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When should we trust a prediction?
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Deep Neural 
Network “giraffe”



Goals of Uncertainty Quantification
• Selective Classification

• Allow the classifier to abstain in order to guarantee high accuracy on the remaining 
predictions

• Safety-critical applications
• Reduce hallucination in large language models
• Distribution shift/Open category settings

• System Integration
• Communicate uncertainty to down-stream components to allow them to compute 

expectations, make decisions
• Provide Guidance on System Improvement

• What components should we try to improve?
• Active learning, better labels, better model space, better learning algorithms?
• When do we need to retrain?

• Improving Model Accuracy
• Down-weight training examples in uncertain regions of the input space
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Selective Classification
(Also called “Classification with a reject option”)

• Competence Model
• How uncertain is 𝑓𝑓(𝑥𝑥𝑞𝑞)?

• “local uncertainty”

• Applies to regression models also 
(of course)

• Selective prediction
• Prediction with a reject option

• Uncertainty-aware learning: 
Should our uncertainty affect the 
learning of 𝑓𝑓 itself?
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System Integration: 
Predict a probability distribution
• Classification:

• 𝑃𝑃 𝑦𝑦𝑞𝑞 = 1 𝑥𝑥𝑞𝑞 ,𝑃𝑃 𝑦𝑦𝑞𝑞 = 2 𝑥𝑥𝑞𝑞 , … ,𝑃𝑃 𝑦𝑦𝑞𝑞 = 𝐾𝐾 𝑥𝑥𝑞𝑞
• Regression:

• Probability density 𝑃𝑃 𝑦𝑦𝑞𝑞 𝑥𝑥𝑞𝑞
• Cumulative distribution function 𝐹𝐹 𝑦𝑦𝑞𝑞 𝑥𝑥𝑞𝑞

• This allows a down-stream system to compute 
expectations and risks

• Cost-sensitive classification
• arg min

𝑘𝑘
∑𝑘𝑘′=1
𝐾𝐾 𝑃𝑃 𝑦𝑦 = 𝑘𝑘′ 𝑥𝑥𝑞𝑞 𝐶𝐶 𝑘𝑘 𝑘𝑘𝑘

• 𝐶𝐶 𝑘𝑘′ 𝑘𝑘 is the cost of predicting class 𝑘𝑘𝑘 when the true 
class is 𝑘𝑘

• Expected cost
• ∫𝑦𝑦 𝐶𝐶 𝑦𝑦 𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑑𝑑𝑦𝑦

• Risk of outcomes worse than 𝑢𝑢 (conditional value at 
risk)

• ∫𝑦𝑦<𝑢𝑢 𝐶𝐶 𝑦𝑦 𝑃𝑃 𝑦𝑦 𝑥𝑥 𝑑𝑑𝑦𝑦
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Guidance for System Improvement

• Actions we might take to improve the model
• Down-weight more uncertain training examples
• Collect more data (active learning)
• Reduce noise in feature measurement
• Reduce noise in the class labels
• Reduce sampling bias, missing values, etc.
• Add or reduce model capacity (width and number of layers)
• Improve the learning algorithm (e.g., optimization method; hyperparameters)
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Two Different Scenarios
• Case 1: “Full Uncertainty Quantification”

• Uncertainty in the model fitting process is important
• Given: Training data
• Find: Fit a model or an ensemble of models
• Questions: Do we have enough data? Is the model class appropriate? Is the 

optimization working? 
• Active learning, system integration

• Case 2: “Single Model Uncertainty Quantification”
• Uncertainty in model fitting is not important
• Given: A fitted model 𝑓𝑓 and an independent data set
• Find: An uncertainty assessment of 𝑓𝑓
• Question: How uncertain is my prediction �𝑦𝑦𝑞𝑞 = 𝑓𝑓 𝑥𝑥𝑞𝑞 ?
• Selective classification, system integration
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Uncertainty Decomposition: 
Aleatoric and Epistemic Uncertainty
• Aleatoric: (Latin: aleator is a “dice player”). Random noise
• Epistemic: “lack of knowledge”

• There are many debates about the difference between these. 

• Working definition:
• Epistemic uncertainty is uncertainty that could be removed by collecting more 

data (using the same features and the same data labeling process)
• Useful for active learning, exploration in RL

• Aleatoric uncertainty is everything else
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Aleatoric Uncertainty: Regression

• Most models include “aleatoric” 
parameters that capture the mismatch 
between the model predictions and the 
labels

• Linear regression:
• 𝑦𝑦 = 𝛽𝛽⊤𝑥𝑥 + 𝜖𝜖 where 𝜖𝜖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0,𝜎𝜎𝜖𝜖2
• 𝜎𝜎𝜖𝜖2 is the aleatoric parameter. It estimates the 

amount of noise in the labels
• It is estimated as the variance of the training 

data residuals, corrected for the fact that we 
fit 𝛽𝛽 to those same data points
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Epistemic Uncertainty

• Uncertainty due to the finite amount 
of training data

• As we collect more training data, the 
epistemic uncertainty will drop, and all 
“consistent” estimation procedures 
will converge to the correct answer

• In a non-stationary world where the 
correct answer is continually changing, 
there is always epistemic uncertainty. 
We never observe enough data to 
converge

OxML 2024 12



Measuring Epistemic Uncertainty via Ensembles
• Fix the model class ℳ

• Examples: neural network architecture, decision trees of depth ≤ 𝑑𝑑
• Fix the training data 𝒟𝒟𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖𝑡𝑡
• Train an ensemble of 𝐿𝐿 models
• Measure the degree of disagreement at the query point 𝑥𝑥𝑞𝑞

• High disagreement  high epistemic uncertainty
• Under the assumption that the learning algorithms would converge to a unique answer given infinite 

data
• Measures of disagreement: 

• Regression: Variance of predictions: 1
𝐿𝐿
∑ℓ �𝑦𝑦ℓ − ��𝑦𝑦 2

, where �𝑦𝑦ℓ is the prediction from model ℓ and ��𝑦𝑦 is the 
average of those predictions

• Classification: Choose a distance ⋅ between probability distributions (e.g., KL divergence, Total 
Variation distance, Hellinger distance). 

• Let 𝛼𝛼ℓ be the predicted probability vector from model ℓ
• “Disagreement”: min

�𝛼𝛼
1
𝐿𝐿
∑ℓ 𝛼𝛼ℓ − �𝛼𝛼

• �𝛼𝛼 plays the same role as the mean. But it depends on the choice of ⋅ . 
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Ensemble Methods for Epistemic Uncertainty (1)
• Neural network ensemble using different random seeds

• Train 𝐿𝐿 networks. Initialize the weights using different random seeds.
• Measure how much the fitted networks disagree on a prediction 𝑓𝑓ℓ 𝑥𝑥𝑞𝑞
• If we have enough training data, all of the networks should give very similar 

answers
• This also captures variance caused by the backpropagation algorithm:

• Stochastic gradient descent
• Random sampling of mini-batches
• This may cause it to over-estimate epistemic uncertainty

• Requires training multiple networks
• Open question: Can we use LoRA methods to avoid full ensemble training?

• See Babalanov & Linander (2024)
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Ensemble Methods for Epistemic Uncertainty (2):
Bagging Ensembles (Breiman, 1996)

• Let 𝒟𝒟 be our training data containing 𝑛𝑛 training examples: 
𝑥𝑥1,𝑦𝑦1 , … , (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)

• A bootstrap replicate 𝒟𝒟𝑏𝑏 is created by randomly sampling 𝑛𝑛 examples with 
replacement from 𝒟𝒟
𝒟𝒟𝑏𝑏 ≔ {}
For 𝑖𝑖 = 1, … ,𝑛𝑛

Let (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) be a data point randomly sampled from 𝒟𝒟
Add it to 𝒟𝒟𝑏𝑏

• Train a classifier on 𝒟𝒟𝑏𝑏

• This simulates training on a new data set of the same size and drawn from 
the same distribution

• If we have low epistemic uncertainty, the classifiers trained on bootstrap 
replicates will be very similar
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Ensemble Methods for Epistemic Uncertainty (3):
Approximate Bayes via Dropout
• Dropout:

• Let 𝑁𝑁𝑖𝑖𝑖𝑖 be the activation of unit 𝑖𝑖 in layer 𝑁𝑁
• Let 𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 be the weight connecting unit 𝑖𝑖 in layer 𝑁𝑁 to unit 𝑗𝑗 in layer 𝑁𝑁

• 𝑁𝑁 is usually 𝑁𝑁 + 1
• During each forward pass through the network, with probability 𝑑𝑑,

• 𝑤𝑤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ≔ 0
• The contribution of 𝑁𝑁𝑖𝑖𝑖𝑖 to unit 𝑗𝑗 is “dropped out”

• We can think of dropout as converting one network into a huge random collection of networks
• We apply this dropout process both during training and during prediction

• During training: Tends to make the network weights more robust (because they need to be accurate despite the dropout 
noise)

• During prediction: We can obtain a probability distribution over the network predictions by doing 𝐿𝐿 forward passes (e.g., 50)
• Training is not much more expensive than standard training
• Prediction is 𝐿𝐿 times more expensive

• Gal & Ghahramani (2016) prove that dropout is a valid approximation to a full Bayesian ensemble
• However, it changes the class of fitted models
• It may under-estimate epistemic uncertainty
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Aleatoric Uncertainty: Classification
• Multinomial Logistic Regression (softmax probability 

prediction)

𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 =
𝑒𝑒ℓ𝑘𝑘 𝑥𝑥

∑𝑘𝑘′=1
𝐾𝐾 𝑒𝑒ℓ𝑘𝑘′ 𝑥𝑥

• where ℓ𝑘𝑘 𝑥𝑥 = 𝛽𝛽𝑘𝑘 ⋅ 𝑥𝑥 is the logit score for class 𝑘𝑘 = 1, … ,𝐾𝐾
• To the extent ℓ𝑘𝑘 𝑥𝑥 < ∞, the model claims there is aleatoric 

uncertainty in the labels
• Labels are determined by tossing weighted dice
• We can quantify this using the conditional entropy:

𝐻𝐻 𝑦𝑦 𝑥𝑥 = ∑𝑘𝑘=1𝐾𝐾 −𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 log𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥
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Sources of Uncertainty
“Global” uncertainty of the learned classifier:
• Are the measured features sufficient to make accurate predictions?
• Is there measurement noise in the features?
• Is there selection bias in the features?
• Are there missing values in the features?
• Are the labels on the training data accurate, noisy, or biased?
• Is the optimal classifier changing over time? (data shift; novel categories)
• Can the model class represent a good approximation of the true decision 

boundary?
• Do we have enough training data so that a learning algorithm can find that 

good approximation?
• Can the learning algorithm find that good approximation?

