based verification)
• Validation: Checking that the system performance meets the application needs
• Maintenance and Monitoring: Ensuring all components are performing at 

required levels. 
• Certification and documentation: Regulatory requirements
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Contrast: 
Traditional Machine Learning Methodology

• Aggregate data from as many 
sources as possible

• Data was often collected for other 
purposes

• Split into train/validate/test
• Train deep learning model

• Tune hyperparameters on the 
“validation” data

• Evaluate on the test data
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Consequences of this Methodology

• No guarantee that the Operational Domain is covered well
• Learning Theory only provides statistical guarantees for inputs drawn 

from the same distribution as the training data
• If the actual distribution in operations concentrates on a region of 

poor coverage, error can be arbitrarily large/serious
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Achieving Distribution-Independent Accuracy 
in Machine Learning Components

• Deliberately collect training data to attain good coverage of all cases 
(including corner cases) 

• Risk-driven sampling techniques

• Verify approximation quality of the learned model
• Collect additional examples as needed
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Sampling via Surrogate Model Optimization
(also known as Bayesian Optimization)

• Collect an initial real-world sample and train the ML 
component

• Build and validate a simulation model (“digital twin”)

Repeat
• Fit surrogate model (e.g., Gaussian Process)

• Provides estimates of “epistemic uncertainty” 
• Select a batch of new cases using an “acquisition function”

• Collect training example for each case using simulation
• Update the ML component model
• Update the surrogate model

Until target metrics are attained

• Metrics of interest: 
• Reasonable coverage of the state space
• Good coverage of hazardous states

ValgrAI 2024 18

Cd
ip

ao
lo

96
 -

O
w

n 
w

or
k,

 C
C 

BY
-S

A 
4.

0

https://commons.wikimedia.org/w/index.php?curid=47589433


Generating an Adversarial Scenario 
with AdvSim
[Wang, et al., 2023]

• Given: original trajectory from expert driver
• trajectories of all “actors” (vehicles, pedestrians, 

cyclists), LiDAR data, map
• Select one or more vehicles and perturb their 

behavior to maximize an adversarial loss for 
the end-to-end system

• collisions, law violations, passenger discomfort
• Perturbation is at the level of a kinematic 

trajectory (acceleration and curvature)
• Simulate the perturbed LiDAR data
• Run the current end-to-end system 
• Score the adversarial loss
• Repeat 𝑁𝑁 times and keep the perturbation 

with the largest adversarial loss
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AdvSim Results
• 376% increase in collisions
• Small increases in discomfort
• Decreases in accuracy of 

perception and predicted 
trajectories
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Updating the Model
• Retrain on the original data + 

adversarial cases
• Collisions reduced to 17.7%

• To be determined: What improvement 
is possible with more iterations?
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Notes
• AdvSim operates at the semantic level (agent behavior)

• Much smaller search space than searching in image space
• Requires high fidelity simulation of imaging

• Adversarial collision rate is much higher than expected rate under 
normal driving conditions

• See below
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Verifying Correct Behavior of ML Component
• The surrogate model assumes that the ML 

components are generalizing smoothly 
across the training data

• How can we gain assurance that this is 
true?

• Are there regions where the learned 
function behaves badly?
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Proposal: Bound the difference between the fitted 
function and linear interpolation of the training data

• Consider two adjacent training examples 
𝑥𝑥1 and 𝑥𝑥2

• Let 𝛼𝛼 ∈ 0,1

max
𝛼𝛼

𝑓𝑓 𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2
−

𝛼𝛼𝛼𝛼 𝑥𝑥1 + 1 − 𝛼𝛼 𝑓𝑓(𝑥𝑥2)

• If this is small, the function behaves well 
in between the training data

• This can be solved by the methods of 
[Singh, et al. 2021] (but those may not 
scale)
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Interpolating in the Right Space

• This looks great in 1 dimension …
• We need to interpolate in a semantic 

space (like AdvSim)
• For each known training case, identify the 
𝑘𝑘 most similar cases, where 𝑘𝑘 ≈ the 
number of parameters in a scenario

• Consider all convex combinations of those 
𝑘𝑘 + 1 cases to find the maximum 
discrepancy between a linear 
interpolation and the fitted neural 
network
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Verification-Based Active Learning

