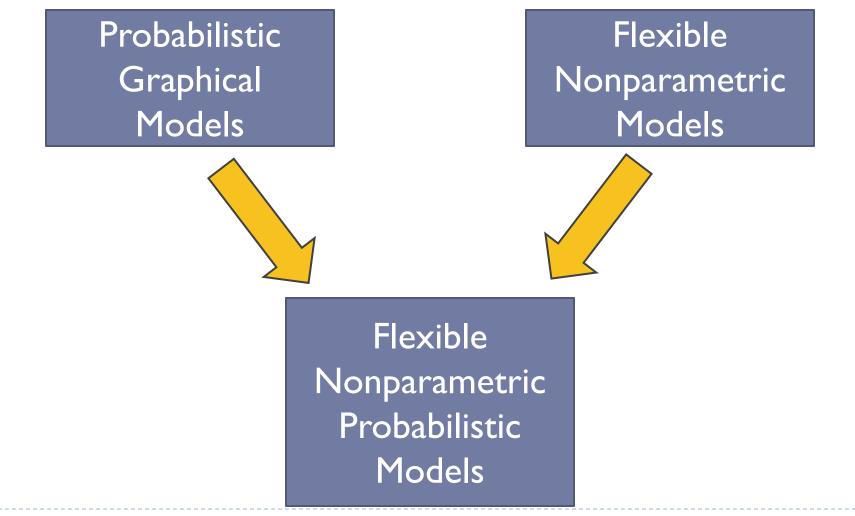
Graphical Models and Flexible Classifiers: Bridging the Gap with Boosted Regression Trees

Thomas G. Dietterich

with Adam Ashenfelter, Guohua Hao, Rebecca Hutchinson, Liping Liu, and Dan Sheldon

> Oregon State University Corvallis, Oregon, USA

Combining Two Approaches to Machine Learning

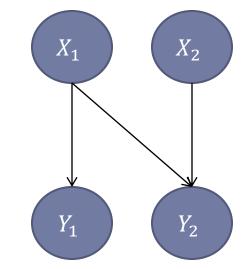


Outline

- Two Cultures of Machine Learning
 - Probabilistic Graphical Models
 - Non-Parametric Discriminative Models
 - Advantages and Disadvantages of Each
- Representing conditional probability distributions using non-parametric machine learning methods
 - Logistic regression (Friedman)
 - Conditional random fields (Dietterich, et al.)
 - Latent variable models (Hutchinson, et al.)
- Ongoing Work
- Conclusions

Probabilistic Graphical Models

- Nodes: Random variables
 - X_1, X_2, Y_1, Y_2
- Edges: Direct probabilistic dependencies
 - ▶ $P(Y_1|X_1), P(Y_2|X_1, X_2)$



- Joint probability distribution is the product of the individual node distributions
 - $P(X_1, X_2, Y_1, Y_2) = P(X_1)P(X_2)P(Y_1|X_1)P(Y_2|X_1, X_2)$

Probabilistic Graphical Models (2)

- Can be learned from training data, even when some of the random variables are unobserved (latent or missing)
 - Mixture models (e.g., Gaussian mixture models)
 - Train with EM, gradient descent, or MCMC
- Can represent dynamical processes (Markov models, Dynamic Bayesian Networks)
- Provide probabilistic predictions
 - Useful for integrating into larger systems
- Provide a powerful language for designing and expressing models of complex systems
 - Useful for capturing background knowledge

Probabilistic Graphical Models (3)

- How should the conditional probability distributions be represented?
 - Conditional Probability Tables (CPTs) with one parameter for each combination of values:

X_1	<i>X</i> ₂	<i>Y</i> ₁	$P(Y_1 X_1,X_2)$
0	0	0	α
0	0	I	$1 - \alpha$
0	I	0	β
0	I	I	$1 - \beta$
I	0	0	γ
I	0	I	$1 - \gamma$
I	I	0	δ
I	I	I	$1-\delta$

• Log-linear models • $\log \frac{P(Y_1=1|X_1,X_2)}{P(Y_1=0|X_1,X_2)} = \alpha' + \beta' \cdot I[X_1 = 1] + \gamma' \cdot I[X_2 = 1]$ Advantages and Disadvantages of Parametric Representations

Advantages

- Each parameter has a meaning
- Supports statistical hypothesis testing: "Does X₁ influence Y₁?"

$$\flat \quad H_0: \beta' = 0$$

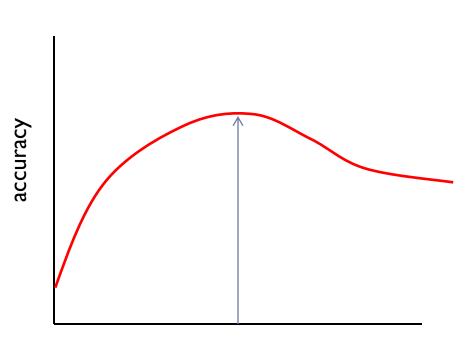
• $H_a: \beta' \neq 0$

Disadvantages

- Model has fixed complexity
 - Will typically either under-fit or overfit the data
- Designer must decide about interactions, non-linearities, etc. etc.
 - Wrong decisions lead to highly biased models and invalidate hypothesis tests
 - Correlated variables cause trouble
 - Difficult for problems with many features
- Data must be transformed to match the parametric form
 - Discretized
 - Square root or log transforms

Flexible Machine Learning Models

- Support Vector Machines
- Classification and Regression Trees
- Key advantage: Can tune the complexity of the model to the complexity of the data
 - Structural Risk Minimization