“Local” uncertainty with respect to a query 𝒙𝒙𝒒𝒒:
• All of the above, but now focused on a neighborhood around 𝑥𝑥𝑞𝑞

OxML 2024 18

Data Uncertainty

Model Uncertainty



Outline

• Goals of Uncertainty Quantification 
(UQ)

• Aleatoric vs. epistemic uncertainty 
and what causes each

• UQ as Prediction Intervals for 
Regression

• Linear regression prediction intervals
• Bayesian prediction intervals: Gaussian 

Processes
• Conformal Quantile Regression 

intervals

• UQ for Classification
• Calibration
• Label sets as prediction intervals

• Local Epistemic Uncertainty
• Outlier/Anomaly Detection

• Applications
• Active Learning
• Uncertainty-Aware Learning
• Selective Prediction
• Reducing LLM Hallucination

OxML 2024 26



Total Uncertainty: Prediction Intervals

• Prediction Interval:
• Given a query 𝑥𝑥𝑞𝑞
• Predict an interval 𝑦𝑦𝑖𝑖𝑙𝑙 𝑥𝑥𝑞𝑞 ,𝑦𝑦ℎ𝑖𝑖 𝑥𝑥𝑞𝑞 such that with probability at least 1 − 𝛼𝛼, 

𝑦𝑦𝑖𝑖𝑙𝑙(𝑥𝑥𝑞𝑞) ≤ 𝑦𝑦𝑞𝑞 ≤ 𝑦𝑦ℎ𝑖𝑖 𝑥𝑥𝑞𝑞
• Ideally, this should capture all of our sources of uncertainty

• Random sampling of the training data
• Data uncertainties (measurement error)

• The width of the interval 𝑦𝑦ℎ𝑖𝑖(𝑥𝑥𝑞𝑞) − 𝑦𝑦𝑖𝑖𝑙𝑙 𝑥𝑥𝑞𝑞 gives us a scalar measure of 
uncertainty (in units of 𝑦𝑦). 

• Selective prediction:
• If 𝑦𝑦ℎ𝑖𝑖 𝑥𝑥𝑞𝑞 − 𝑦𝑦𝑖𝑖𝑙𝑙 𝑥𝑥𝑞𝑞 > 𝜏𝜏 then reject 
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Prediction Intervals for Linear Models
[Gruber, et al. 2023]

• It often helps to examine linear regression models to gain insight
• Simplifying assumptions:

• No data shift (iid samples; no sampling bias)
• The linear model is correct (it can represent the true function and noise)

𝑦𝑦 = 𝛽𝛽⊤𝑥𝑥 + 𝜖𝜖 with 𝜖𝜖 ∼ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 0,𝜎𝜎𝜖𝜖2
• Learning algorithm (least squares regression) finds the global optimum
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Linear Regression Prediction Intervals
• Given 𝑛𝑛 training examples 𝑥𝑥1,𝑦𝑦1 , … , (𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡), the vector-matrix form is

• 𝑿𝑿 =

𝑥𝑥1
𝑥𝑥2
⋮
𝑥𝑥𝑡𝑡

𝒚𝒚 =

𝑦𝑦1
𝑦𝑦2
⋮
𝑦𝑦𝑡𝑡

�𝒚𝒚 = 𝑿𝑿�̂�𝛽

• Let �̂�𝛽 be the estimated regression coefficients
• Let �𝜎𝜎2 be the estimated noise variance
• The prediction interval is

𝑥𝑥𝑞𝑞⊤�̂�𝛽 ± 𝑡𝑡𝑡𝑡−𝐽𝐽 1 − ⁄𝛼𝛼 2 �𝜎𝜎 1 + 𝑥𝑥𝑞𝑞⊤ 𝑿𝑿⊤𝑿𝑿 −1𝑥𝑥𝑞𝑞
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Examining the Prediction Interval

𝑥𝑥𝑞𝑞⊤�̂�𝛽 ± 𝑡𝑡𝑡𝑡−𝐽𝐽 1 − ⁄𝛼𝛼 2 �𝜎𝜎 1 + 𝑥𝑥𝑞𝑞⊤ 𝑿𝑿⊤𝑿𝑿 −1𝑥𝑥𝑞𝑞
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Predicted value �𝑦𝑦 𝑡𝑡 statistic with
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the mean 𝑥𝑥 value)

Training prediction 
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Epistemic Uncertainty Aleatoric Uncertainty
Local Epistemic 

Uncertainty



Examining the Prediction Interval

𝑥𝑥𝑞𝑞⊤�̂�𝛽 ± 𝑡𝑡𝑡𝑡−𝐽𝐽 1 − ⁄𝛼𝛼 2 �𝜎𝜎 1 + 𝑥𝑥𝑞𝑞⊤ 𝑿𝑿⊤𝑿𝑿 −1𝑥𝑥𝑞𝑞

Notes:
• The epistemic and aleatoric components are multiplied (not added)
• The query-based (local) uncertainty depends on similarity (or 

distance) in the input space
• Captures all sources of uncertainty

• Assuming that sampling biases, measurement noise, label noise, imputations, 
etc. are all iid
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Bayesian Prediction Intervals
• Bayesian Recipe

• Choose a model class: 𝑦𝑦 = 𝑥𝑥 ⋅ 𝛽𝛽 + 𝜖𝜖 with 𝜖𝜖 ∼ Normal 0,𝜎𝜎𝜖𝜖2
• This defines a likelihood function 𝑃𝑃 𝑦𝑦 𝑥𝑥,𝛽𝛽

• Log likelihood on training data 𝒟𝒟 = 𝑥𝑥𝑖𝑖 , 𝑦𝑦𝑖𝑖 is   

log ℒ 𝛽𝛽 = �
𝑖𝑖

𝑥𝑥𝑖𝑖⊤𝛽𝛽 − 𝑦𝑦𝑖𝑖
2

• Assume a prior distribution 𝑃𝑃 𝛽𝛽 over the model parameters
• Compute the posterior distribution 𝑃𝑃(𝛽𝛽|𝒟𝒟)

𝑃𝑃 𝛽𝛽 𝒟𝒟 =
𝑃𝑃 𝒟𝒟 𝛽𝛽 𝑃𝑃(𝛽𝛽)
∫𝛽𝛽 𝑃𝑃 𝒟𝒟 𝛽𝛽 𝑃𝑃(𝛽𝛽)

• Posterior predictive distribution for 𝑥𝑥𝑞𝑞 (“Bayesian model averaging”) 
𝑃𝑃 𝑦𝑦 𝑥𝑥𝑞𝑞,𝒟𝒟 = �

𝛽𝛽
𝑃𝑃 𝛽𝛽 𝒟𝒟 𝑃𝑃 𝑦𝑦 𝛽𝛽, 𝑥𝑥𝑞𝑞 𝑑𝑑𝛽𝛽

• Compute PDF 𝐹𝐹(𝑦𝑦|𝑥𝑥𝑞𝑞,𝒟𝒟) and invert

𝐹𝐹−1 ⁄𝛼𝛼 2 𝑥𝑥𝑞𝑞 ,𝒟𝒟 ≤ 𝑦𝑦𝑞𝑞 ≤ 𝐹𝐹−1 1 − ⁄𝛼𝛼 2 𝑥𝑥𝑞𝑞 ,𝒟𝒟
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Gaussian Processes
• A Gaussian Process is a collection of random 

variables, any finite number of which have a 
joint Gaussian distribution

• Efficiently-computed Bayesian kernel method
• Given training data 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡
• At every location 𝑥𝑥𝑞𝑞 the GP predicts a mean �𝑦𝑦𝑞𝑞

and a variance �𝜎𝜎𝑞𝑞2

• The variance depends on 𝑥𝑥𝑞𝑞 − 𝑥𝑥𝑖𝑖 for all 𝑖𝑖. It 
captures both epistemic and aleatoric 
uncertainty
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Gaussian Process Details
• Choose a kernel function 𝑘𝑘(𝑥𝑥, 𝑥𝑥𝑘)

• Example: Squared exponential kernel: 𝑘𝑘 𝑥𝑥, 𝑥𝑥′ = exp− 𝑥𝑥−𝑥𝑥′ 2

2ℓ2
• ℓ is the “kernel width”

• Given 𝑛𝑛 data points 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 with observation noise: Normal 0,𝜎𝜎𝜖𝜖2

• Form the covariance matrix 𝐾𝐾 =
𝑘𝑘(𝑥𝑥1, 𝑥𝑥1) ⋯ 𝑘𝑘(𝑥𝑥1, 𝑥𝑥𝑡𝑡)

