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Bird Migration 

Many bird species are declining. Why? 

Loss of summer and winter habitat 

Loss of stop-over habitat during migration 

Cats 

Skyscrapers 

Airplanes 

Wind farms 

Food asynchrony due to climate change 
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Understanding Bird Migration 

We need better models of 

 Required habitat for each species 

 Detailed dynamics of bird migration 

 

Bird decision making?? 

 Absolute timing (e.g., based on day length) 

 Temperature 

 Wind speed and direction 

 Relative humidity 

 Food availability 
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Methodology 
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Step 1: Mathematical Modeling 

Markov Process 

 The state at time 𝑡 + 1 depends only on the state at time 𝑡 (and not the 

“history” of earlier states) 

Vector/Matrix representation 
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𝑃 𝑠𝑡 = 𝑗 = 𝑃 𝑠𝑡 = 𝑗 𝑠𝑡−1 = 𝑖 𝑃(𝑠𝑡−1 = 𝑖)

𝑥
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 𝑠1  𝑠2  𝑠3  𝑠4  𝑠𝑇 

𝑃(𝑠1): Initial State Distribution 

𝑃 𝑠𝑡 𝑠𝑡−1 : State transition function 



States of our Markov Process = 

Grid Cells 

 36x28 grid of cells over Eastern US 

 1008 cells 

 

 Problem 1: There are 1008 x 1008 = 

1,000,064 transition probabilities to 

determine 

 Problem 2: The transition 

probabilities are time-invariant, 

whereas we need them to change 

 Depending on the season 

 Depending on weather conditions 
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Solution: Make the transition probabilities 

depend on variables (“covariates”) 

 In each cell 𝑖 on each night (𝑡, 𝑡 + 1), we will observe the 

following covariates 𝑥𝑡,𝑡+1(𝑖) 

 day of the year: 𝑡 

 wind speed: 𝑣𝑡(𝑖) 

 wind direction: 𝑤𝑡(𝑖) 

 temperature: 𝑡𝑒𝑚𝑝𝑡(𝑖) 

 relative humidity: 𝑟ℎ𝑡(𝑖) 

Between each pair of cells 𝑖 and 𝑗 we also know 

 distance:  𝑑𝑖𝑠𝑡(𝑖, 𝑗) 

 direction from 𝑖 to 𝑗:  𝛼(𝑖, 𝑗) 
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Parametric  

State Transition Model 
 Let 𝛼(𝑖, 𝑗) be the heading from 𝑖 to 𝑗 

 Let 𝑤(𝑖) be the heading of the wind 

 Let 𝑣(𝑖) be the speed of the wind 

 Wind profit 𝑣(𝑖) cos 𝑤 𝑖 − 𝛼 𝑖, 𝑗  

 1 if perfectly aligned 

 −1 if perfect headwind 
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Distance Preferences 

 Desirability(𝑑𝑖𝑠𝑡) =  𝑁𝑜𝑟𝑚𝑎𝑙 log 𝑑𝑖𝑠𝑡 ; 𝜇, 𝜎  
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Preferences for temperature, 

relative humidity, day of year, etc. 

 𝑡𝑒𝑚𝑝 − 𝜃𝑡𝑒𝑚𝑝
2
   ideal temperature 

 𝑟ℎ − 𝜃𝑟ℎ
2      ideal relative humidity 

 𝑡 − 𝜃𝑑𝑜𝑦(𝑖)       ahead/behind schedule 
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Combine into probability model 

𝐹 𝑖, 𝑗 = 𝛽0 + 𝛽𝑤𝑣𝑡(𝑖) cos 𝑤𝑡 𝑖 − 𝛼 𝑖, 𝑗 +
𝛽𝑑Normal log 𝑑𝑖𝑠𝑡 𝑖, 𝑗 ; 𝜇𝑑𝑖𝑠𝑡, 𝜎𝑑𝑖𝑠𝑡 +

𝛽𝑡𝑒𝑚𝑝 𝑡𝑒𝑚𝑝𝑡 − 𝜃𝑡𝑒𝑚𝑝
2
+ 𝛽𝑟ℎ 𝑟ℎ𝑡 − 𝜃𝑟ℎ

2 +

𝛽𝑑𝑜𝑦 𝑡 − 𝜃𝑑𝑜𝑦(𝑖)
 
+⋯ 

 

𝑃 𝑠𝑡 = 𝑗 𝑠𝑡−1 = 𝑖 =
exp 𝐹 𝑖,𝑗

 exp 𝐹 𝑖,𝑗′
𝑗′

 

 

Construct the transition matrix at time 𝑡 by 
evaluating this function for each pair (𝑖, 𝑗) 
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Step 2: Fitting the model to data 

The data we wish we had: 

Tracks of individual birds 

over time 

Weather at every location 
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macworld.com 

www.azoresbioportal.angra.uac.pt 

This would give us points 

(𝑥𝑡,𝑡+1 𝑖 , 𝑠𝑡 𝑖 , 𝑠𝑡+1 𝑗 ) to 

which we could fit our model 



The data we have (1): 