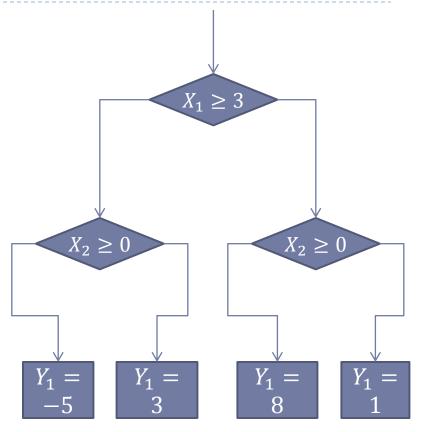


complexity

Another Advantage: Interactions and Nonlinearities

- SVMs:
 - Polynomial kernels capture interactions and polynomial nonlinearities
 - Gaussian kernels capture nonlinearities, however, interactions are embedded in the distance function (typically Euclidean)
- Classification and regression trees
 - Interactions are captured by the ifthen-else structure of the tree
 - Nonlinearities are approximated by piecewise constant functions

$$Y_1 = -5 \cdot I(X_1 \ge 3, X_2 \ge 0) + 3 \cdot I(X_1 \ge 3, X_2 < 0) + 8 \cdot I(X_1 < 3, X_2 \ge 0) + 1 \cdot I(X_1 < 3, X_2 < 0)$$



Tree-Based Methods

Advantages

- Flexible Model Complexity
 - Controlled by depth of tree
- Can handle discrete, ordered, and continuous variables
 - No normalization or rescaling needed
- Can handle missing values
 - Proportional distribution
 - Surrogate splits
- Best "off the shelf" method (Breiman)

Disadvantages

- Poor probability estimates
- Does not support hypothesis testing
- Cannot handle latent variables
- High variance, which can be addressed by
 - Boosting
 - Bagging
 - Randomization

Can we combine the best of both?

Probabilistic Graphical Models

- Probabilistic semantics
- Structured by background knowledge
- Latent variables and dynamic processes

Non-Parametric Tree Methods

- Tunable model complexity
- No need for data scaling and preprocessing
 - Discrete, ordered, or continuous values

Existing Efforts

- Dependency Networks
 - Heckerman et al. (JMLR 2000):
 - Bayesian network where each P(X|Y) is a decision tree (with multinomial output probabilities)
 - Trained to maximize pseudo-likelihood
 - Requires all variables to be observed
- RKHS embeddings of probabilities distributions
 - Song, Gretton & Guestrin (AISTATS 2011)
 - Tree-structured graphical model (undirected)
 - No latent variables
- Bayesian semi-parametric methods
 - Dirichlet processes (Blei, Jordan, et al.)

Outline

- Two Cultures of Machine Learning
 - Probabilistic Graphical Models
 - Non-Parametric Discriminative Models
 - Advantages and Disadvantages of Each
- Representing conditional probability distributions using non-parametric machine learning methods
 - Logistic regression (Friedman)
 - Conditional random fields (Dietterich, et al.)
 - Latent variable models (Hutchinson, et al.)
- Ongoing Work
- Conclusions

Representing P(Y|X) using boosted regression trees

- Friedman: Gradient Tree Boosting (2000; Annals of Statistics, 2011)
- Consider logistic regression:

•
$$\log \frac{P(Y=1)}{P(Y=0)} = \beta_0 + \beta_1 X_1 + \dots + \beta_J X_J$$

•
$$D = \{(X^i, Y^i)\}_{i=1}^N$$
 are the training examples

Log likelihood:

$$LL(\beta) = \sum_{i} Y^{i} \log P(Y = 1 | X^{i}; \beta) + (1 - Y^{i}) \log P(Y = 0 | X^{i}; \beta)$$

Fitting logistic regression via gradient descent

• Let
$$\beta^0 = g^0 = \mathbf{0}$$

For $\ell = 1, \dots, L$ do

• Compute
$$g^{\ell} = \nabla_{\beta} LL(\beta) |_{\beta = \beta^{\ell-1}}$$

- > g^ℓ = gradient w.r.t. β
 > β^ℓ := β^{ℓ-1} + n_ℓa^ℓ take a step of size
- $\beta^{\ell} \coloneqq \beta^{\ell-1} + \eta_{\ell} g^{\ell}$ take a step of size η_{ℓ} in direction of gradient
- Final estimate of β is
 β^L = g⁰ + η₁g¹ + ··· + η_Lg^L

Functional Gradient Descent Boosted Regression Trees

- Friedman (2000), Mason et al. (NIPS 1999), Breiman (1996)
- Fit a logistic regression model as a weighted sum of regression trees:

$$\log \frac{P(Y=1)}{P(Y=0)} = tree^{0}(X) + \eta_{1}tree^{1}(X) + \dots + \eta_{L}tree^{L}(X)$$

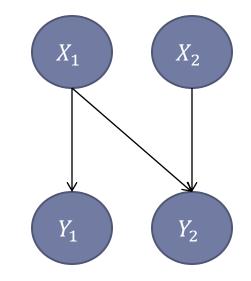
When "flattened" this gives a log linear model with complex interaction terms

L2-Tree Boosting Algorithm

- Let $F^0(X) = f^0(X) = 0$ be the zero function
- For $\ell = 1, \dots, L$ do
 - Construct a training set $S^{\ell} = \{(X^i, \tilde{Y}^i)\}_{i=1}^N$
 - where Ỹ is computed as
 Ỹⁱ = ∂LL(F)/∂F |_{F=F^{ℓ-1}(Xⁱ)} how we wish F would change at Xⁱ
 Let f^ℓ = regression tree fit to S^ℓ
 - $\blacktriangleright F^{\ell} \coloneqq F^{\ell-1} + \eta_{\ell} f^{\ell}$
- \blacktriangleright The step sizes η_ℓ are the weights computed in boosting
- This provides a general recipe for learning a conditional probability distribution for a Bernoulli or multinomial random variable

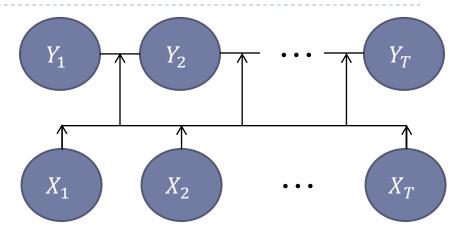
L2-TreeBoosting can be applied to any fullyobserved directed graphical model

- $P(Y_1|X_1)$ as sum of trees
- $P(Y_2|X_1, X_2)$ as sum of trees
- What about undirected graphical models?