⋮ ⋱ ⋮
𝑘𝑘 𝑥𝑥𝑡𝑡, 𝑥𝑥1 ⋯ 𝑘𝑘(𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡)

+ 𝜎𝜎𝜖𝜖2𝕀𝕀

• Given a query point 𝑥𝑥𝑞𝑞 form the covariance vector 𝑘𝑘𝑞𝑞 = 𝑘𝑘 𝑥𝑥𝑞𝑞 , 𝑥𝑥1 , … 𝑘𝑘 𝑥𝑥𝑞𝑞 , 𝑥𝑥𝑡𝑡
• Let 𝒚𝒚 = 𝑦𝑦1, … ,𝑦𝑦𝑡𝑡
• The GP predictive distribution is

𝑦𝑦𝑞𝑞 ∼ Normal 𝑘𝑘𝑞𝑞𝐾𝐾−1𝒚𝒚, 𝑥𝑥1 − 𝑘𝑘𝑞𝑞⊤𝐾𝐾−1𝑘𝑘𝑞𝑞

• If we want only the epistemic uncertainly, we can omit the 𝜎𝜎𝜖𝜖2𝕀𝕀 term
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Prediction Intervals from Quantile Regression
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Quantile Regression
• Suppose that for each 𝑥𝑥, there is a distribution of 

possible values of 𝑦𝑦: 𝑃𝑃 𝑦𝑦 𝑥𝑥
• Quantile regression for quantile 𝑞𝑞 seeks to predict the 

value of �𝑦𝑦 𝑞𝑞 = 𝑓𝑓𝑞𝑞(𝑥𝑥) such that 𝑃𝑃 𝑦𝑦 ≤ �𝑦𝑦(𝑞𝑞) 𝑥𝑥 = 𝑞𝑞
• The quantile function 𝑓𝑓𝑞𝑞 x = 𝐹𝐹−1(𝑞𝑞|𝑥𝑥), the conditional, 

inverse CDF
• There are several algorithms for quantile regression. I like 

Quantile Random Forests (Meinshausen, 2006) 
• Idea: 

• Compute the 𝑓𝑓 ⁄𝛼𝛼 2 and 𝑓𝑓1− ⁄𝛼𝛼 2 quantile regression functions 
• Output the prediction interval

𝑓𝑓 ⁄𝛼𝛼 2 𝑥𝑥 , 𝑓𝑓1− ⁄𝛼𝛼 2 𝑥𝑥

• Quantile regression does not provide any coverage 
guarantee

• We can get guarantees using Conformal Prediction

0.1
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0.3
0.4
0.5
0.6
0.7
0.8

0.9

𝑞𝑞



Basic Idea of Conformal Prediction
(Vovk, Gammerman, Shafer, 2005)

• Let’s just consider an upper bound 𝑦𝑦ℎ𝑖𝑖
• Let 𝑦𝑦1, … ,𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡+1 ∼ 𝑃𝑃 ⋅ 𝑦𝑦𝑖𝑖 ∈ ℝ “exchangeable draws”
• Define 𝑆𝑆 = 𝑦𝑦1, … ,𝑦𝑦𝑡𝑡 “training data” (no classifier)
• Algorithm:

• Let 𝑦𝑦 1 , … ,𝑦𝑦 𝑡𝑡 be the order statistics (sorted order) of 𝑦𝑦1, … ,𝑦𝑦𝑡𝑡
• 𝑦𝑦ℎ𝑖𝑖 𝑆𝑆 ≔ 𝑦𝑦 1−𝛿𝛿 𝑡𝑡+1 where ⌈𝑥𝑥⌉ is the “ceiling” operator that 

rounds to the next larger integer

• Theorem:
Pr

𝑦𝑦𝑛𝑛+1∼𝑃𝑃 ⋅
𝑦𝑦𝑡𝑡+1 ≤ 𝑦𝑦ℎ𝑖𝑖(𝑆𝑆) ≥ 1 − 𝛿𝛿

for 𝛿𝛿 ≥ 1
𝑡𝑡+1
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Informal Proof
• Suppose we know 𝑦𝑦𝑡𝑡+1

• Compute 𝑦𝑦 1 , … ,𝑦𝑦 𝑡𝑡 ,𝑦𝑦 𝑡𝑡+1
• The rank of 𝑦𝑦𝑡𝑡+1 will be uniformly distributed within 

these ranks (exchangeability)
• The 1 − 𝛿𝛿 quantile estimate is element (1 − 𝛿𝛿)(𝑛𝑛 + 1)
• Round up in the “safe” direction to 𝑦𝑦 (1−𝛿𝛿)(𝑡𝑡+1)
• Pr 𝑦𝑦𝑡𝑡+1 ≤ 𝑦𝑦 (1−𝛿𝛿)(𝑡𝑡+1) ≥ 1 − 𝛿𝛿
• Where would the corresponding quantile be in 
𝑦𝑦 1 , … ,𝑦𝑦 𝑡𝑡 ?

• Quantile estimate is element 1 − 𝛿𝛿 𝑡𝑡+1
𝑡𝑡

, because we 
now have only 𝑛𝑛 points

• Rounded up to 𝑦𝑦 1−𝛿𝛿 𝑡𝑡+1

• This works as long as 𝛿𝛿 ≥ 1
𝑡𝑡+1

• Notice:
• No distributional assumptions
• Finite-sample

𝑦𝑦 1

𝑦𝑦 2

𝑦𝑦 𝑡𝑡

𝑦𝑦 𝑡𝑡+1

𝑦𝑦 1

𝑦𝑦 2

𝑦𝑦 𝑡𝑡

1 − 𝛿𝛿 𝑛𝑛 + 1 1 − 𝛿𝛿
𝑛𝑛 + 1
𝑛𝑛

Target 
Quantile

Target 
Quantile
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Extend CP to Regression: Split Conformal Prediction
• Given: 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗 , 𝑥𝑥𝑗𝑗+1,𝑦𝑦𝑗𝑗+1 , … , (𝑥𝑥𝑗𝑗+𝑡𝑡,𝑦𝑦𝑗𝑗+𝑡𝑡) ∼ 𝑃𝑃 𝑋𝑋,𝑌𝑌
• Let 

• 𝐷𝐷1 = 𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑗𝑗,𝑦𝑦𝑗𝑗
• 𝐷𝐷2 = 𝑥𝑥𝑗𝑗+1,𝑦𝑦𝑗𝑗+1 , … , 𝑥𝑥𝑗𝑗+𝑡𝑡,𝑦𝑦𝑗𝑗+𝑡𝑡

• Train regression function 𝑓𝑓 on 𝐷𝐷1
• Compute prediction residuals on 𝐷𝐷2

𝑁𝑁𝑖𝑖 ≔ 𝑓𝑓 𝑥𝑥𝑗𝑗+𝑖𝑖 − 𝑦𝑦𝑗𝑗+𝑖𝑖 for 𝑖𝑖 = 1, … ,𝑛𝑛
• Sort residuals: 𝑁𝑁 1 , … , 𝑁𝑁 𝑡𝑡
• 𝑁𝑁∗ ≔ 𝑁𝑁 1−𝛿𝛿 𝑡𝑡+1 (“conformal correction”)

• Weakness: The prediction interval has the same width, 2𝑁𝑁∗, for all 𝑥𝑥. 
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Theorem: With probability 1 − 𝛿𝛿 over draws 𝑥𝑥∗,𝑦𝑦∗ ∼ 𝑃𝑃(𝑋𝑋,𝑌𝑌),

𝑓𝑓 𝑥𝑥∗ − 𝑁𝑁∗ ≤ 𝑦𝑦∗ ≤ 𝑓𝑓 𝑥𝑥∗ + 𝑁𝑁∗.



Back to Quantile Regression: Adding CP Correction
• Two data sets:

• 𝐷𝐷1: used for fitting quantile regressions
• 𝐷𝐷2: used for conformalization

• Fit quantile functions 𝑓𝑓 ⁄𝛿𝛿 2 and 𝑓𝑓1− ⁄𝛿𝛿 2 to 𝐷𝐷1
• Compute “residuals” on 𝐷𝐷2

𝑐𝑐𝑖𝑖 ≔ max 𝑓𝑓 ⁄𝛿𝛿 2(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 , 𝑦𝑦𝑖𝑖 − 𝑓𝑓1− ⁄𝛿𝛿 2 𝑥𝑥𝑖𝑖
• Sort to obtain 𝑐𝑐 1 , … , 𝑐𝑐 𝑡𝑡

• 𝑁𝑁∗ ≔ 𝑐𝑐 1−𝛿𝛿 𝑡𝑡+1

• Let 𝑥𝑥𝑞𝑞,𝑦𝑦𝑞𝑞 be a new data point
• 𝑐𝑐𝑞𝑞 ≔ max 𝑓𝑓 ⁄𝛿𝛿 2(𝑥𝑥𝑞𝑞) − 𝑦𝑦𝑞𝑞, 𝑦𝑦𝑞𝑞−𝑓𝑓1− ⁄𝛿𝛿 2 𝑥𝑥𝑞𝑞

• Claim: The 𝑐𝑐𝑖𝑖 values are exchangeable  rank of 𝑐𝑐𝑞𝑞 will be 
uniformly distributed in 𝑐𝑐 1 , … , 𝑐𝑐 𝑡𝑡+1

• Therefore, 𝑃𝑃 𝑐𝑐𝑞𝑞 ≤ 𝑁𝑁∗ ≥ 1 − 𝛿𝛿
• Bounds: 

• 𝑁𝑁𝑁𝑁 𝑥𝑥𝑞𝑞 ≔ 𝑓𝑓 ⁄𝛿𝛿 2(𝑥𝑥𝑞𝑞) − 𝑁𝑁∗

• ℎ𝑖𝑖 𝑥𝑥𝑞𝑞 ≔ 𝑓𝑓1− ⁄𝛿𝛿 2 𝑥𝑥𝑞𝑞 + 𝑁𝑁∗

• Theorem:
𝑃𝑃 𝑓𝑓 ⁄𝛿𝛿 2(𝑥𝑥𝑞𝑞) − 𝑁𝑁∗ ≤ 𝑦𝑦𝑞𝑞 ≤ 𝑓𝑓1− ⁄𝛿𝛿 2 𝑥𝑥𝑞𝑞 + 𝑁𝑁∗ ≥ 1 − 𝛿𝛿
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Note
• By splitting our data (split conformal), we are using 𝒟𝒟2 to quantify the 

predictive uncertainty of the single model that was fit to 𝒟𝒟1. 
• We are not quantifying the epistemic uncertainty of fitting that model.
• We are converting “Case 1” (full uncertainty quantification) into “Case 2” 

(uncertainty quantification for a single model)
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What sources of uncertainty are captured by 
conformal quantile regression interval?

