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My Naive Pipeline View (2012)

* Everything starts with data collection

* Policy / decision making is tacked on at
the end
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Opposite View:
Cocus on the decision
oroblem

Decision Analysis

(also known as Structured Decision-Making)
Steps and common decision-support tools

Decision Problem I

Communication strategy
Sensitivity analysis
Robustness analysis
Project management tools

Decide
and
implement

Trade-offs + Optimization
Cost benefit analysis

Cost effectiveness analysis
Deliberative trade-off techniques
Multi-criteria decision analysis
Multi-objective programming
Spatial conservation prioritization
Uncertainty

Value of information

Risk

Risk analysis

Linked decisions

Decision trees

Stochastic dynamic programming

Evaluate
Trade-offs +

Partially Observable Markov Decision Procesy

Define

Brainstorming Stakeholder mapping
Conceptual models Spatial data
Delphi technique Status assessments

Futures tools Threat assessments

Problem framing questions

Problem

Monitor &
learn

Estimate
Consequences

Elicit
Objectives +
performance
measures

Brainstorming

Delphi technique
Means-ends diagrams
Objectives hierarchies

Brainstorming

Develop Conceptual models
Alternatives Delphi technique
Strategy tables
Spatial data

Consequence tables

Conceptual models

Evidence synthesis

Management strategy evaluation
Quantitative models

Spatial data

Structured expert elicitation

Hemming, et al., An introduction to decision science for conservation
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A synthesis?

Sensing & Research & Ootimization Decision
Monitoring Modeling P Analysis

 Concurrent efforts:

Sensing: Modalities, locations, scale, observers, .

Research: Improving the science base (e.g., communlty dynamics, more
effective/cheaper interventions)

Modeling: Advances in ML and statistics
Optimization: Robust, constrained, multi-objective, interactive speeds

Decision analysis: A network of decisions at multiple scales in time, space, and
organization

e Information should flow within and between these activities



Three Projects and Lessons Learned

* Project 1: Invasive species management: Tamarisk
* Lesson: Chance constraints provide an interesting alternative to species
valuation
* Project 2: Forest fire management: LETBURN

* Lesson: Visualization driven by interactive optimization can potentially help
multiple stakeholders refine their decision options

* Lesson: We can provide conformal guarantees for system trajectories

* Project 3: Forest fire liability rules

e Lesson: Multi-agent reinforcement learning (MARL) provides a tool for policy
analysis



Project 1: Controlling Tamarisk invasion in
river networks

* In most environmental decision problems the model contains two components:
* Biological model
* Economic model

* Quantifying cost for the economic model is typically easy

e But it is difficult to assign dollar values to some biological models
* Ecosystem services is an attempt to get around this, but it is not a complete solution
* What is the dollar value of a species extinction? The cultural value of an ecosystem?

* Another potential solution: Constrained optimization
* Minimize economic cost subject to a chance constraint
* Probability of species extinction in 100 years is < 0.01

* We now have a rich set of algorithms for optimizing Constrained-MDPs (CMDPs)
* See Gattami et al. (2021)



Project 2: LETBURN Decision Problem

* When lightning ignites a wildland fire, should

we
* SUPPRESS
* Benefits realized immediately, but may increase long-
term risks
* LETBURN
* Losses realized immediately, but may reduce long-term O
risks e%%\
N
* Stakeholders: Constituency %&Q N
* Home owners .
: : Composite v v
* Timber companies Politics ) %
d POllthianS Home Owners - -
* Agreeing on policies can be easier than Timber o v

agreeing on reward functions

* Interactive optimization-assisted search for
acceptable policies
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* User selects a few state variables e B o e l R I

e User either
» Defines a policy

e Defines a reward function and
invokes RL to optimize it

e System generates 1000 rollouts
and visualizes various quantiles
for the chosen state variables

MDPvis (McGregor, et al. 2017)




Quantile Visualization
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Cumulative Reward

Recent Work: Conformal Guarantees on Trajectories
(D & Hostetler, arXiv 2206.04860; D & Guyer, forthcoming)
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Project 3: Forest Fire Liability Rules

(Lauer, Montgomery, D. (2020))

* Setting
* Multiple land owners
* Fire starts on the property of owner A and burns property of owner B
* Who should pay for the damage to owner B?

* Candidate regulations:
* NoReg: Each owner is responsible for any damage that occurs on their property
e Strict: A must pay B according to estimated timber value lost

* Negligence Standard (Neg): A pays nothing if A has maintained their property to a basic level
of fire safety (fuel levels)

* Apply multi-agent reinforcement learning to compare expected value and
variance for each agent and for the total welfare

* Compare against a “social welfare” single agent land manager

* Note:
* Landowner behavior changes under the different rules
» Higher fire risk = harvest trees earlier =»reduced carbon storage and wood products



Land ownership patterns in western Oregon

* Checkerboard pattern from 19t C railroad grants
 Government is landowner 1 (BLM)
* Timber companies (or investor group) is landowner 2

* Bio-economic model

* Timber value and optimal harvest age policies are
well-understood

e Fire fuel models and fuel reduction treatments are
fairly well-understood

 Lightning ignitions (historical data is available)

Landowner 1
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Results

* Negligence Rule|is almost as
good as the|Social Planner

* Harvest ages increase vs. NoReg
and Strict

 Variance increases for the
landowners because they don’t
pay for some fires

e Variance: 1.89->3.84

e Strict liability is worse than no
regulation

e Optimal owner behavior is “do
nothing” because probability of
fire starting on their land AND
burning onto the other
landowner’s property is small

Landscape Landowner 1 Landowner 2

mean V, V mean V"= V=t mean V=2 V=2

Soc 15.08 15.14 7.19 7.25 7.88 7.88
(7.23) (1.89) (1.93)

NoReg 14.52 14.61 6.93 6.94 7.59 7.66
(7.35) (1.82) (1.99)

Strict 14.30 14.60 6.76 6.99 7.55 7.60
(8.46) (4.85) (3.73)

Neg 15.03 14.91 7.16 7.21 7.87 7.70
(7.00) (3.84) (2.85)
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Summary

* Project 1: Invasive species management: Tamarisk
* Lesson: Chance constraints provide an interesting alternative to species
valuation
* Project 2: Forest fire management: LETBURN

* Lesson: Visualization driven by interactive optimization can potentially help
multiple stakeholders refine their decision options

* Lesson: We can provide conformal guarantees for system trajectories

* Project 3: Forest fire liability rules

e Lesson: Multi-agent reinforcement learning (MARL) provides a tool for policy
analysis
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Project 2a: Conformal Trajectory Guarantees

* Given:
* A set of rollouts generated by sampling a starting state s, ~ Py(sy) and then
following a fixed policy i for T time steps

* A behavior function b(s) that returns a real-valued quantity

* Output:

* A “tube” [by,, by;] fromt =0, ..., T such that with probability 1 — § over

Py(sg) I1: P(s¢|s¢—1, ™) the true trajectory of b will satisfy
by, () < b(sy) < by (t) Vt €[0,T]
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