Tree Boosting for Conditional Random Fields

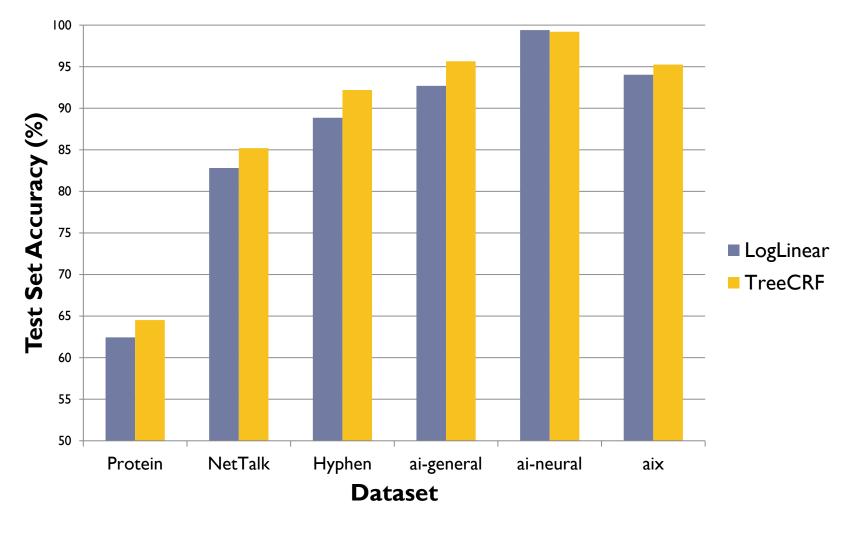
- Conditional Random Field (Lafferty et al., 2001)
 - $\blacktriangleright P(Y_1, \dots, Y_T | X_1, \dots, X_T)$
 - Undirected graph over the Y's conditioned on the X's.
 - $\Phi(Y_{t-1}, Y_t, X) = \log \text{linear}$ model



Dietterich, Hao, Ashenfelter (JMLR 2008; ICML 2004)

- Fit $\Phi(Y_{t-1}, Y_t, X)$ using tree boosting
- A form of automatic feature discovery for CRFs

Experimental Results



All differences statistically significant p<0.005 or better

||/||/20||

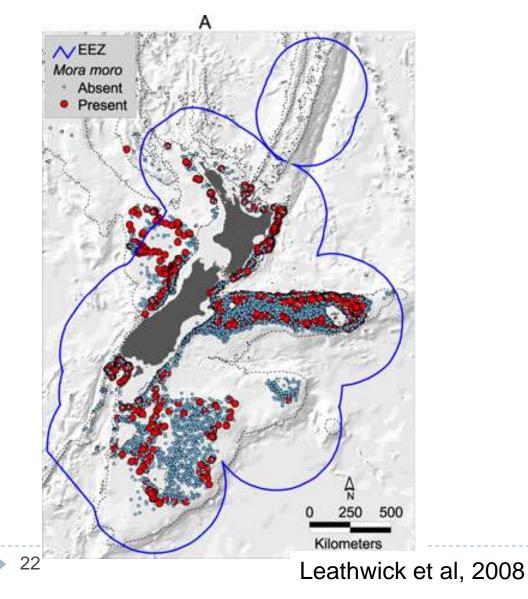
20

Tree Boosting for Latent Variable Models

- Both Friedman's L2-TreeBoosted logistic regression and our L2-TreeBoosted CRFs assumed that all variables were observed in the training data
- Can we extend Tree Boosting to <u>latent variable</u> graphical models?
- Motivating application: Species Distribution Modeling