Captured
• Missing features
• Noisy feature measurement
• Noisy labels (response variable)
• Insufficient model class
• Imputed missing values (as long 

as missing at random)
• Bad learning algorithm

Not Captured
• Lack of sufficient data (epistemic 

uncertainty)
• Local epistemic uncertainty
• Data shift
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Outline

• Goals of Uncertainty Quantification 
(UQ)

• Aleatoric vs. epistemic uncertainty 
and what causes each

• UQ as Prediction Intervals for 
Regression

• Linear regression prediction intervals
• Bayesian prediction intervals: Gaussian 

Processes
• Conformal Quantile Regression 

intervals

• UQ for Classification
• Calibration
• Label sets as prediction intervals

• Local Epistemic Uncertainty
• Outlier/Anomaly Detection

• Applications
• Active Learning
• Uncertainty-Aware Learning
• Selective Prediction
• Reducing LLM Hallucination
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Uncertainty Quantification for Classifiers
1. Ensure the accuracy of �̂�𝑝 𝑦𝑦 𝑥𝑥 = �̂�𝑝 𝑦𝑦 = 1 𝑥𝑥 , … , �̂�𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥
2. Output a prediction interval

• For classifiers, a prediction interval is a set 𝑌𝑌(𝑥𝑥𝑞𝑞) = 𝑘𝑘1,𝑘𝑘2, … ,𝑘𝑘𝐿𝐿 such that 
with probability 1 − 𝛿𝛿, 𝑦𝑦𝑞𝑞 ∈ 𝑌𝑌 𝑥𝑥𝑞𝑞

• Let’s consider a single classifier �̂�𝑝 and ignore epistemic uncertainty
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Calibrated Classifiers: The Ideal
• A classifier is well-calibrated if the predicted probability �̂�𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥𝑞𝑞)

is equal to the true conditional probability 𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 for all classes 
𝑘𝑘 ∈ 1, … ,𝐾𝐾

• This is a point-wise statement for a specific 𝑥𝑥𝑞𝑞. It cannot be achieved 
in practice unless we have several training examples that exactly 
match 𝑥𝑥𝑞𝑞
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Practical Definition of Calibration
• We will use a set of points 𝐶𝐶𝑞𝑞 ⊆ 𝒞𝒞 to compute an estimate 
�𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 :

�𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 =
1
𝐶𝐶𝑞𝑞

�
𝑥𝑥𝑖𝑖∈𝐶𝐶𝑞𝑞

𝕀𝕀 𝑦𝑦𝑖𝑖 = 𝑘𝑘

• The classifier is calibrated if
�̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞 ≈ �𝑃𝑃 𝑦𝑦 = 𝑘𝑘 𝑥𝑥𝑞𝑞
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Defining 𝐶𝐶𝑞𝑞 in terms of 𝑓𝑓 𝑥𝑥𝑞𝑞
• Confidence Calibration: Only calibrate the predicted class �𝑦𝑦

• Let 𝛼𝛼 = �̂�𝑝 �𝑦𝑦 𝑥𝑥𝑞𝑞
• Let 𝐶𝐶𝛼𝛼 = 𝑥𝑥𝑖𝑖 ∈ 𝒞𝒞: �̂�𝑝 𝑦𝑦𝑖𝑖 = �𝑦𝑦 𝑥𝑥𝑖𝑖 = 𝛼𝛼

• The set of all points 𝑥𝑥 ∈ 𝒞𝒞 where the predicted class �𝑦𝑦 is assigned the same predicted 
probability 𝛼𝛼

• �𝑃𝑃 𝑦𝑦 = �𝑦𝑦 𝑥𝑥𝑞𝑞 = 1
𝐶𝐶𝛼𝛼

∑𝑥𝑥𝑖𝑖∈𝐶𝐶𝛼𝛼 𝕀𝕀 𝑦𝑦𝑖𝑖 = �𝑦𝑦

• The classifier is calibrated if �𝑃𝑃 𝑦𝑦 = �𝑦𝑦 𝑥𝑥𝑞𝑞 = 𝛼𝛼

• “The weather forecast is well-calibrated if on all days where the forecast says 
80% chance of rain (𝑋𝑋0.80), it rains 80% of the time”
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Defining 𝐶𝐶𝑞𝑞 in terms of 𝑓𝑓 𝑥𝑥𝑞𝑞
• Multi-class Calibration (“Full Calibration”)

• Let �⃗�𝛼 = 𝑓𝑓 𝑥𝑥𝑞𝑞
• Let 𝐶𝐶𝛼𝛼 = 𝑥𝑥𝑖𝑖 ∈ 𝒞𝒞 �̂�𝑝 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = �⃗�𝛼}

• The set of all points 𝑥𝑥𝑖𝑖 ∈ 𝒞𝒞 where the predicted probability vector is exactly �⃗�𝛼

• �𝑃𝑃 𝑦𝑦 𝑥𝑥𝑞𝑞 = 1
𝐶𝐶𝛼𝛼

∑𝑥𝑥𝑖𝑖∈𝐶𝐶𝛼𝛼 𝑦𝑦𝑖𝑖
• where 𝑦𝑦 is one-hot encoded: 𝕀𝕀 𝑦𝑦 = 1 , … , 𝕀𝕀 𝑦𝑦 = 𝐾𝐾

• The classifier is calibrated if �𝑃𝑃 𝑦𝑦 𝑥𝑥𝑞𝑞 = �⃗�𝛼

• Issue: 𝐶𝐶𝛼𝛼 and 𝐶𝐶𝛼𝛼 may be very small
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Visualizing Calibration with a Reliability Diagram

• Consider the 2-class case
• Define a set of 𝑀𝑀 bins 𝐶𝐶1, … ,𝐶𝐶𝑀𝑀 ⊂ 𝐶𝐶 based on 
�̂�𝑝(𝑦𝑦 = 1|𝑥𝑥)

• Compute �𝛼𝛼 and �𝑃𝑃 for each bin

• Plot �𝛼𝛼, �𝑃𝑃 pairs

• Let 𝑃𝑃𝑥𝑥 𝑏𝑏 be the fraction of 𝑥𝑥𝑖𝑖 ∈ 𝐶𝐶𝑏𝑏
• Expected Squared Calibration Error

• ∑𝑏𝑏=1𝑀𝑀 𝑃𝑃𝑥𝑥(𝑏𝑏) �̂�𝑝 𝐶𝐶𝑏𝑏 − �𝑃𝑃 𝐶𝐶𝑏𝑏
2

expected squared 
calibration error

• Expected Calibration Error (ECE)
• ∑𝑏𝑏=1𝑀𝑀 𝑃𝑃𝑥𝑥(𝑏𝑏) �̂�𝑝 𝐶𝐶𝑏𝑏 − �𝑃𝑃 𝐶𝐶𝑏𝑏 expected absolute 

calibration error

48

Reliability Diagram (Naïve Bayes; ADULT)

Zadrozny & Elkan, 2002
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Ensuring the accuracy of 𝑃𝑃(𝑦𝑦|𝑥𝑥) via 
calibration
• Let 𝑓𝑓(𝑥𝑥) be a vector-valued function that 

outputs �̂�𝑝 𝑦𝑦 = 1 𝑥𝑥 , … , �̂�𝑝 𝑦𝑦 = 𝐾𝐾 𝑥𝑥 . 
• This probability vector can be viewed as a point 

in the 𝐾𝐾 − 1 dimensional simplex 

• Let 𝒞𝒞 be a “calibration set” of data points 
𝑥𝑥1,𝑦𝑦1 , … , 𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡 drawn iid from the same 

distribution as the test data
• We can use these data points to learn a 

calibration map 𝑔𝑔 that maps from Δ𝐾𝐾−1 to 
Δ𝐾𝐾−1 such that 𝑔𝑔 𝑓𝑓 𝑥𝑥 is well-calibrated
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𝑷𝑷(𝒚𝒚 = 𝟑𝟑|𝒙𝒙)

𝑷𝑷(𝒚𝒚 = 𝟐𝟐|𝒙𝒙)𝑷𝑷(𝒚𝒚 = 𝟏𝟏|𝒙𝒙) 0

1

(0.375, 0.250, 0.375)

[Kull, et al., 2019]



Fitting a Calibration Map 𝑔𝑔
• Learn a “calibration map” 𝑔𝑔 that transforms the classifier’s output 

probabilities into well-calibrated probabilities:

