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Motivation: Automated Counting of
Freshwater Macroinvertebrates

e Goal: Assess the health of freshwater streams
e Method:

* Collect specimens via kicknet
* Photograph in the lab
* Classify to genus and species

* BuglD Project
e 54 classes of interest to the EPA

e accuracy = 90%

* Llarios, N., Soran, B., Shapiro, L., Martinez-Mufos, G., Lin, J., Dietterich, T. G. (2010).
Haar Random Forest Features and SVM Spatial Matching Kernel for Stonefly Species
Identification. /EEE International Conference on Pattern Recognition (ICPR-2010).

* Lin, J,, Larios, N., Lytle, D., Moldenke, A., Paasch, R., Shapiro, L., Todorovic, S.,
Dietterich, T. (2011). Fine-Grained Recognition for Arthropod Field Surveys: Three
Image Collections. First Workshop on Fine-Grained Visual Categorization (CVPR-2011)

* Lytle, D. A., Martinez-Mufoz, G., Zhang, W., Larios, N., Shapiro, L., Paasch, R.,
Moldenke, A., Mortensen, E. A., Todorovic, S., Dietterich, T. G. (2010). Automated
processing and identification of benthic invertebrate samples. Journal of the North
American Benthological Society, 29(3), 867-874.
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Problem: There are = 76, 000 species of
freshwater insects worldwide

* 1200 species in US

* Field samples may contain other things
e small rocks
* |leaves
* trash

* Simple estimate of equal error rate for
novel classes vs. the 54 classes was
20% (in 2011)

e classifier is not usable without addressing
the novel class problem

* We still need to solve this problem




Baseline Method: Classifier Indecision

Classifier approach
Learn classifier f(x) = P(y|x)

Compute a measure of uncertainty:
c A(x)=1-— argmaxP(y|xq)
y

« A(x) =H (P(y|xq))

* A(x) = maxclass “logit”

This should not work, because the
classifier should discard all aspects of
x that are irrelevant to classification

Surprise: it works fairly well

* Hendrycks & Gimpel (ICLR 2017) “A
Baseline for Detecting Misclassified
and Out-of-Distribution Examples in
Neural Networks”
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How much information does the latent space z contain
for anomaly detection?
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Research Questions
Risheek Garrepalli MS Thesis (2020)

* Q1: How well do existing anomaly scoring methods extract the
anomaly information that is captured in the latent representation z?

* Approach: Compare to an oracle anomaly detector

* Q2: How well could any network with this architecture perform the
anomaly detection task?
e Approach: Supervised training on both nominal and anomalous classes

* Definition of anomalies: Classes not seen during training

* “Open Category” or “Open Set” problem
 We claim this is harder and more realistic than Out-Of-Distribution tasks



Methods:

CIFAR-10: 6 “nominal” classes and 4 “anomaly” classes

CIFAR-100: 80 “nominal” classes and 20 “anomaly” classes

Train Classifier
* Divide data into train (60%), validate (20%), test (20%)
 Remove anomaly classes from the training and validation data
* Train ResNet34; use validation set accuracy to determine stopping point
* Compute anomaly score on test set; measure AUC (“nominal” vs “anomaly” decision)

Oracle Anomaly Detection
» Take all validation data and label the nominal classes as “nominal” and the anomaly classes as “anomaly”
* Train a random forest (1000 trees) that takes z as input and predicts “nominal” vs. “anomaly”
* Compute test set anomaly scores using this classifier; measure AUC

Oracle Representation
* Train ResNet34 on all classes
* Train a random forest (1000 trees) that takes z as input and predicts “nomina
* Compute test set anomaly scores using this classifier; measure AUC

|II

vs. “anomaly”



Results

e Details:

* Oracle Anomaly Detector: 1000-tree Random
Forest

* Anomaly Score: max logit

* Q1: The latent space contains much more
anomaly information than is extracted by
current anomaly scores