Species Distribution Modeling

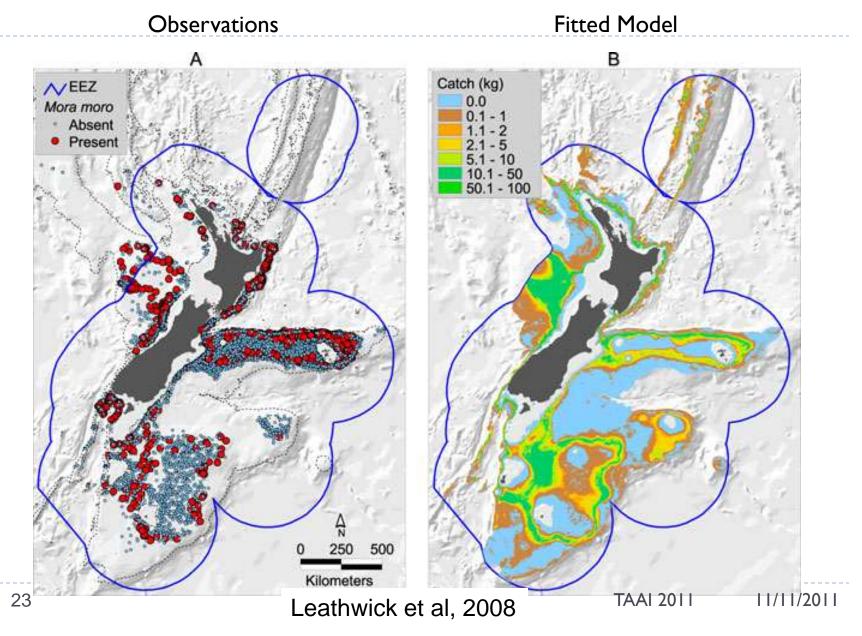
Observations

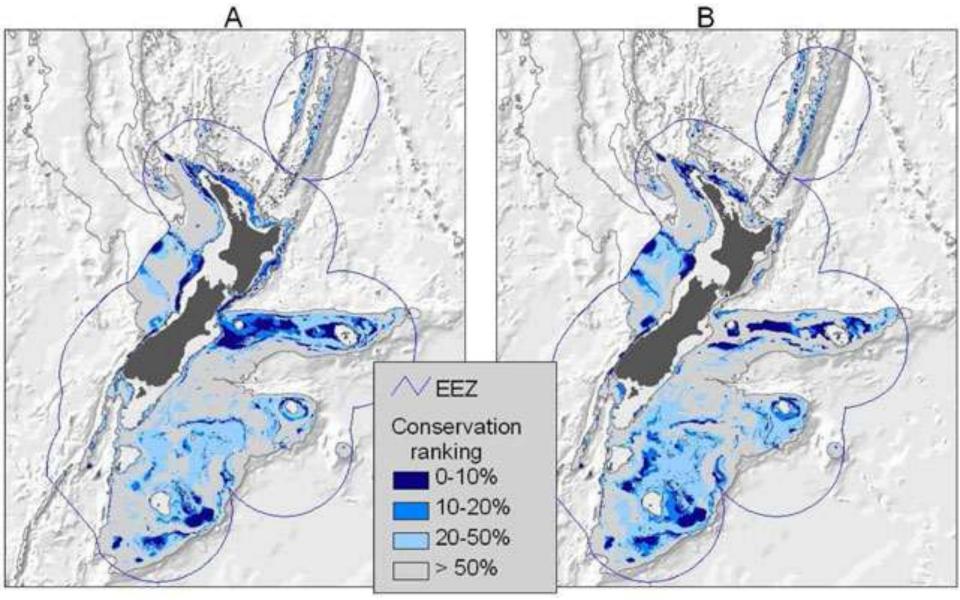


TAAI 2011

||/||/20||

Species Distribution Modeling





Disregarding costs to fishing industry

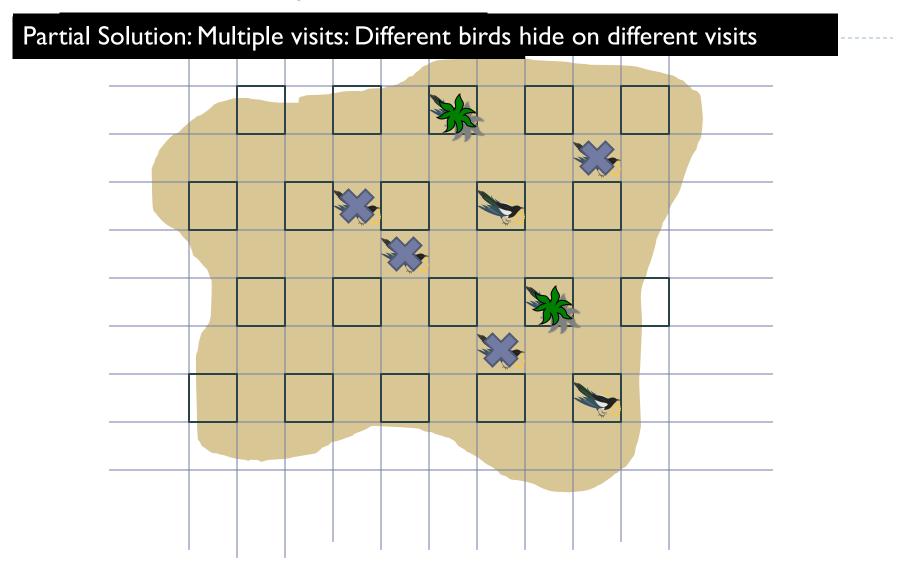
Full consideration of costs to fishing industry

Leathwick et al, 2008

TAAI 2011

||/||/20||

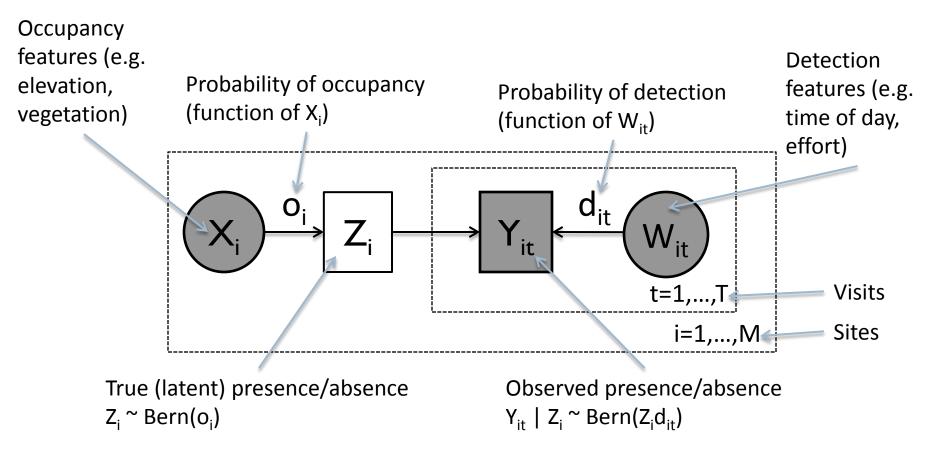
Wildlife Surveys with Imperfect Detection



Multiple Visit Data

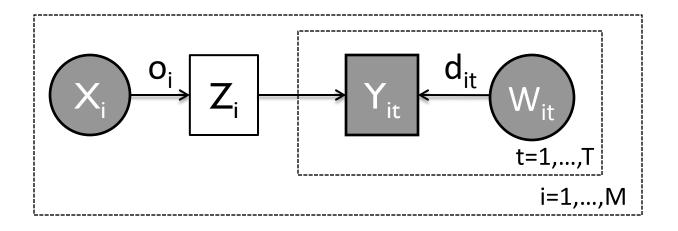
		Detection History		
Site	True occupancy (latent)	Visit I (rainy day, I2pm)	Visit 2 (clear day, 6am)	Visit 3 (clear day, 9am)
A (forest, elev=400m)	Ι	0	I	I
B (forest, elev=500m)	Ι	0	I	0
C (forest, elev=300m)	Ι	0	0	0
D (grassland, elev=200m)	0	0	0	0

Occupancy-Detection Model



TAAI 2011 11/11/2011

Parameterizing the model



 $\begin{aligned} z_i \sim P(z_i | x_i) &: \text{Species Distribution Model} \\ P(z_i = 1 | x_i) = o_i = F(x_i) \text{ "occupancy probability"} \\ y_{it} \sim P(y_{it} | z_i, w_{it}) &: \text{Observation model} \\ P(y_{it} = 1 | z_i, w_{it}) = z_i d_{it} \\ d_{it} = G(w_{it}) \text{ "detection probability"} \end{aligned}$