Project eBird (www.ebird.org) 

 Volunteer Bird Watchers 

 Stationary Count 

 Travelling Count 

 Time, place, duration, distance 

travelled 

 Species seen 

 Number of birds for each 

species or ‘X’ which means ≥ 1 

 Checkbox: This is everything 

that I saw 

 

 8,000-12,000 checklists 

uploaded per day 
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The data we have (2): 

Weather Radar 

 Radar detects 

 weather (remove) 

 smoke, dust, and insects 
(remove) 

 birds and bats 

 

 Removing weather 

 manual, using a web-
based tool 

 

 Removing smoke, dust & 
insects 

 estimate velocities 

 ignore pixels that are 
moving at same speed 
as wind 
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The data we (hope to) have (3): 

Acoustic monitoring 

 Night flight calls 

 People can identify species or 

species groups from these calls 
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The data we have (4): 

Weather data 

North American Regional Reanalysis  

 wind speed 

 wind direction 

 temperature 

 relative humidity 
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Modeling for each data source (1): 

eBird 

 Bird watchers do not detect all birds at a given location 

 detection probability  

 day of year 

 weather conditions 

 habitat (shoreline, meadow, dense forest) 

 expertise of the bird watcher 

 Bird watchers may misidentify species 

 
 Yu, J., Wong, W-K., and Hutchinson, R. (2010). Modeling Experts and Novices in Citizen Science Data for Species 

Distribution Modeling. Proceedings of the 2010 IEEE International Conference on Data Mining 

 Yu, J., Wong, W-K. and Kelling, S. (2014). Clustering Species Accumulation Curves to Identify Skill Levels of Citizen 

Scientists Participating in the eBird Project. IAAI 2014 

 Yu, J., Hutchinson, R. and Wong, W-K. (2014). A Latent Variable Model for Discovering Bird Species Commonly 

Misidentified by Citizen Scientists. AAAI 2014 
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Modeling for each data source (2): 

Weather radar 
 Radar measures Doppler shift 

 Gives radial velocity 𝑟 

 Velocity is aliased: 𝑟 𝑚𝑜𝑑 2𝑉𝑚𝑎𝑥 

 We developed a maximum likelihood 

model (EP) that includes the 𝑚𝑜𝑑 
operator inside the likelihood function 

 “fix the model instead of the data” 

 Sheldon et al. (2013) 

 Bird biomass per 𝑘𝑚3 
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Radar Visualization 
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Modeling for each data source (3) 

Night flight calls 

 Fourier analysis over short time 

windows to obtain a spectrogram 

 Dynamic time warping to match to 

spectrograms of known species 

 similar to DNA sequence alignment 

 allows time to stretch or shrink (with 

a penalty) 

 Apply machine learning algorithm to 

predict the species 

 Accuracy: 97% on 5 species (clean 

data using captive birds) 

 
 Damoulas, Henry, Farnsworth, Lanzone, Gomes 

(2010). Bayesian classification of flight calls with a 

novel Dynamic Time Warping Kernel (ICDM 2010). 
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Modeling for each data source (4) 

NARR data 

NARR data product is the result of 

performing “data assimilation” 

 Observed variables from radiosonde 

balloons 

 Update a physics-based model of the 

atmosphere via Bayes theorem 
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Challenge: Aggregate anonymous 

counts 

We do not observe the behavior of individual birds 

We only obtain information about aggregated counts of birds 

Oberlin 2014 
22 

𝑛𝑡(𝑖) 

𝑛𝑡+1(𝑗) 

𝑛𝑡,𝑡+1 𝑖, 𝑗 ? ? 



Solution:  

Collective Graphical Models 

New method for fitting models of individual behavior 

from noisy aggregate counts 

 

Assumes all birds make their decisions independently 

according to the same 𝑃 𝑠𝑡+1 = 𝑗 𝑠𝑡 = 𝑖, 𝑥𝑡,𝑡+1(𝑖, 𝑗)   
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Full Migration Model 
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Fitting Latent Variable Models 

Expectation Maximization (EM; MAP version) 
 

1. Make initial guess about the parameter values 

Θ = 𝛽0, 𝛽𝑤 , 𝛽𝑡𝑒𝑚𝑝, 𝜃𝑡𝑒𝑚𝑝, 𝛽𝑟ℎ , 𝜃𝑟ℎ , 𝛽𝑑𝑜𝑦 , 𝜃𝑑𝑜𝑦(𝑖), 𝛽𝑑𝑖𝑠𝑡 , 𝜇𝑑𝑖𝑠𝑡 , 𝜎𝑑𝑖𝑠𝑡    

2. Compute the most likely number of birds flying from cell 𝑖 to 

cell 𝑗 each night (for all 𝑖, 𝑗). 𝒏𝑡,𝑡+1
𝑠 (𝑖 → 𝑗).  