* 0.776—>0.905 =0.129
* 0.717->0.789 = 0.072
 Q2: There is additional anomaly information in

the images that is not represented by the
latent space

* 0.905->0.987 =0.082
* 0.789->0.809 = 0.020
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Hybrid Network Experiments

X Resnet34 Backbone

=

Add a Reconstruction head to the network and jointly train the representation to support both classification and
reconstruction (per-pixel squared error)

Loss = Cross-Entropy + A X Reconstruction Error
CIFAR10: A = 0.9, CIFAR100: A = 0.005

See also:

* Oza, P, & Patel, V. M. C2AE: Class Conditioned Auto-Encoder for Open-set Recognition. CVPR 2019

. %\Ilisnick, E., Matsukawa, A., Teh, Y. W., Gorur, D., & Lakshminarayanan, B. (2019). Hybrid models with deep and invertible features. ICML

* Zhang, H., Li, A., Guo, J., & Guo, Y. Hybrid Models for Open Set Recognition. ECCV 2020

* Perera, P.,, Morariu, V. I., Jain, R., Manjunatha, V., Wigington, C., Ordonez, V., & Patel, V. M. Generative-discriminative feature
representations for open-set recognition. CVPR 2020
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Hybrid Network Experiments

* Q3: Does this increase the amount of
anomaly-relevant information in the
latent representation?

* Result: Hybrid representation
improves performance

e Caution: A tuned using labeled test
data
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Reflections

* Several people have observed that better classifiers allow simple anomaly
detection methods (such as max logit) to work better

* We have no theory why. Why doesn’t the representation become more specialized
to the prediction task and lose novelty detection power?

* Are we just getting lucky with over-parameterized networks, because gradients = 0
as the supervised loss = 07?
* The reconstruction objective is theoretically sensible, but very difficult to
train
* Pure reconstruction models are very difficult to train

* The hybrid method works better, but it is not obvious how to tune 1

 Why do we need the supervised head? Is it just regularizing the reconstruction
representation?

* Some input augmentations improve performance of both classification and
anomaly detection



Improvements
[Alex Guyer]

* Generalized ODIN
e [Hsu, Y.-C., Shen, Y, Jin, H., & Kira, Z. (2020). Generalized ODIN: Detecting Out-of-
distribution Image without Learning from Out-of-distribution Data. CVPR 2020]

h1(z) h,(z) hg(2)\ . ,
. SoftMaX( L ) e )Wlth and h parameterized separatel
92 9@ " 9@ g P parately

* We use cosine similarity for h and linear model for g

* The input perturbations from ODIN were not useful

* Temperature scaling was not useful
* Consistent but modest improvement (e.g., 1 percentage point on CIFAR100)

* Deep Ensembles and Deep SVGD Ensembles




Some Other Things We Tried

[Alex Guyer]

* GEOM and other self-supervised tasks

[Golan, I., & El-Yaniv, R. Deep Anomaly Detection Using Geometric
Transformations, NeurlPS 2018; Gidaris, S., Singh, P., & Komodakis, N.
Unsupervised representation learning by predicting image rotations. ICLR 2018.]

rotation

recoloring

Sobel edge detection
Did not match baselines

* CSI (self-supervised representation)

[Tack, J., Mo, S., Jeong, J., & Shin, J. (2020). CSI: Novelty Detection via Contrastive
Learning on Distributionally Shifted Instances. NeurlPS 2020.]

Very sensitive to hyperparameters
Instance-level self-supervision is slow to train
Shows some promise

[Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D., Swersky, K., &
Norouzi, M. (2020). Your classifier is secretly an energy based model and you
should treat it like one. ICLR 2020, 1-23.]

SVGD training is very slo
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Concluding Remarks

 Latent representations from supervised learning contain information
that we are not extracting
* The information is not easily available (e.g., to linear models)
* The information may not reflect open space or support few-shot learning

* Methods based on auxiliary or reconstruction tasks are theoretically
sound but difficult to train in practice

* Hybrid methods show promise
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