Standard Approach: Log Linear (logistic regression) models

$$\log \frac{F(X)}{1 - F(X)} = \beta_0 + \beta_1 X^1 + \dots + \beta_J X^J$$

$$\log \frac{G(W)}{1 - G(W)} = \alpha_0 + \alpha_1 W^1 + \dots + \alpha_K W^K$$

- Train via EM
- People tend to use very simple models: J = 4, K = 2

Regression Tree Parameterization

•
$$\log \frac{F(x)}{1-F(x)} = f^0(x) + \rho_1 f^1(x) + \dots + \rho_L f^L(x)$$

•
$$\log \frac{G(w)}{1 - G(w)} = g^0(w) + \eta_1 g^1(w) + \dots + \eta_L g^L(w)$$

- Perform functional gradient descent alternating between F and G
- Could also use EM

Alternating Functional Gradient Descent

• Loss function L(F, G, y)

•
$$F^0 = G^0 = f^0 = g^0 = 0$$

- For $\ell = 1, \dots, L$
 - For each site *i* compute $\tilde{z}_i = \partial L(F^{\ell-1}(x_i), G^{\ell-1}, y_i) / \partial F^{\ell-1}(x_i)$
 - Fit regression tree f^{ℓ} to $\{\langle x_i, \tilde{z}_i \rangle\}_{i=1}^M$
 - Let $F^{\ell} = F^{\ell-1} + \rho_{\ell} f^{\ell}$
 - For each visit t to site i, compute $\tilde{y}_{it} = \partial L \left(F^{\ell}(x_i), G^{\ell-1}(w_{it}), y_{it} \right) / \partial G^{\ell-1}(w_{it})$
 - Fit regression tree g^{ℓ} to $\{\langle w_{it}, \tilde{y}_{it} \rangle\}_{i=1,t=1}^{M,T_i}$
 - Let $G^{\ell} = G^{\ell-1} + \eta_{\ell} g^{\ell}$

Experiment

- Algorithms:
 - Supervised methods:
 - S-LR: logistic regression from $(x_i, w_{it}) \rightarrow y_{it}$
 - ▶ S-BRT: boosted regression trees $(x_i, w_{it}) \rightarrow y_{it}$
 - Occupancy-Detection methods:
 - OD-LR: F and G logistic regressions
 - OD-BRT: F and G boosted regression trees
- Data:
 - 12 bird species
 - 3 synthetic species
 - 3124 observations from New York State, May-July 2006-2008
 - All features rescaled to zero mean, unit variance

Features

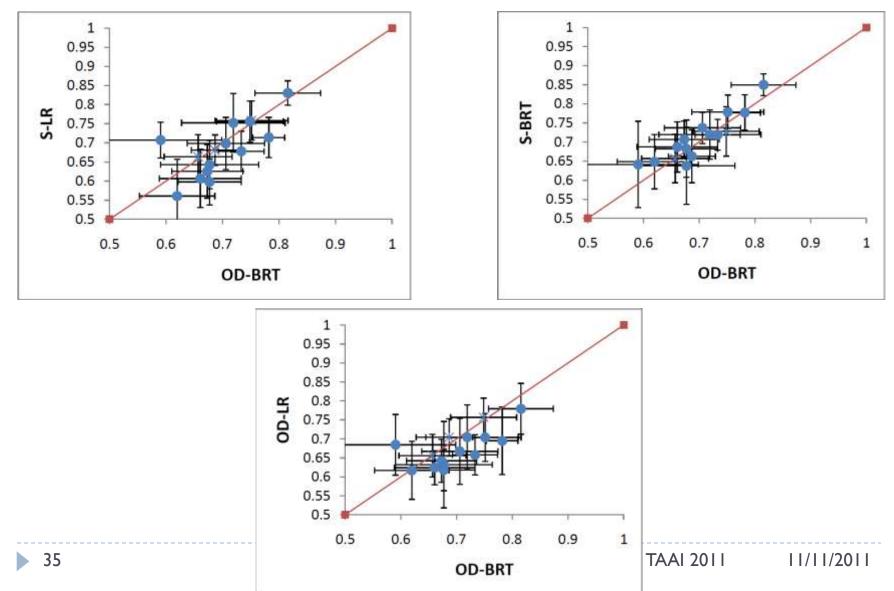
$X^{(1)}$	Human population per sq. mile
$X^{(2)}$	Number of housing units per sq. mile
$X^{(3)}$	Percentage of housing units vacant
$X^{(4)}$	Elevation
$X^{(5)} \dots X^{(19)}$	Percent of surrounding 22,500 hectares
	in each of 15 habitat classes from the
	National Land Cover Dataset
$W^{(1)}$	Time of day
$W^{(2)}$	Observation duration
$W^{(3)}$	Distance traveled during observation
$W^{(4)}$	Day of year

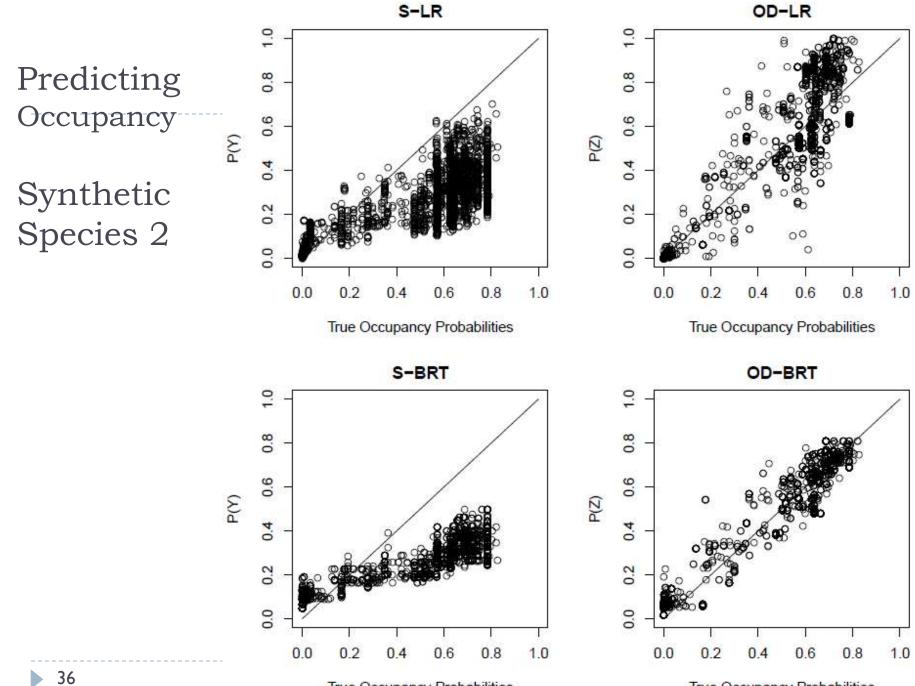
Simulation Study using Synthetic Species

