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Sustainable Management of the
Earth’'s Ecosystems |.

= The Earth’s Ecosystems are complex
= We have failed to manage them in a sustainable way
= Why?

1. Our knowledge of function and structure is inadequate
= Doak et al (2008): Ecological Surprise

2. We focused only on part of the larger system

= We have ignored
= human / social components
= spatial aspects
= interactions among multiple species

3. We simplified the systems to make them manageable

= High-efficiency agriculture relies on expensive, hon-sustainable exogenous inputs:
energy, fertilizer, pesticides, herbicides
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Computer Science can help! |

1. Lack of knowledge of function and
structure

P
-
T

2. Focus on subsystems

3. Simplified systems using
exogenous inputs
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Computational Sustainabllity

= The study of computational
methods that can contribute to the
sustainable management of the
earth’s ecosystems
= biological
= social

= economic

= Data 2 Models = Policies
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Example Research Efforts Sensor

Placement

= Objectives
= detection probability
= improving model accuracy
= improving causal understanding
= improving policy effectiveness

= Key Tool: Submodular Functions

= Formulate the problem in terms of a
submodular objective

= Greedy algorithm then works well and
has provable performance

Leskovec et al, KDD2007
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Data Interpretation

= Insect identification for population counting
= Raw data: image
= Interpreted data: Count by species

1/26/2012 image: Qing Yao TCS Distinguished Lecture
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Data Integration sensor
Placement
= Integrating heterogeneous data sources to —
predict when migrating birds will arrive: 4 Sata h
= Landsat (30m; monthly) Interpretation
= land cover type \_ y,
= MODIS (500m:; daily/weekly) R
= land cover type Data
= “greening” index Integration
\_ J

= Census (every 10 years)
= human population density
= housing density and occupation
= |[nterpolated weather data (15 mins)
= rain, snow, solar radiation, wind speed & direction,
humidity
= |[ntegrated weather data (daily)
= warming degree days
= Digital elevation model (rarely changes)

= elevation, slope, aspect Landsat NDVI:
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Model Fitting

= Species Distribution Models
= create a map of the distribution of a species
= Meta-Population Models

= model a set of patches with local extinction and
colonization

= Migration and Dispersal Models
= model the trajectory and timing of movement
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Example Fitted Model: STEM
Model of Bird Species Distribution

slide courtesy of Daniel Fink



Policy Optimization
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Policy Optimization

Observations Fitted Model
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Full consideration of costs

to fishing industry

Conservation
ranking

/N EEZ

Leathwick et al, 2008

Disregarding costs
to fishing industry
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Policy Execution

= Repeat
= Observe Current State
= Choose and Execute Action

= Need to continually improve our models
and update our policies

= Challenge: We must start taking actions
while our models are still very poor.
= How can we make our models robust to both
the “known unknowns” (our known

uncertainty) and the “unknown unknowns”
(things we will discover in the future)
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Outline:
Three Projects at Oregon State

= Data Interpretation
= Automated Data Cleaning

= Model Fitting
= Explicit Observation Models

= Policy Optimization
= Managing Fire in Eastern Oregon
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Automated Data Cleaning for
Sensor Networks

= Ethan Dereszynski’'s PhD Work
= He will graduate in Spring 2012
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Functions of a Data Cleaning
Method

= An ideal method should produce two things given raw data:
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Functions of a Data Cleaning

Method

= An ideal method should produce two things given raw data:

= A label that
marks anomalies
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Functions of a Data Cleaning
Method

= An ideal method should produce two things given raw data:
= A label that
marks anomalies
= An imputation
of the true value
(with some
confidence measure)
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Method: Probabilistic Modeling Using a
Bayesian Network with Hidden Variables I.

State of the sensor
1 = working; O = broken

St

True temperature

Observed temperature

P(O; = 0|S; = 1,T; = x) = Normal(o |x, €?)
P(0O; = 0|S; = 0,T; = x) = Normal(o |0,1000)
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Anomaly Detection Via
Probabillistic Inference |.

State of the sensor

1 = working; O = broken S¢

True temperature

Observed temperature

Query: What is the most likely value of S;?
argmax P(S; = s|0;)
S

1/26/2012 TCS Distinguished Lecture o5



Imputation Via
Probabillistic Inference

St




Improving the Model;
Markov Model of Temperature |.