• 𝛼𝛼𝑞𝑞 ≔ argmax
𝛼𝛼

𝑓𝑓(𝛼𝛼𝑥𝑥1 + 1 − 𝛼𝛼 𝑥𝑥2)
−

𝛼𝛼𝛼𝛼 𝑥𝑥1 + 1 − 𝛼𝛼 𝑓𝑓(𝑥𝑥2)
• Generate a new example at 
• 𝑥𝑥𝑞𝑞 = 𝛼𝛼𝑞𝑞𝑥𝑥1 + 1 − 𝛼𝛼𝑞𝑞 𝑥𝑥2
• Obtain 𝑦𝑦𝑞𝑞
• Retrain the network on 𝑥𝑥𝑞𝑞 ,𝑦𝑦𝑞𝑞
• Repeat until no failure regions can be 

found
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Estimating Risk = Probability of Harm
• If we have discarded the data distribution, how can we estimate risk?
• Answer: Simulate system operation and measure the probability of harm
• Challenges:

• We must be able to simulate system operation
• Harms are very rare

• Solution: 
• Fit a probabilistic model 𝑃𝑃(𝑠𝑠) of normal operations

• Probability of initial states
• Probability of system behavior
• Probability of the behaviors of other agents

• Develop a proposal distribution 𝑄𝑄 𝑠𝑠 that greatly increases the probability of harms
• Reuse our design data?

• Simulate according to 𝑄𝑄(𝑠𝑠)
• Apply importance reweighting 𝑃𝑃 𝑠𝑠

𝑄𝑄 𝑠𝑠
to each hazardous state 𝑠𝑠 that is observed
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Bayesian Safety Validation
[Moss, Kochenderfer, Gariel, Dubois, 2024]

• Apply Surrogate Model Optimization to discover failure regions
• Combine three “acquisition functions”

• Explore regions of high operational likelihood 𝑃𝑃(𝑥𝑥) and high epistemic 
uncertainty

• Explore regions near the boundaries of failure regions (hazards)
• Explore the interiors of the failure regions
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Example: Runway Detection
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57.2% of samples were in failure regions
𝑝̂𝑝𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 5.8 × 10−3

Only 0.6% of Monte Carlo samples are in 
failure regions 



With these tools, ML can be integrated into the 
safety engineering process

• Define the intended scope of the system
• Define the operational domain (OD)
• Decompose OD into scenarios
• Hazard Analysis of each scenario
• Risk Assessment (likelihood and severity of each harm). 
• Mitigation Development: Determine the strategy for achieving socially acceptable 

risk. 
• Safety Requirements Specification: defining the safety requirements for the 

system including performance and reliability requirements.
• Design and development to meet the requirements 
• Verification: The system meets the requirements (safety cases; software testing, 

model-based verification)
• Validation: Checking that the system performance meets the application needs
• Maintenance and Monitoring: Ensuring all components are performing at 

required levels. 
• Certification and documentation: Regulatory requirements
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Outline
• Part 1: Integrating ML into traditional safety engineering processes

• Scenario-based data collection
• Verification-based data collection
• Risk quantification

• Part 2: ML in open worlds: Safety as Control
• Detecting anomalies, near misses, and departures from the Operational 

Design Domain
• Adaptation strategies

• Part 3: Safety as Continual Redesign
• Automating the adaptation process requires automating the design process
• “Poised to adapt”
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Systems View of Safety
[Leveson 2011: Engineering a Safer World]

• A system (including the human organizations 
that build, use, and operate it) can be 
decomposed into a hierarchy of subsystems, 
each with its own controller

• These systems are subject to many 
disturbances

• Budget cuts and staff reductions
• Systems tend to migrate toward the edges of safety

• Environmental Novelty
• New regulations

• A safe controller must detect and compensate 
for these disturbances

• Today: It is the exclusively the humans who do this
• Can AI help?
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Detecting Novel Situations
• The perceptual system will inevitably 

encounter novelty
• Novel “vehicles”
• Novel clothing (Halloween costumes)
• Novel road conditions
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Detecting Novel Hazards
• Perception Failures

• Novel objects 
• Novel imaging conditions
• Insufficient sensors

• Control Failures
• Near misses
• Collisions
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Novelty Detection in Machine Learning

• Distance-Based Methods
• Define a distance 𝑑𝑑 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗
• Given a query 𝑥𝑥𝑞𝑞, compute

min
𝑥𝑥∈𝐷𝐷

𝑑𝑑(𝑥𝑥𝑞𝑞 , 𝑥𝑥)