Synthetic Species 2: F and G nonlinear

$$\log \frac{o_i}{1 - o_i} = -2 \left[x_i^{(1)} \right]^2 + 3 \left[x_i^{(2)} \right]^2 - 2 x_i^{(3)}$$
$$\log \frac{d_{it}}{1 - d_{it}} = \exp(-0.5w_{it}^{(4)}) + \sin(1.25w_{it}^{(1)} + 5)$$

Results for AUC of y_{it} No significant differences



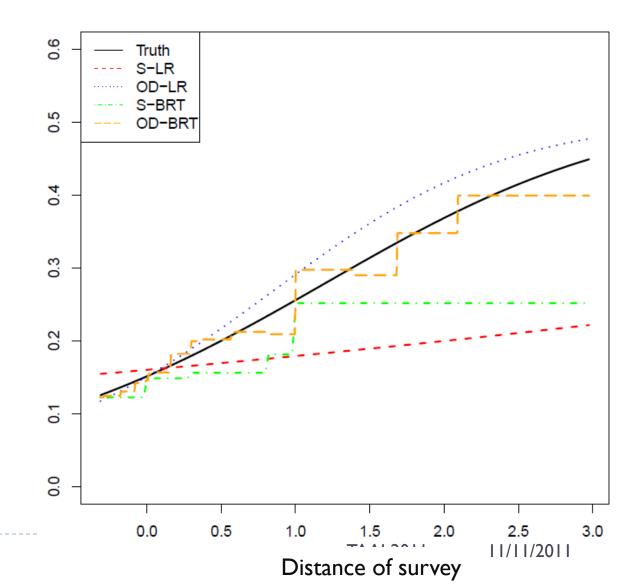


True Occupancy Probabilities

True Occupancy Probabilities

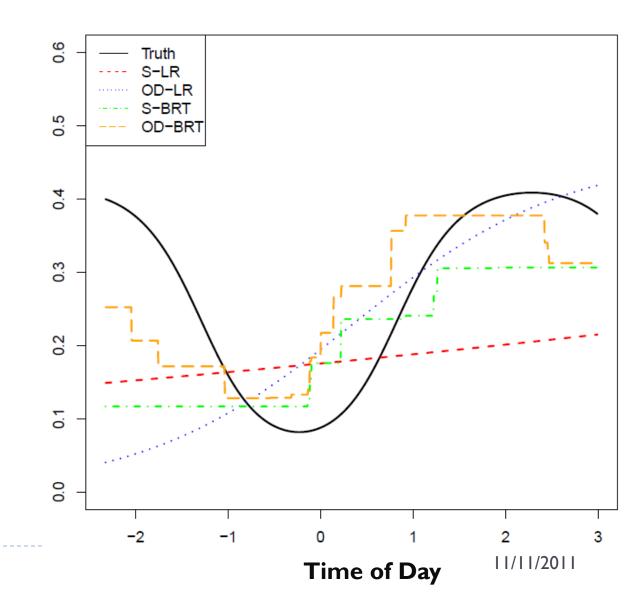
Partial Dependence Plot Synthetic Species 1