50

𝑥𝑥𝑞𝑞 classifier �̂�𝑝 post-hoc
calibration 𝑔𝑔 �̂�𝑝

𝑔𝑔𝑓𝑓

OxML 2024



Calibration for the predicted class: Platt Scaling
(Platt, 1999)

• Create labeled “training data” 
consisting of 

�̂�𝑝 𝑦𝑦 = �𝑦𝑦 𝑥𝑥𝑖𝑖 , 𝕀𝕀 𝑦𝑦𝑖𝑖 = �𝑦𝑦
pairs

• Fit the calibration map:

𝑔𝑔 �̂�𝑝;𝑁𝑁, 𝑏𝑏 =
1

1 + 𝑒𝑒𝑡𝑡+𝑏𝑏 �𝑝𝑝
• This is logistic regression with a single 

“feature” (�̂�𝑝)
• Minimizes the log loss

51OxML 2024



Full calibration via Softmax Temperature Scaling 
(Guo et al, 2017)

• Let ℓ = ℓ1, … , ℓ𝐾𝐾 be the logits of a softmax classifier
• Scale the logits by dividing by a temperature 𝑇𝑇:

�̂�𝑝 𝑦𝑦 = 𝑘𝑘 𝑥𝑥 =
exp ℓ𝑘𝑘𝑇𝑇

∑𝑘𝑘′ exp ℓ𝑘𝑘′𝑇𝑇

• Adjust 𝑇𝑇 to fit the calibration data
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Boosted Trees after Platt Scaling
(Niculescu-Mizil & Caruana, 2005)
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ResNet-110 with Temperature Scaling
(Guo, Pleiss, Sun & Weinberger, 2017)

54

ResNet is much 
more confident

ResNet over-
confident!
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Results before/after Temperature Scaling
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Other probability maps
• Beta and Dirichlet calibration. Similar to 

Platt scaling, but with a slightly more 
expressive model

• Kull, et al. 2019
• Key advantage: Contains the identity 

function, unlike Platt Scaling. This allows it to 
correctly handle classifiers that are already 
well calibrated.

• Isotonic Regression: Fits variable-width 
histogram bins to minimize the squared 
calibration error 

• Ayer, et al. (1955)
• Robertson, Wright, & Dykstra (1988)
• Risk of overfitting
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Computing Prediction Intervals from 
Calibrated Probabilities

• Let �̂�𝑝 now denote the calibrated probabilities
• Sort in descending order of �̂�𝑝(𝑦𝑦 = 𝑘𝑘|𝑥𝑥𝑞𝑞)

• �̂�𝑝 1 𝑦𝑦 = 𝑘𝑘 1 |𝑥𝑥1 , �̂�𝑝 2 𝑦𝑦 = 𝑘𝑘 2 , …

• Let 𝑁𝑁 be the smallest value such that 
• ∑𝑗𝑗=1𝑗𝑗 �̂�𝑝 𝑗𝑗 𝑦𝑦 = 𝑘𝑘 𝑗𝑗 𝑥𝑥𝑞𝑞 ≥ 1 − 𝛼𝛼

• Let the prediction interval be
𝑌𝑌 𝑥𝑥𝑞𝑞 = 𝑘𝑘 𝑗𝑗 ∶ 𝑗𝑗 ≤ 𝑁𝑁

• With a slight modification, we can obtain 
conformal guarantees
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𝒋𝒋 𝒌𝒌 𝒋𝒋 �𝒑𝒑 𝒋𝒋 (𝒚𝒚 = 𝒌𝒌 𝒋𝒋 |𝒙𝒙𝒒𝒒)

1 3 0.60

2 1 0.31

3 5 0.05

4 4 0.03

5 2 0.01

Σ = 0.91

For 1 − 𝛼𝛼 = 0.9, 𝑌𝑌 𝑥𝑥𝑞𝑞 = {3,1}



Selective Classification with Calibrated Probabilities

• Given 𝑥𝑥, let �𝑦𝑦 be the predicted class, and 𝑃𝑃 �𝑦𝑦 𝑥𝑥
be the calibrated probability from the classifier. 

• Let 0 ≤ 𝜏𝜏 ≤ 1 be a probability threshold
• If we require 𝑃𝑃 �𝑦𝑦 𝑥𝑥 ≥ 𝜏𝜏, we know our 

classification accuracy will be at least 𝜏𝜏. 
• But it will usually be bigger. Our actual accuracy 

over 𝑁𝑁 test points 𝑥𝑥𝑖𝑖 𝑖𝑖=1
𝑁𝑁 will be

1
𝑁𝑁
�
𝑖𝑖=1

𝑁𝑁

𝑃𝑃 �𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 𝕀𝕀 𝑃𝑃 �𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝜏𝜏
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1

𝜏𝜏

𝑥𝑥𝑖𝑖: 𝑃𝑃 �𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 ≥ 𝜏𝜏

Calibration data sorted by 𝑃𝑃( �𝑦𝑦|𝑥𝑥)



Outline

• Goals of Uncertainty Quantification 
(UQ)

• Aleatoric vs. epistemic uncertainty 
and what causes each

• UQ as Prediction Intervals for 
Regression

• Linear regression prediction intervals
• Bayesian prediction intervals: Gaussian 

Processes
• Conformal Quantile Regression 

intervals

• UQ for Classification
• Calibration
• Label sets as prediction intervals

• Local Epistemic Uncertainty
• Outlier/Anomaly Detection

• Applications
• Active Learning
• Uncertainty-Aware Learning
• Selective Prediction
• Reducing LLM Hallucination
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Local Epistemic Uncertainty
• Method 1: Fit an ensemble and measure the variability at 𝑥𝑥𝑞𝑞

• Unfortunately, many learning algorithms tend to predict a constant value (e.g., ⁄1 𝐾𝐾) 
far from the training data

• As a result, ensemble disagreement fails to accurately measure epistemic uncertainty

• Method 2: Measure some form of distance from 𝑥𝑥𝑞𝑞 to the training data 
(anomaly detection)

• Many anomaly detectors are essentially measures of distance
• Isolation Forest is very popular; it approximates the 𝐿𝐿1 distance from 𝑥𝑥𝑞𝑞 to the 

nearest training data point
• This requires an appropriate representation and distance metric
• Hand-engineered features work well
• Features learned by deep learning do not work well
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Distance-Based Anomaly Detection

• Key challenge: Defining a good distance metric
• Case 1: Hand-Engineered Feature Vectors
• Case 2: Features learned by Deep Learning
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Distance-Based Anomaly Detection
• Define a distance 𝑑𝑑(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗)

• Transform all features to have zero mean and unit 
standard deviation

• Apply PCA to perform dimensionality reduction 
and de-correlate features

• Anomaly score: 

𝐴𝐴 𝑥𝑥𝑞𝑞 = min
𝑥𝑥∈𝐷𝐷

𝑑𝑑(𝑥𝑥𝑞𝑞 , 𝑥𝑥)

• This can be made more robust by looking at 
the average distance to the 𝑘𝑘-nearest points

• “k-nn anomaly detection”
• Improved and efficient methods

• LOF (Local Outlier Factor; Breunig, et al., 2000)
• Isolation Forest (Liu, Ting, Zhou, 2011)

𝑥𝑥𝑞𝑞
𝑥𝑥𝑞𝑞
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• 19 UCI Datasets
• 8 Leading “feature-based” algorithms
• 11,888 non-trivial benchmark datasets
• Mean AUC effect for “nominal” vs. “anomaly” decisions

• Controlling for
• Parent data set
• Difficulty of individual queries
• Fraction of anomalies
• Irrelevant features
• Clusteredness of anomalies

• Baseline method: Distance to nominal mean (“tmd”)
• Best methods: K-nearest neighbors and Isolation Forest 
• Worst methods: Kernel-based OCSVM and SVDD

Benchmarking Study
Andrew Emmott

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

Mean AUC Effect
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[Emmott, Das, Dietterich, Fern, Wong, 2013; KDD ODD-2013] 
[Emmott, Das, Dietterich, Fern, Wong. 2016; arXiv 1503.01158v2]
[Emmott, MS Thesis. 2020]



Deep Anomaly Detection
• An important advantage of deep learning is that it learns its own 

internal features
• Euclidean distance in pixel space is not useful

• Problem: Deep learning only learns features that it needs for the 
training task. These features may not separate out-of-distribution 
queries 𝑥𝑥𝑞𝑞
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Deep Learned Features in Computer Vision
• DenseNet with 384-dimensional 

latent space.  
• CIFAR-10: 6 known classes, 4 novel 

classes

• Light green: novel classes
• Darker greens: known classes

• Images from known classes are 
“pulled out” from the center of the 
space

• Most novel-class images stay 
toward the center of the space; 
others overlap with known classes

• Novel images are “inliers” 
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Dietterich & Guyer, 2022

OxML 2024

6 Known 
Classes

4 Novel 
Classes



The Learned Representation is Promising
But Not a Complete Solution

• Many novel-class images are  
mapped into clusters of known 
images

• The learned representation can’t 
detect the novelty
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How can we learn better features?

• Foundation Model Approach:
• Train on more data
• Train on additional classes

• Artificially introduce variation through augmentations
• Rotations, flips, simulated snow, rain, pixel noise, etc.