• Density-Based Methods
• Fit a probability density 𝑃𝑃(𝑥𝑥𝑖𝑖)
• Given a query 𝑥𝑥𝑞𝑞 compute

− log𝑃𝑃 𝑥𝑥𝑞𝑞
• Densities are always dependent on 

distances
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Deep Anomaly Detection
• An important advantage of deep learning is that it learns its own 

internal features
• Euclidean distance in pixel space is not useful

• Problem: It only learns the internal features that it needs for the 
training task. These features may not separate novel queries 𝑥𝑥𝑞𝑞
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Experiment: 
Deep Learned Features in Computer Vision
• DenseNet with 384-dimensional 

latent space.  
• CIFAR-10: 6 known classes, 4 novel 

classes

• Light green: novel classes
• Darker greens: known classes

• Images from known classes are 
“pulled out” from the center of the 
space

• Most novel-class images stay 
toward the center of the space; 
others overlap with known classes

• Novel images are “inliers” 
38

Dietterich & Guyer, 2022
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The Learned Representation is Promising
But Not a Complete Solution

• Many novel-class images are  
mapped into clusters of known 
images

• The learned representation can’t 
detect the novelty
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How can we learn better features?

• Foundation Model Approach: 
• Train on all the data we can find
• Artificially introduce variation through augmentations

• Rotations, flips, simulated snow, rain, pixel noise, etc.
• Synthetic data

• The deep representation learns to “see” (represent) the 
known world

• A Onewheel will still be novel, but the model should have the 
right features to represent it and thereby separate it from all 
known objects
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Detecting Near Misses
• During the design process, we have defined hazardous states

• Come too near to another object
• Extreme steering and braking

• Design should include sensors to detect these
• Detecting counterfactual near misses

• Example: Pedestrians repeatedly take evasive action to step out of the way of 
the automated vehicle  no hazardous state

• System needs to be able to detect ways the ego vehicle forces other vehicles 
to avoid hazards
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Automated Diagnosis and Repair

• Given a detected anomaly or hazard, what components contributed 
and how should they be modified?

• Diagnostic system requires 
• A causal model of the system including information flows
• Reasoning capability to hypothesize potential contributing components

• Repairs can range from simple retraining of ML components to entire 
system redesign

• What repairs can be safely applied by the AI system itself?
• Adding a new hazard region into the path planner
• Preparing training data to update the perceptual system and controllers

• DARPA SAIL-ON program did initial work on this problem
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Outline
• Part 1: Integrating ML into traditional safety engineering processes

• Scenario-based data collection
• Verification-based data collection
• Risk quantification

• Part 2: ML in open worlds: Safety as Control
• Detecting anomalies, near misses, and departures from the Operational 

Design Domain
• Adaptation strategies

• Part 3: Safety as Continual Redesign
• Automating the adaptation process requires automating the design process
• “Poised to adapt”
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Creating Resilient Systems
• Engineered systems are “robust yet 

fragile”
• Robust to the known hazards
• Vulnerable to novel failure modes

• Optimization for cost, weight, etc. results 
in designs near the edge of the feasible 
region

• Highly Optimized Tolerances (HOT) theory. 
Carson & Doyle (2002)
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Creating Resilient Systems
• David Woods: A resilient system is one that is 

“poised to adapt”
• Surprises are often not visible through standard 

sensors/communication paths
• Organizations must practice communicating and 

adapting to confront novelty
• An AI perspective:

• The entire design process should be regarded as 
one path through a design space

• Adaptation requires following new paths through 
that space

• The design space and design process should be 
“kept on standby” so that they can be invoked 
whenever adaptation is required
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Summary
• ML and traditional safety engineering: Managing Known Hazards

• High-fidelity simulation
• Risk-driven generation of training data and test cases
• Verification methods to ensure distribution-independent generalization
• Importance sampling for risk (probability of harm) estimation

• Safety as Control
• Novel hazards as system disturbances
• Engineering to detect novel hazards
• AI tools can help:

• Anomaly detection and near-miss detection
• Diagnosis and repair

• Safety as Resilience: “Poised to Adapt”
• The design space and design process “kept on standby” so that they can be invoked 

whenever adaptation is required
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