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Motivation: Automated Counting of 
Freshwater Macroinvertebrates
• Goal: Assess the health of freshwater streams
• Method: 

• Collect specimens via kicknet
• Photograph in the lab
• Classify to genus and species

• BugID Project
• 54 classes of interest to the EPA 
• accuracy ≈ 90%
• Larios, N., Soran, B., Shapiro, L., Martínez-Muños, G., Lin, J., Dietterich, T. G. (2010). 

Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species 
Identification. IEEE International Conference on Pattern Recognition (ICPR-2010). 

• Lin, J., Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S., 
Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three 
Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011)

• Lytle, D. A., Martínez-Muñoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R., 
Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated 
processing and identification of benthic invertebrate samples. Journal of the North 
American Benthological Society, 29(3), 867-874.
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Problem: There are ≈ 𝟕𝟕𝟕𝟕, 𝟎𝟎𝟎𝟎𝟎𝟎 species of 
freshwater insects worldwide
• 1200 species in US
• Field samples may contain other things

• small rocks
• leaves
• trash

• Simple estimate of equal error rate for 
novel classes vs. the 54 classes was 
20% (in 2011)

• classifier is not usable without addressing
the novel class problem

• We still need to solve this problem
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• Classifier approach
• Learn classifier 𝑓𝑓 𝑥𝑥 = 𝑃𝑃 𝑦𝑦 𝑥𝑥
• Compute a measure of uncertainty:

• 𝐴𝐴 𝑥𝑥 = 1 − arg max
𝑦𝑦

𝑃𝑃 𝑦𝑦 𝑥𝑥𝑞𝑞

• 𝐴𝐴 𝑥𝑥 = 𝐻𝐻 𝑃𝑃 𝑦𝑦 𝑥𝑥𝑞𝑞
• 𝐴𝐴 𝑥𝑥 = max class “logit”

• This should not work, because the 
classifier should discard all aspects of 
𝑥𝑥 that are irrelevant to classification

• Surprise: it works fairly well
• Hendrycks & Gimpel (ICLR 2017) “A 

Baseline for Detecting Misclassified 
and Out-of-Distribution Examples in 
Neural Networks”

Baseline Method: Classifier Indecision

Probabilities
𝑃𝑃(𝑦𝑦|𝑧𝑧)

Convolutional Neural Network Classifier

Image
𝑥𝑥
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How much information does the latent space 𝑧𝑧 contain
for anomaly detection?

Penultimate Layer 𝑧𝑧



Research Questions
Risheek Garrepalli MS Thesis (2020)

• Q1: How well do existing anomaly scoring methods extract the 
anomaly information that is captured in the latent representation 𝑧𝑧?

• Approach: Compare to an oracle anomaly detector

• Q2: How well could any network with this architecture perform the 
anomaly detection task?

• Approach: Supervised training on both nominal and anomalous classes

• Definition of anomalies: Classes not seen during training
• “Open Category” or “Open Set” problem
• We claim this is harder and more realistic than Out-Of-Distribution tasks

CVPR 2021 Open World 5



Methods:
• CIFAR-10: 6 “nominal” classes and 4 “anomaly” classes
• CIFAR-100: 80 “nominal” classes and 20 “anomaly” classes

• Train Classifier
• Divide data into train (60%), validate (20%), test (20%)
• Remove anomaly classes from the training and validation data
• Train ResNet34; use validation set accuracy to determine stopping point
• Compute anomaly score on test set; measure AUC (“nominal” vs “anomaly” decision)

• Oracle Anomaly Detection
• Take all validation data and label the nominal classes as “nominal” and the anomaly classes as “anomaly”
• Train a random forest (1000 trees) that takes 𝑧𝑧 as input and predicts “nominal” vs. “anomaly” 
• Compute test set anomaly scores using this classifier; measure AUC

• Oracle Representation
• Train ResNet34 on all classes
• Train a random forest (1000 trees) that takes 𝑧𝑧 as input and predicts “nominal” vs. “anomaly” 
• Compute test set anomaly scores using this classifier; measure AUC
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Results
• Details:

• Oracle Anomaly Detector: 1000-tree Random 
Forest

• Anomaly Score: max logit
• Q1: The latent space contains much more 

anomaly information than is extracted by 
current anomaly scores
• 0.7760.905 = 0.129
• 0.7170.789 = 0.072