• Synthetic data?
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Training on Auxiliary Classes
• CIFAR-100

• 10 known classes
• 10 novel classes
• 80 auxiliary classes

• Train on “known” + “auxiliary”
• Test on “known” + “novel”

• More effective than pre-training + 
fine-tuning?
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Outline

• Goals of Uncertainty Quantification 
(UQ)

• Aleatoric vs. epistemic uncertainty 
and what causes each

• UQ as Prediction Intervals for 
Regression

• Linear regression prediction intervals
• Bayesian prediction intervals: Gaussian 

Processes
• Conformal Quantile Regression 

intervals

• UQ for Classification
• Calibration
• Label sets as prediction intervals

• Local Epistemic Uncertainty
• Outlier/Anomaly Detection

• Applications
• Active Learning
• Uncertainty-Aware Learning
• Selective Prediction
• Reducing LLM Hallucination
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Applications of Uncertainty Quantification

• Active Learning
• Uncertainty-Sensitive Learning
• Selective Classification

• Reducing Hallucination in Large Language Models
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Application: Active Learning
• Assume we have a large set of unlabeled data points 𝒰𝒰
• Find the data point 𝑥𝑥 ∈ 𝒰𝒰 with maximum epistemic uncertainty
• Query human expert to obtain 𝑦𝑦
• Add (𝑥𝑥,𝑦𝑦) to training data and update the classifier (retrain if necessary)
• This can be done in batches (of course).
• When the epistemic uncertainty is measured using an ensemble, this is 

known as “Query-by-Committee”
• Active learning using aleatoric uncertainty is called “Uncertainty Sampling”
• Current research suggests that active learning methods should take a more 

global view of the data (e.g., construct a clustering and then use it for 
sampling), so minimizing epistemic uncertainty alone is not state-of-the-art
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Uncertainty-Sensitive Learning

• Data points 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 with high aleatoric uncertainty should be down-
weighted during learning

• Loss function: 
�
𝑖𝑖

1
𝜎𝜎2 𝑥𝑥𝑖𝑖

𝑓𝑓 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 + log𝜎𝜎2 𝑥𝑥𝑖𝑖
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Implementation: Two-Headed Neural Network
(Kendall & Gal, 2017)

• The 𝑥𝑥𝑖𝑖 → 𝑦𝑦𝑖𝑖 training via backpropagation
• 𝜃𝜃 are the weights of the network
• 𝜎𝜎2 𝑥𝑥𝑖𝑖 is not supervised. It is just 

constrained by the log likelihood

ℒ 𝜃𝜃 = �
𝑖𝑖

log𝜎𝜎𝜃𝜃 𝑥𝑥𝑖𝑖 +
𝑓𝑓𝜃𝜃 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

2𝜎𝜎𝜃𝜃 𝑥𝑥𝑖𝑖 2

• Other regularization terms are not shown
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𝑥𝑥𝑖𝑖

𝑦𝑦𝑖𝑖

𝜎𝜎2 𝑥𝑥𝑖𝑖



Kendall & Gal: Semantic Segmentation and Depth 
Estimation
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Kendall & Gal Results
Task Metric Standard Method Uncertainty 

Aware Method

Semantic Segmentation IOU 67.1 67.4

Indoor Scenes (NYUv2) Accuracy 70.1 70.4

IOU 36.5 37.1

Make 3D Depth Relative Error 0.167 0.149

NYU v2 Depth Relative Error 0.117 0.112
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Application: Selective Prediction

• Competence model comp 𝑥𝑥𝑞𝑞
• Should combine epistemic and aleatoric 

uncertainty
• Combined prediction intervals:

• Width of linear regression prediction interval < 𝜏𝜏
• Width of Bayesian prediction interval < 𝜏𝜏

• Separate epistemic and aleatoric UQ
• Anomaly score 𝐴𝐴 𝑥𝑥𝑞𝑞 < 𝜏𝜏𝑒𝑒
• Regression: Width of conformal prediction 

interval < 𝜏𝜏𝑡𝑡
• Classification: Calibrated probability of predicted 

class �̂�𝑝 �𝑦𝑦 𝑥𝑥𝑞𝑞 > 𝜏𝜏𝑡𝑡
• See Fisch, Jaakola & Barzilay 2022: Calibrated 

selective classification
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𝑥𝑥𝑞𝑞

Competence
Model

comp 𝑥𝑥𝑞𝑞 > 𝜏𝜏?

Classifier 𝑓𝑓

Training 
Examples

(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) yes

�𝑦𝑦 = 𝑓𝑓(𝑥𝑥𝑞𝑞)

no reject



Selective Prediction: Rejection Curves
• Comparison of two uncertainty signals

• “SR”: �̂�𝑝( �𝑦𝑦|𝑥𝑥𝑞𝑞) probability assigned to the 
predicted class label (aleatoric uncertainty)

• “MC-dropout”: variance of dropout 
predictions for 𝑥𝑥𝑞𝑞 (epistemic uncertainty)

• For each setting of the threshold 𝜏𝜏, 
compute

• Coverage: Fraction of test data points that 
are not rejected

• Risk: Error rate on the test data points that 
are not rejected

• Aleatoric uncertainty gave better results 
than epistemic uncertainty

• We can achieve 5% error rate (for top-5) 
while rejecting only about 15% of the 
test queries
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Learning under selective prediction
• Suppose we know we are going to be doing selective prediction
• Idea: Specify the desired coverage 1 − 𝛼𝛼 at training time; then 

maximize accuracy subject to this coverage
• The learning algorithm can choose which 𝛼𝛼 training examples to ignore
• This may make it easier to learn a more accurate classifier on the non-

rejected examples
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SelectiveNet

• Geifman & El Yaniv (2019)
• Minimize the error on the non-rejected images subject 

to a constraint on the coverage (fraction of images not 
rejected)

• User must specify 𝑐𝑐, the target coverage, rather than 𝜖𝜖, 
the target error rate

• Network has three “heads”
• 𝑓𝑓 and ℎ are both classification heads trained with cross-

entropy loss
• 𝑁𝑁 is the rejection classifier (reject if 𝑁𝑁 𝑥𝑥 ≥ 0.5)
• ℎ encourages the backbone to learn a latent 

representation that can classify all of the examples
• Loss function:

• 𝛼𝛼ℒ𝑓𝑓 + 1 − 𝛼𝛼 ℒℎ + 𝜆𝜆 𝑐𝑐 − 𝜙𝜙 𝑁𝑁 +
2

• ℒ𝑓𝑓 classification loss on training examples for which 𝑁𝑁 𝑥𝑥 <
0.5

• ℒℎ classification loss on all training examples
• 𝜙𝜙(𝑁𝑁): fraction of training examples for which 𝑁𝑁 𝑥𝑥 < 0.5; 

(i.e., not rejected)

79

Backbone𝑥𝑥

�𝑦𝑦𝑡𝑡

𝑁𝑁(𝑥𝑥)

�𝑦𝑦
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Results: CIFAR10

• “SR”: �̂�𝑝( �𝑦𝑦|𝑥𝑥𝑞𝑞) probability 
assigned to the predicted 
class label (aleatoric 
uncertainty)

• SelectiveNet gives a slight 
improvement
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Results: Dogs vs Cats

• Same trend: SelectiveNet
gives a small improvement
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CIFAR-10 Visualization of Learned Representation
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SelectiveNet does not try to 
discriminate among images 

that will be rejected

Softmax tries to separate 
all of the classes (of 

course)
OxML 2024



Application: Improving Large Language Models

• Hallucinations
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GPT-4 Hallucination Rate is 40% on adversarial questions

[Open AI (2023) GPT-4 Technical Report]



Sensitivity to Input and Output Probabilities

• LLMs perform much worse on rare 
tasks

• LLMs perform much worse on rare 
outputs

• If the true answer is unusual, LLMs 
will substitute a higher probability 
answer instead

• “auto-correcting the world”
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Hypotheses:

• H1: Queries with high epistemic uncertainty cause errors
• LLM doesn’t know the right answer, so it makes something up
• Solution: Estimate Epistemic Uncertainty and reject when high
• Several new papers on arXiv in May and June

• H2: Queries with high aleatoric uncertainty cause errors
• There are multiple valid yet conflicting answers, the model chooses “the 

wrong one” of them at random
• Solution: Estimate Aleatoric Uncertainty and reject
• More mature: LM-Polygraph study (Vashurin, et al., 2024)
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Some Measures of Aleatoric Uncertainty of LLMs
• Suppose 𝑥𝑥 is the prompt and 𝑠𝑠 = 𝑧𝑧1, … , 𝑧𝑧𝐾𝐾

is the output sequence of tokens

𝑃𝑃 𝑥𝑥 𝑠𝑠 = �
𝑗𝑗=1

𝐾𝐾

𝑃𝑃 𝑧𝑧𝑖𝑖 𝑧𝑧<𝑖𝑖 , 𝑥𝑥

• We usually operate in log space:

log𝑃𝑃 𝑥𝑥 𝑠𝑠 = �
𝑗𝑗=1

𝐾𝐾

log𝑃𝑃 𝑧𝑧𝑖𝑖 𝑧𝑧<𝑖𝑖 , 𝑥𝑥

• We can convert this to an uncertainty 
measure by subtracting from 1:

𝑀𝑀𝑆𝑆𝑃𝑃 𝑥𝑥 𝑠𝑠 = 1 − log𝑃𝑃(𝑥𝑥|𝑠𝑠)

• We can negate this to obtain the “surprisal”. 
Large values  large aleatoric uncertainty

− log𝑃𝑃 𝑥𝑥 𝑠𝑠 = �
𝑗𝑗=1

𝐾𝐾

− log𝑃𝑃 𝑧𝑧𝑖𝑖 𝑧𝑧<𝑖𝑖 , 𝑥𝑥

• Length normalization gives us the 
“perplexity”:

perplexity 𝑥𝑥 𝑠𝑠 =
1
𝐾𝐾
�
𝑗𝑗=1

𝐾𝐾

− log𝑃𝑃 𝑧𝑧𝑖𝑖 𝑧𝑧<𝑖𝑖 , 𝑥𝑥

• Mean token entropy: 