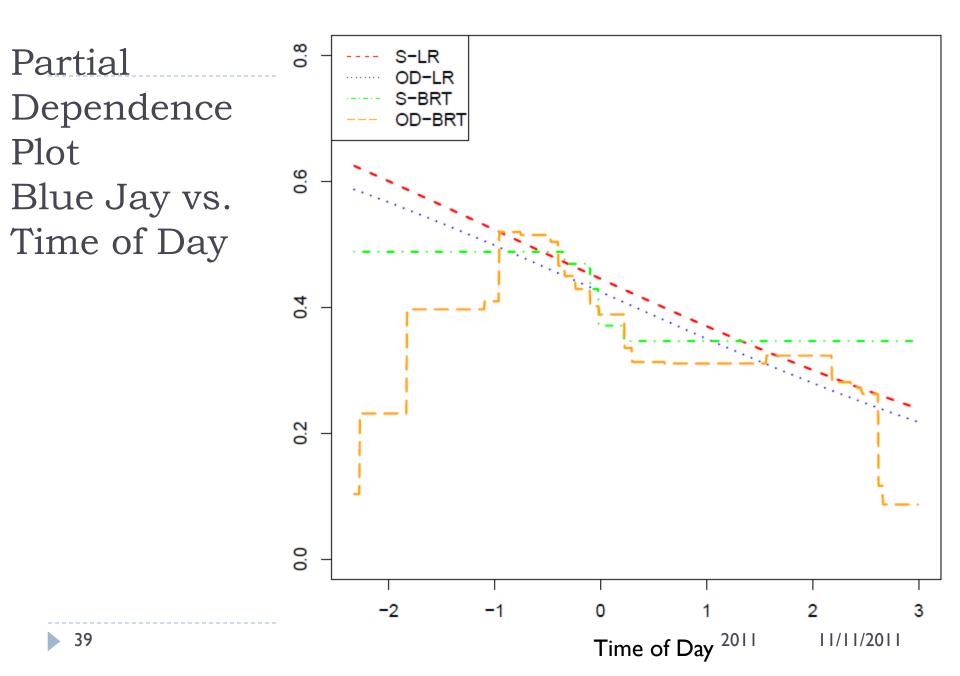
 OD-BRT has the least bias

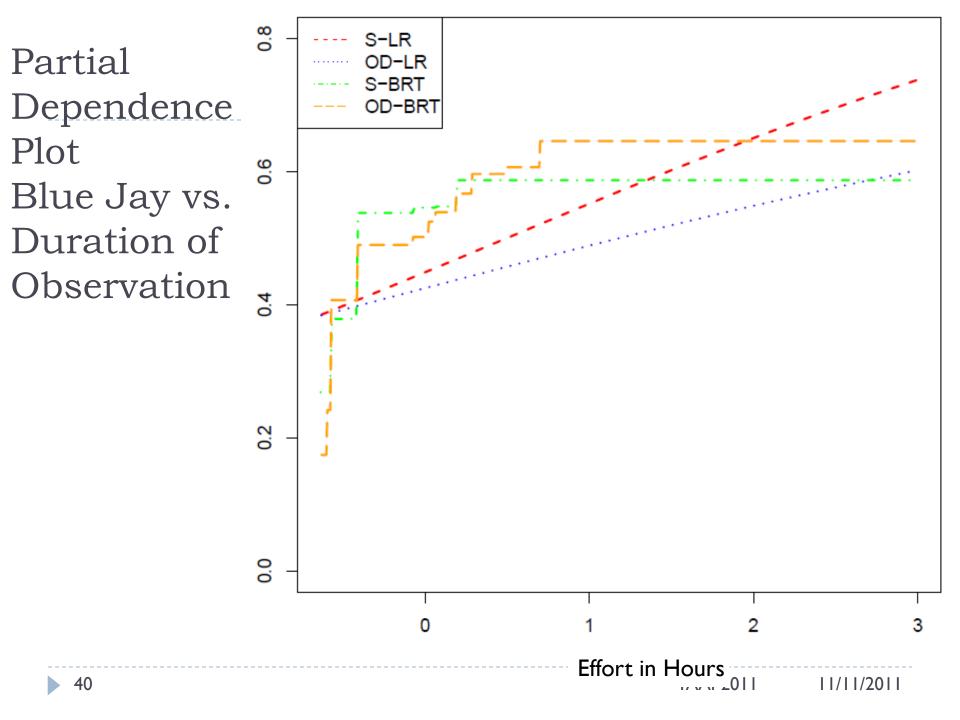


Partial Dependence Plot Synthetic Species 3

 OD-BRT has the least bias and correctly captures the bimodal detection probability







Open Problems

Sometimes the OD model finds trivial solutions

- Detection probability = 0 at many sites, which allows the Occupancy model complete freedom at those sites
- Occupancy probability constant (0.2)
- Log likelihood for latent variable models suffers from local minima
 - Proper initialization?
 - Proper regularization?
 - Posterior regularization?
- How much data do we need to fit this model?
 - Can we detect when the model has failed?

Outline

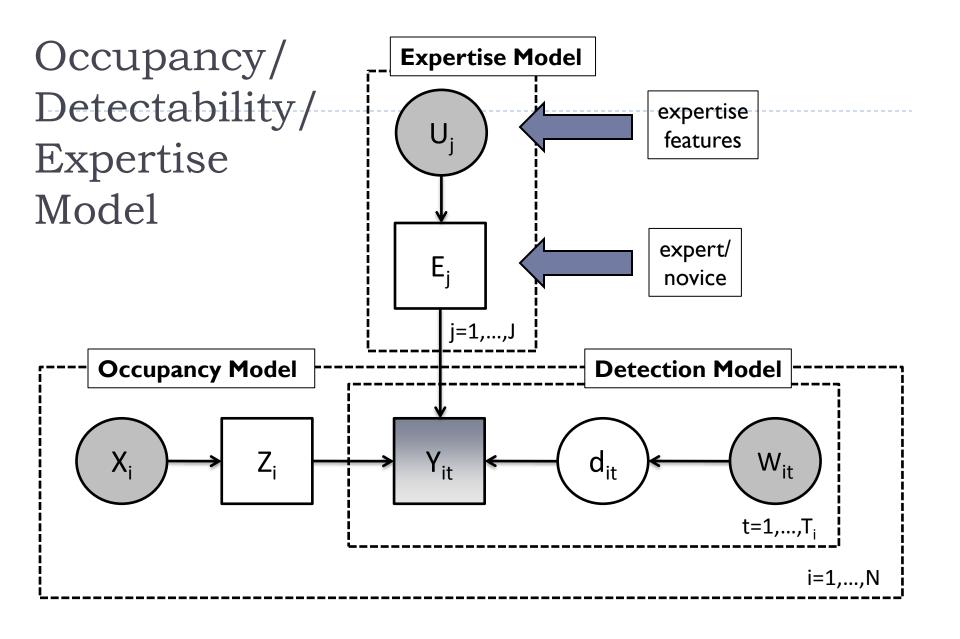
- Two Cultures of Machine Learning
 - Probabilistic Graphical Models
 - Non-Parametric Discriminative Models
 - Advantages and Disadvantages of Each
- Representing conditional probability distributions using non-parametric machine learning methods
 - Logistic regression (Friedman)
 - Conditional random fields (Dietterich, et al.)
 - Latent variable models (Hutchinson, et al.)
- Ongoing Work
- Conclusions

Next Steps

- Modeling Expertise in Citizen Science
- From Occupancy (0/1) to Abundance (n)
- From Static to Dynamic Models