• Q2: There is additional anomaly information in 
the images that is not represented by the 
latent space
• 0.9050.987 = 0.082
• 0.7890.809 = 0.020
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Hybrid Network Experiments

• Add a Reconstruction head to the network and jointly train the representation to support both classification and 
reconstruction (per-pixel squared error)

• Loss = Cross-Entropy + 𝜆𝜆 × Reconstruction Error
• CIFAR10: 𝜆𝜆 = 0.9, CIFAR100: 𝜆𝜆 = 0.005
• See also: 

• Oza, P., & Patel, V. M. C2AE: Class Conditioned Auto-Encoder for Open-set Recognition. CVPR 2019
• Nalisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and invertible features. ICML 

2019
• Zhang, H., Li, A., Guo, J., & Guo, Y. Hybrid Models for Open Set Recognition. ECCV 2020
• Perera, P., Morariu, V. I., Jain, R., Manjunatha, V., Wigington, C., Ordonez, V., & Patel, V. M.  Generative-discriminative feature 

representations for open-set recognition. CVPR 2020
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Hybrid Network Experiments
• Q3: Does this increase the amount of 

anomaly-relevant information in the 
latent representation?

• Result: Hybrid representation 
improves performance

• Caution: 𝜆𝜆 tuned using labeled test 
data
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Reflections
• Several people have observed that better classifiers allow simple anomaly 

detection methods (such as max logit) to work better
• We have no theory why. Why doesn’t the representation become more specialized

to the prediction task and lose novelty detection power?
• Are we just getting lucky with over-parameterized networks, because gradients → 0

as the supervised loss → 0?
• The reconstruction objective is theoretically sensible, but very difficult to 

train
• Pure reconstruction models are very difficult to train

• The hybrid method works better, but it is not obvious how to tune 𝜆𝜆
• Why do we need the supervised head? Is it just regularizing the reconstruction 

representation?
• Some input augmentations improve performance of both classification and 

anomaly detection
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Improvements
[Alex Guyer]

• Generalized ODIN
• [Hsu, Y.-C., Shen, Y., Jin, H., & Kira, Z. (2020). Generalized ODIN: Detecting Out-of-

distribution Image without Learning from Out-of-distribution Data. CVPR 2020]

• SoftMax ℎ1 𝑧𝑧
𝑔𝑔 𝑧𝑧

, ℎ2 𝑧𝑧
𝑔𝑔 𝑧𝑧

, … , ℎ𝐾𝐾 𝑧𝑧
𝑔𝑔 𝑧𝑧

with 𝑔𝑔 and ℎ parameterized separately
• We use cosine similarity for ℎ and linear model for 𝑔𝑔

• The input perturbations from ODIN were not useful
• Temperature scaling was not useful
• Consistent but modest improvement (e.g., 1 percentage point on CIFAR100)

• Deep Ensembles and Deep SVGD Ensembles
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Some Other Things We Tried
[Alex Guyer]

• GEOM and other self-supervised tasks
• [Golan, I., & El-Yaniv, R. Deep Anomaly Detection Using Geometric 

Transformations, NeurIPS 2018; Gidaris, S., Singh, P., & Komodakis, N. 
Unsupervised representation learning by predicting image rotations. ICLR 2018.]

• rotation
• recoloring
• Sobel edge detection
• Did not match baselines

• CSI (self-supervised representation)
• [Tack, J., Mo, S., Jeong, J., & Shin, J. (2020). CSI: Novelty Detection via Contrastive 

Learning on Distributionally Shifted Instances. NeurIPS 2020.]
• Very sensitive to hyperparameters
• Instance-level self-supervision is slow to train
• Shows some promise

• JEM
• [Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Swersky, K., & 

Norouzi, M. (2020). Your classifier is secretly an energy based model and you 
should treat it like one. ICLR 2020, 1–23.]

• SVGD training is very slo

CVPR 2021 Open World 12

CSI feature visualization



Concluding Remarks

• Latent representations from supervised learning contain information 
that we are not extracting

• The information is not easily available (e.g., to linear models)
• The information may not reflect open space or support few-shot learning

• Methods based on auxiliary or reconstruction tasks are theoretically
sound but difficult to train in practice

• Hybrid methods show promise
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