𝑀𝑀𝑇𝑇𝑀𝑀 𝑥𝑥 𝑠𝑠 =
1
𝐾𝐾�
𝑗𝑗=1

𝐾𝐾

−𝑃𝑃 𝑧𝑧𝑖𝑖 𝑧𝑧<𝑖𝑖 , 𝑥𝑥 log𝑃𝑃(𝑧𝑧𝑖𝑖|𝑧𝑧<𝑖𝑖𝑥𝑥)
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Aleatoric Uncertainty from Generative Variety
• Given a prompt 𝑥𝑥 ask the LLM to generate 𝐾𝐾 answers:

𝑆𝑆 = 𝑠𝑠1, … , 𝑠𝑠𝐾𝐾
• Measure the diversity of these answers

• Method 1: LexSim (Fomicheva, et al., 2020) the average pairwise similarity sim 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 for 
𝑖𝑖 ≠ 𝑗𝑗 computed using the Rouge-L metric (based on longest common word 
subsequences)

• Method 2: Semantic Entropy (Kuhn, et al., 2023; Farquhar, et al., 2024) Apply Natural 
Language Inference (NLI) to cluster the answers

• 𝑁𝑁𝐿𝐿𝑁𝑁 𝑠𝑠𝑖𝑖 𝑠𝑠𝑗𝑗 indicates whether the answer in 𝑠𝑠𝑖𝑖 can be inferred from 𝑠𝑠𝑗𝑗
• Put two sentences into the same cluster, if they can be inferred from each other. Let 𝐶𝐶 be the set 

of clusters, and each 𝑐𝑐 ∈ 𝐶𝐶 be the set of sentences in cluster 𝑐𝑐

𝑆𝑆𝑀𝑀 𝑥𝑥 = −�
𝑐𝑐∈𝐶𝐶

𝑃𝑃 𝑐𝑐 𝑥𝑥 log𝑃𝑃 𝑐𝑐 𝑥𝑥 = −�
𝑐𝑐∈𝐶𝐶

�
𝑠𝑠∈𝑐𝑐

𝑃𝑃 𝑠𝑠 𝑥𝑥 log �
𝑠𝑠∈𝑐𝑐

𝑃𝑃 𝑠𝑠 𝑥𝑥
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Method 3: Shifting Attention to Relevance (SAR)
[Duan, et al., 2023]

• Relevance of token 𝑧𝑧𝑡𝑡
𝑅𝑅𝑇𝑇 𝑧𝑧𝑡𝑡 , 𝑠𝑠, 𝑥𝑥 = 1 − sim 𝑥𝑥 ∪ 𝑠𝑠, 𝑥𝑥 ∪ 𝑠𝑠 ∖ 𝑧𝑧𝑡𝑡

• Normalized relevance

• �𝑅𝑅𝑇𝑇 𝑧𝑧𝑡𝑡 , 𝑠𝑠, 𝑥𝑥 = 𝑅𝑅𝑇𝑇 𝑧𝑧𝑡𝑡,𝑠𝑠,𝑥𝑥
∑𝑡𝑡′ 𝑅𝑅𝑇𝑇 𝑧𝑧𝑡𝑡′ ,𝑠𝑠,𝑥𝑥

• TokenSAR

TokenSAR 𝑠𝑠|𝑥𝑥 = �
𝑡𝑡=1

𝑇𝑇

− �𝑅𝑅𝑇𝑇 𝑧𝑧𝑡𝑡 , 𝑠𝑠, 𝑥𝑥 log𝑃𝑃 𝑧𝑧𝑡𝑡 𝑧𝑧<𝑡𝑡 , 𝑠𝑠, 𝑥𝑥

• Idea: Down-weight tokens that have low semantic 
“relevance”
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Sentence SAR
𝑆𝑆 = 𝑠𝑠1, … , 𝑠𝑠𝐾𝐾

• Relevance of sentence 𝑠𝑠𝑗𝑗 is the probability of the other sentences, weighted by their 
similarity to 𝑠𝑠𝑗𝑗

𝑀𝑀𝑆𝑆 𝑠𝑠𝑗𝑗, 𝑆𝑆, 𝑥𝑥 = − log 𝑃𝑃 𝑠𝑠𝑗𝑗 𝑥𝑥 + 𝜆𝜆 �
𝑗𝑗′≠𝑗𝑗

sim 𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑗𝑗′ 𝑃𝑃 𝑠𝑠𝑗𝑗 𝑥𝑥

• Intuitions:
• If 𝑠𝑠𝑗𝑗 is semantically different from all other 𝑠𝑠𝑗𝑗′ ∈ 𝑆𝑆, then 𝑀𝑀𝑆𝑆 𝑠𝑠𝑗𝑗 ,𝑆𝑆, 𝑥𝑥 = − log𝑃𝑃 𝑠𝑠𝑗𝑗 𝑥𝑥
• If all 𝑠𝑠𝑗𝑗 ∈ 𝑆𝑆 are semantically identical, then 𝑀𝑀𝑆𝑆 𝑠𝑠𝑗𝑗 , 𝑆𝑆, 𝑥𝑥 = − log𝐾𝐾𝑃𝑃(𝑠𝑠𝑗𝑗|𝑥𝑥)

𝑆𝑆𝑀𝑀𝑁𝑁𝑇𝑇𝑆𝑆𝐴𝐴𝑅𝑅 𝑆𝑆, 𝑥𝑥 =
1
𝐾𝐾�

𝑗𝑗

𝑀𝑀𝑆𝑆 𝑠𝑠𝑗𝑗 , 𝑆𝑆, 𝑥𝑥
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Combined SAR
Let 𝑃𝑃′ 𝑠𝑠 𝑥𝑥 = exp −Token𝑆𝑆𝐴𝐴𝑅𝑅 𝑠𝑠 𝑥𝑥

𝑀𝑀𝑆𝑆,𝑇𝑇 𝑠𝑠𝑗𝑗 , 𝑆𝑆, 𝑥𝑥 = − log 𝑃𝑃𝑘 𝑠𝑠𝑗𝑗 𝑥𝑥 + 𝜆𝜆 �
𝑗𝑗′≠𝑗𝑗

sim 𝑠𝑠𝑗𝑗 , 𝑠𝑠𝑗𝑗′ 𝑃𝑃𝑘 𝑠𝑠𝑗𝑗 𝑥𝑥

𝑆𝑆𝐴𝐴𝑅𝑅 𝑆𝑆 𝑥𝑥 =
1
𝐾𝐾
�
𝑗𝑗=1

𝐾𝐾

𝑀𝑀𝑆𝑆,𝑇𝑇 𝑠𝑠𝑗𝑗 , 𝑆𝑆, 𝑥𝑥
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Method 4: Degree Matrix NLI Score 𝐷𝐷𝑑𝑑𝑒𝑒𝑔𝑔

• Define sim 𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗 = 1
2
𝑁𝑁𝐿𝐿𝑁𝑁 𝑠𝑠𝑖𝑖 → 𝑠𝑠𝑗𝑗 + 𝑁𝑁𝐿𝐿𝑁𝑁 𝑠𝑠𝑗𝑗 → 𝑠𝑠𝑖𝑖

• Measures the extent to which 𝑠𝑠𝑗𝑗 follows from 𝑠𝑠𝑖𝑖 and vice versa

• Let 𝐶𝐶𝑑𝑑𝑒𝑒𝑔𝑔 𝑠𝑠𝑖𝑖 , 𝑆𝑆, 𝑥𝑥 = 1
𝐾𝐾
∑𝑗𝑗 sim(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗)
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LM-Polygraph Comparison Study
[Vashurin, et al., 2024]

• Evaluation Benchmarks
• CoQA: free-form answers about conversations
• TriviaQA: * complex and compositional questions (no context)
• MMLU * (multiple choice QA)
• GSM8K: * grade school math word problems
• WMT-14 French->English
• WMT-19 German->English

• Prompting
• CoQA: few shot prompt using all preceding questions for the conversation
• * indicates 5-shot prompt
• Translation tasks: zero-shot
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Evaluation Metric: Prediction Rejection Ratio
[Malinin & Gales, ICLR 2020]

• Blue curve (“oracle”): sort the test examples with all misclassified examples before all correctly-
classified examples. This curve rejects all of the mistakes before rejecting the correctly-classified 
examples.

• Orange curve (“uncertainty”): sort the test examples in increasing order of estimated uncertainty. 