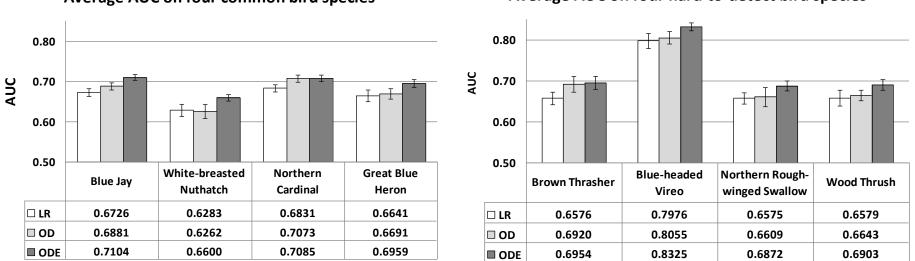
Modeling Expertise in Citizen Science

- Project eBird
 - Bird watchers upload checklists to ebird.org
 - >3M data points per month (May 2011)
 - World-wide coverage 24x365
- Wide variation in "birder" expertise



First Results

D



Average AUC on four common bird species

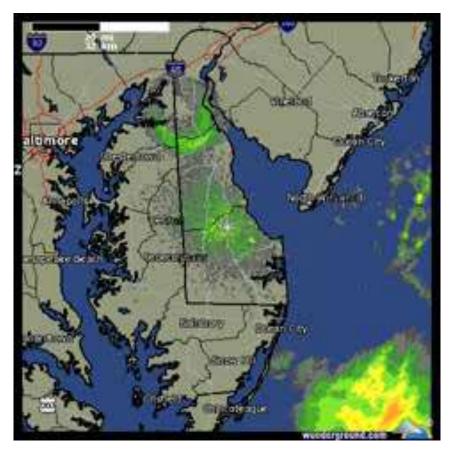
Average AUC on four hard-to-detect bird species

- eBird data for May and June (peak detectability period) for NYState
- Expertise component trained via supervised learning

Jun Yu, Weng-Keen Wong, Rebecca Hutchinson (2010). Modeling Experts and Novices in Citizen Science Data. ICDM 2010.

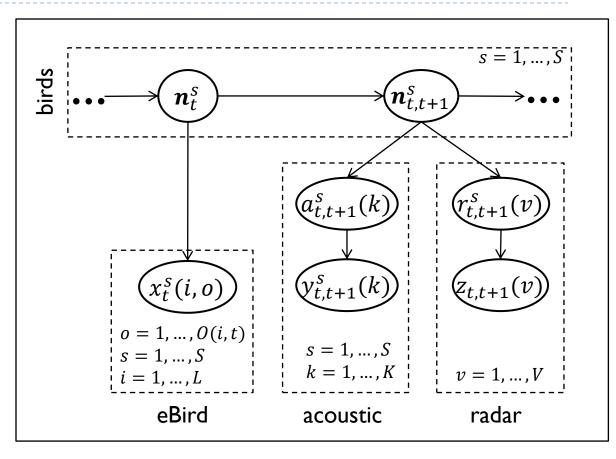
New Project: BirdCast

- Goal: Continent-wide bird migration forecasting
- Additional data sources:
 - Doppler weather radar
 - Night flight calls
 - Wind observations (assimilated to wind forecast model)



BirdCast Model:

- $n_t^s(c) = \#$ of birds of species s at cell c and time t.
- x^s_t(i, o) = eBird count for visit o at site i species s and time t
- $y_{t,t+1}^{s}(k) = #$ of flight calls for species s at site k on the night (t, t + 1)
- z_{t,t+1} = # of birds (all species) observed at radar v on night (t, t + 1)
- Occupancy changes each night
- Transition probabilities should be influenced by many habitat features: parameterize using boosted trees



Outline

- Two Cultures of Machine Learning
 - Probabilistic Graphical Models
 - Non-Parametric Discriminative Models
 - Advantages and Disadvantages of Each
- Representing conditional probability distributions using non-parametric machine learning methods
 - Logistic regression (Friedman)
 - Conditional random fields (Dietterich, et al.)
 - Latent variable models (Hutchinson, et al.)
- Ongoing Work

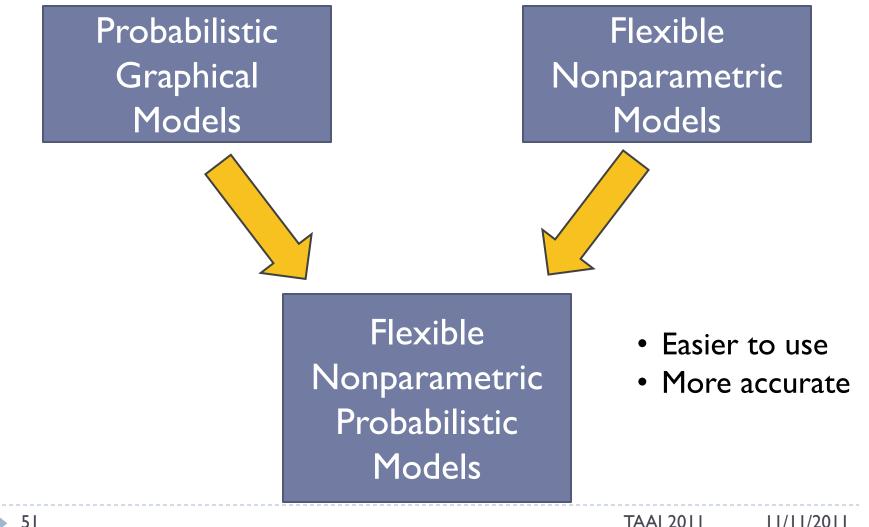
Conclusions

Concluding Remarks

Gradient Tree Boosting can be integrated into probabilistic graphical models

- Fully observed directed models
- Conditional random fields
- Latent variable models
- When to do this?
 - When you want to condition on a large number of features
 - When you have a lot of data

Combining Two Approaches to Machine Learning



11/11/2011

Thank-you

- Adam Ashenfelter, Guo-Hua Hao: TreeBoosting for CRFs
- Rebecca Hutchinson, Liping Liu: Boosted Regression Trees in OD models
- Weng-Keen Wong, Jun Yu: ODE model
- Dan Sheldon: Models for Bird Migration
- Steve Kelling and colleagues at the Cornell Lab of Ornithology
- National Science Foundation Grants 0083292, Off-theshelf, 0832804 and 0905885