“Maximum Aposteriori Probability (MAP) estimate” 

3. Pretend these are the true values of the latent variables 

and adjust the parameters Θ to maximize the likelihood of 

the 𝒏𝑡,𝑡+1
𝑠 𝑖 → 𝑗  values:  

argmaxΘ𝑃 𝒏𝑡,𝑡+1
𝑠 Θ  

4. Repeat 2-3 until convergence 
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“E-Step” 

Very Difficult 

“M-step” 

Easy: Can be 

solved with 

gradient 

descent 



Intractability of the E step in the 

Collective Graphical Model 

Let 𝑀 be the population size 

Let 𝐿 the number of grid cells 

Theorem: Unless 𝑃 = 𝑁𝑃, there is no exact 

inference algorithm with runtime that is 

simultaneously polynomial in both 𝑀 and 𝐿 

 

Bird migration has 𝑀 ≈ 109 and 𝐿 = 1008 

We must approximate!! 
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Approximation #1:  

Markov Chain Monte Carlo (MCMC) 

Algorithm 
(Sheldon & Dietterich, NIPS 2011) 

 Samples from 𝑃(𝒏𝑡,𝑡+1|𝒏1, … , 𝒏𝑇) 

 posterior distribution of “flows” from 

cell to cell 

 respects Kirchoff’s laws 

 running time is independent of 

population size 

 converges (slowly) to the correct 

distribution 
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Approximation #2:  

MAP approximation 
(Sheldon, Sun, Kumar, Dietterich, ICML 2013) 

Approximate MAP inference  
 Continuous relaxation (allow counts to 

be real numbers) 

 Sterling’s approximation: log 𝑛! ≈
𝑛 log 𝑛 − 𝑛 

 Theorem:  With these two 

approximations, the CGM log 

likelihood is convex 

 Solve using Matlab interior point 

solver 
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Comparison of #1 and #2: 

Accuracy and speed of parameter fitting 

SAEM: Stochastic 

approximation EM 

 

MCEM: MCMC + 

EM 

 

MAP-EM: MAP 

approximation + 

EM 
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Approximation #3:  

Gaussian Approximation 
(Liu, Sheldon, Dietterich, 2014) 

The statistics in the CGM are combinations of 
multinomial distributions 

The multinomial distribution can be 
approximated well by a multivariate Gaussian 
distribution once the counts are large enough 

 

Theorem:  
The Gaussian CGM converges in distribution to the 

exact CGM as 𝑀 → ∞ 

The Gaussian CGM has the same sparsity structure 
as the CGM 
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Comparison of #2 and #3:  

Fitting the parameters 

 If 𝑀 is too small, 

both the MAP 

approximation and 

the GCGM lose 

badly, but GCGM is 

much worse 

 

For 𝑀 ≥ 480, 
GCGM gives 

answers identical to 

those of the MAP 

approximation 

Oberlin 2014 
32 



Comparison of #2 and #3: 

Computation Speed 

We expect a 100-fold 

speedup on a 1008-cell 

grid 
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Black-throated Blue Warbler 

Initial Results:  

Movement Reconstruction  [Sheldon, 2009] 

Observations (eBird volunteers) Fitted Migration Model 
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Current Status 

We have developed a faster algorithm for the MAP 

approximation (approximation #4) 

We are currently fitting both the MAP (#2) and GCGM (#3) 

methods to the eBird data 
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Step 3: Policy Optimization 

Policy Questions: 

1. Where should conservation reserves and habitat 

restoration be performed? 

 Examine which cells are being used by the birds 

 We have also developed habitat models directly from eBird data 

2. Where should wind farms be located? 

3. When and where should low-altitude flight training be 

allowed? 

4. When should wind turbines be operated? 

5. When should lights in skyscrapers be turned off? 

6. Where should I go bird watching if I want to see species 𝑠? 
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Summary 

Modeling: 

 Non-linear probabilistic model of the behavior of individual birds 

 Collective graphical model (in order to work with aggregate data) 

Fitting to Data: 

 EM algorithm 

 Computational complexity requires developing algorithms for 

approximate inference 

Policy Optimization: 

 Straightforward in this application 
Oberlin 2014 
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Open Problems: Uncertainty and 

Robustness 

Uncertainty: 

 Errors in our model 

 Errors in the models of each data source 

 Errors resulting from noisy and insufficient data 

 Errors from computational approximations 

Robustness: 

 How can we make our policies robust to both the known and unknown 

errors in our models? 
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Opportunities at Oregon State 

 “Spring Break Class in Monte Carlo AI”  

http://web.engr.oregonstate.edu/mcai  

 

 

 Summer REU program: Eco-

Informatics Summer Institute 

http://eco-

informatics.engr.oregonstate.edu/  

 

 

 PhD and Postdoc Research Projects 

 Fundamental research in machine 

learning and AI with applications in 

sustainability 
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Questions? 
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