• 𝑃𝑃𝑅𝑅𝑅𝑅 = 𝐴𝐴𝑡𝑡𝑒𝑒𝑡𝑡(𝑙𝑙𝑡𝑡𝑡𝑡𝑡𝑡𝑜𝑜𝑒𝑒)
𝐴𝐴𝑡𝑡𝑒𝑒𝑡𝑡 (𝑏𝑏𝑖𝑖𝑢𝑢𝑒𝑒)

• Measures how close the system comes to the oracle
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LM-Polygraph Results

• SAR
• Semantic entropy
• DegMat NLI Score entail

• 𝐶𝐶𝑑𝑑𝑒𝑒𝑔𝑔
• Monte Carlo Sequence Entropy

• Same as Perplexity 

• Lexical Similarity Rouge-L
• LexSim
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Assessment

• The evaluations do not tell us how effective the methods will be in 
practice

• Better metric: 
• Rejection rate @90% accuracy
• Rejection rate @95% accuracy
• Rejection rate @99% accuracy
• Rejection rate @100% accuracy

• What is achievable in practice?
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Summary
• Goals of UQ:

• Selective prediction, active learning, 
system integration

• Decomposing uncertainty into 
epistemic and aleatoric

• Sources of uncertainty: Data 
uncertainty, Model uncertainty

• Regression
• Prediction intervals: linear regression, 

Bayesian Gaussian Process regression, 
Conformalized Quantile Regression

• Classification
• Calibrating �̂�𝑝 𝑦𝑦 = �𝑦𝑦 𝑥𝑥𝑞𝑞
• Full calibration
• Constructing prediction sets from 

calibrated probabilities

• Local epistemic uncertainty via outlier 
detection

• Measure distance from 𝑥𝑥𝑞𝑞 to the training 
data

• Requires a good representation; this is a 
challenge for deep learning

• Applications
• Active Learning
• Uncertainty-Aware Learning
• Selective prediction
• Reducing Hallucination in LLMs

OxML 2024 96



References
• Balabanov, O., & Linander, H. (2024). Uncertainty quantification in fine-tuned LLMs using 

LoRA ensembles. ArXiv, 2402.12264(v1).
• Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.
• Breunig, M. M., Kriegel, H., Ng, R. T., & Sander, J. (2000). LOF: Identifying Density-Based 

Local Outliers. ACM SIGMOD 2000 International Conference on Management of Data, 1–
12.

• Dietterich, T. G., & Guyer, A. (2022). The Familiarity Hypothesis: Explaining the Behavior 
of Deep Open Set Methods. ArXiv, 2203.02486(v1). http://arxiv.org/abs/2203.02486

• Duan, J., Cheng, H., Wang, S., Zavalny, A., Wang, C., Xu, R., Kailkhura, B., & Xu, K. (2023). 
Shifting Attention to Relevance: Towards the Uncertainty Estimation of Large Language 
Models. ArXiv, 2307.01379(v2), 1–15.

• Emmott, A., Das, S., Dietterich, T., Fern, A., & Wong, W.-K. (2016). A Meta-Analysis of the 
Anomaly Detection Problem. ArXiv, 1503.01158(v2), 1–35.

• Farquhar, S., Kossen, J., Kuhn, L., & Gal, Y. (2024). Detecting hallucinations in large 
language models using semantic entropy. Nature, 625–630(July 2023). 
https://doi.org/10.1038/s41586-024-07421-0

OxML 2024 97

http://arxiv.org/abs/2203.02486
https://doi.org/10.1038/s41586-024-07421-0


References (2)
• Fisch, A., Jaakkola, T., & Barzilay, R. (2022). Calibrated Selective Classification. ArXiv, 

2208.12084(v1), 1–23.
• Fomicheva, M., Sun, S., Yankovskaya, L., Guzm, F., Fishel, M., Aletras, N., Chaudhary, V., & Specia, 

L. (2020). Unsupervised Quality Estimation for Neural Machine Translation. Transactions of the 
Association for Computational Linguistics, 8, 539–555.

• Gal, Y., & Ghahramani, Z. (2016). Dropout as a Bayesian Approximation: Representing Model 
Uncertainty in Deep Learning. Proceedings of The 33rd International Conference on Machine 
Learning, 48.

• Geifman, Y., & El-Yaniv, R. (2017). Selective Classification for Deep Neural Networks. ArXiv, 1–12.
• Geifman, Y., & El-Yaniv, R. (2019). SelectiveNet: A deep neural network with an integrated reject 

option. 36th International Conference on Machine Learning, ICML 2019, 2019-June, 3768–3776.
• Gruber, C., Schenk, P. O., Schierholz, M., Kreuter, F., & Kauermann, G. (2023). Sources of 

Uncertainty in Machine Learning - A Statisticians ’ View. ArXiv, 2305.16703(v1).
• Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On Calibration of Modern Neural Networks. 

ArXiv, 1706.04599(v1). http://arxiv.org/abs/1706.04599
• Kendall, A., & Gal, Y. (2017). What Uncertainties Do We Need in Bayesian Deep Learning for 

Computer Vision? 31st Conference on Neural Information Processing Systems (NIPS 2017).

OxML 2024 98

http://arxiv.org/abs/1706.04599


References (3)
• Kuhn, L., Gal, Y., & Farquhar, S. (2023). Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation 

in Natural Language Generation. ICLR 2023, 1–19.
• Kull, M., Silva Filho, T. M., & Flach, P. (2017). Beyond Sigmoids: How to obtain well-calibrated probabilities 

from binary classifiers with beta calibration. Electronic Journal of Statistics, 11(2), 5052–5080. 
https://doi.org/10.1214/17-EJS1338SI

• Kull, M., Perello-Nieto, M., Kängsepp, M., Filho, T. S., Song, H., & Flach, P. (2019). Beyond temperature scaling: 
Obtaining well-calibrated multiclass probabilities with Dirichlet calibration. Advances in Neural Information 
Processing Systems (NeurIPS 2019), 14. http://arxiv.org/abs/1910.1265

• Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation Forest. 2008 Eighth IEEE International Conference on Data 
Mining, 413–422. https://doi.org/10.1109/ICDM.2008.17

• Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2012). Isolation-Based Anomaly Detection. ACM Transactions on 
Knowledge Discovery from Data, 6(1), 1–39. https://doi.org/10.1145/2133360.2133363

• Malinin, A., Mlodozeniec, B., & Gales, M. (2020). Ensemble Distribution Distillation. ICLR 2020, 1–22.
• McCoy, R. T., Yao, S., Friedman, D., Hardy, M., & Griffiths, T. L. (2023). Embers of Autoregression: 

Understanding Large Language Models Through the Problem They are Trained to Solve. ArXiv, 2309.13638(v1). 
http://arxiv.org/abs/2309.13638

• Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7, 983–999.

OxML 2024 99

https://doi.org/10.1214/17-EJS1338SI
http://arxiv.org/abs/1910.1265
https://doi.org/10.1109/ICDM.2008.17
https://doi.org/10.1145/2133360.2133363
http://arxiv.org/abs/2309.13638


References (4)
• Niculescu-Mizil, A., & Caruana, R. (2005). Obtaining calibrated probabilities from boosting. 

Proceedings of the Proceedings of the Twenty-First Conference Annual Conference on Uncertainty 
in Artificial Intelligence (UAI-05), 413–420.

• Niculescu-Mizil, A., & Caruana, R. (2005). Predicting good probabilities with supervised learning. 
Proceedings of the 22nd International Conference on Machine Learning - ICML ’05, 625–632. 
https://doi.org/10.1145/1102351.1102430

• OpenAI (2023). GPT-4 Technical Report.
• Platt, J. C. (1999). Probabilistic outputs for support vector machines and comparisons to 

regularized likelihood methods. In A. J. Smola, P. Bartlett, B. Schoelkopf, & D. Schuurmans (Eds.), 
Advances in Large Margin Classifiers (pp. 61-74). MIT Press.

• Vashurin, R., Fadeeva, E., Vazhentsev, A., Tsvigun, A., Vasilev, D., Xing, R., Sadallah, A. B., Rvanova, 
L., Petrakov, S., Panchenko, A., Baldwin, T., Nakov, P., Panov, M., & Shelmanov, A. (2024). 
Benchmarking Uncertainty Quantification Methods for Large Language Models with LM-
Polygraph. ArXiv, 2406.15627(v1). http://arxiv.org/abs/2406.15627

• Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic Learning in a Random World. Springer.
• Zadrozny, B., & Elkan, C. (2001). Obtaining calibrated probability estimates from decision trees 

and naive Bayesian classifiers. International Conference on Machine Learning (ICML-2001), 1, 
609–616.

OxML 2024 100

https://doi.org/10.1145/1102351.1102430
http://arxiv.org/abs/2406.15627


Backup Slides

OxML 2024 101



LOF: Local Outlier Factor
(Breunig, et al., 2000)

• Distance from 𝑥𝑥 to its k-th nearest neighbor 
divided by the average distance of each of 
those neighbors to their k-th nearest 
neighbors

• [The actual calculation is slightly more 
complex.]
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Isolation Forest [Liu, Ting, Zhou, 2011]

• Approximates the 𝐿𝐿1 distance between 
the 𝑥𝑥𝑞𝑞 and the training data (Guha et 
al., 2016)

• Does not require standardizing the 
features

• Construct a fully random binary tree
• choose attribute 𝑗𝑗 at random
• choose splitting threshold 𝜃𝜃1 uniformly 

from min 𝑥𝑥⋅𝑗𝑗 , max 𝑥𝑥⋅𝑗𝑗
• until every data point is in its own leaf
• let 𝑑𝑑(𝑥𝑥𝑖𝑖) be the depth of point 𝑥𝑥𝑖𝑖

• repeat 100 times
• let �̅�𝑑(𝑥𝑥𝑖𝑖) be the average depth of 𝑥𝑥𝑖𝑖

• 𝑠𝑠𝑐𝑐𝑁𝑁𝑁𝑁𝑒𝑒 𝑥𝑥𝑖𝑖 = 2
−

�𝑑𝑑 𝑥𝑥𝑖𝑖
𝑟𝑟 𝑥𝑥𝑖𝑖

• 𝑁𝑁(𝑥𝑥𝑖𝑖) is the expected depth 

𝑥𝑥⋅𝑗𝑗𝑥𝑥⋅𝑗𝑗 > 𝜃𝜃1

𝑥𝑥⋅2 > 𝜃𝜃2 𝑥𝑥⋅8 > 𝜃𝜃3

𝑥𝑥⋅3 > 𝜃𝜃4 𝑥𝑥⋅1 > 𝜃𝜃5

𝑥𝑥𝑖𝑖
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