" St St

N\

P(S:|S:-1): Sensors tend
to stay in the same state

P(T¢|T;—1): Temperature
changes slowly (15 minute
time step)

Query: argmax P(S¢|0¢, O¢—_4, ...)
St
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Improving the Model:
Multiple Sensors
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Probabilistic Inference is Infeasible
In the Single Sensor Model |.

= Single sensor Markov model query: argmax P(S¢, S¢—1, ... |O¢, O¢—1, ...)
St,St—1,--

= Requires time exponential in the length of the time series

= Solution:
= Commit to each S; in order
= §, == argmax P(S; = s|0;)
S

= S, :=argmax P(S, = s|S;,0,)
S

= Also bound the variance of T;

= Each of these inferences is easy
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Probabillistic Inference is Infeasible
In the Multiple Sensor Model |.

= Even if we commit to values for S%,S? ..., SX for K sensors, we must
compute an intermediate data structure of size 2X

= Possible Solution: SearchMAP. At each time t,
= Start with (S2, ...,S%) =S8, = (1,1, ...,1) // all sensors working

= Perform a greedy search to maximize P(S.|0%, ..., 0X) by “breaking” one sensor
at a time

= Polynomial in K

1/26/2012 TCS Distinguished Lecture =



Single Sensor Results

Central, 1996, Week 6
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Learned Network Structure

SensorScope Weather Station Map
HES-SO FishNet deployment

Past deployment 2007-08-03 / 2007.09.04
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Multi-Sensor Anomaly Results
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Additional Challenges |

= Anomaly detection should operate at multiple time scales. How?

= Integrating heterogeneous sensors
= Solar radiation
= Wind speed and direction
= Precipitation
= Snow depth
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Outline:
Three Projects at Oregon State

= Data Interpretation
= Automated Data Cleaning

= Model Fitting
= Explicit Observation Models

= Policy Optimization
= Managing Fire in Eastern Oregon
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Flexible Species Distribution
Modeling For Imperfect Detection

= Rebecca Hutchinson (PhD CMU 2009)
= Finishing Postdoc 6/30/2012
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Species Distribution Modeling

Observations Fitted Model
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Imperfect Detection
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Multiple Visit Data

True Visit 1 Visit 2 Visit 3
occupancy (rainy day, (clear day, (clear day,
(latent) 12pm) 6am) 9am)

(forest, 0
elev=400m)

B
(forest,
elev=500m)

C
(forest,
elev=300m)

D
(grassland,
elev=200m)
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Occupancy-Detection Model

z;~P(z;|x;): Species Distribution Model

vie~P(yit|z;, wir): Observation model

1/26/2012

MacKenzie, et al, 2006

N
7|

P(z; = 1|x;) = 0; = F(x;) “occupancy probability”

P(yie = 1|z;, wy) = z;d;,

d;; = G(w;) “detection probability”

TCS Distinguished Lecture
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The Power of Probabilistic
Graphical Models

= Probabilistic graphical models have many advantages
= Excellent language for representing models
= Learning and reasoning via probabilistic inference
= Support hidden (latent) variables

= However, they have disadvantages
= Designer must choose the parametric form of each probability distribution
= Must decide on the number and form of interactions
= Data must be scaled and transformed to match model assumptions

= Somewhat difficult to adapt the complexity of the model to the amount and
complexity of the data
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Important Contribution of Machine
Learning: Flexible Models

= Classification and Regression Trees
= Require no model design
= Require no data preprocessing or transformation
= Automatically discover interactions as needed
= Achieve high accuracy via boosting

= Support Vector Machines

= Still require data preprocessing and transformation
= Powerful methods for tuning model complexity automatically

1/26/2012 TCS Distinguished Lecture
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Combining Probabilistic Graphical
Models with Flexible Models

= Major open problem in machine learning

= Current efforts:

= Kernel (SVM) methods for computing with probability distributions
= Bayesian Non-Parametric Models: Dirichlet process mixture models
= Our approach: Boosted regression trees

1/26/2012 TCS Distinguished Lecture 0



Flexible Occupancy-Detection
Models

= Recall:
= F(X;) = o; is the occupancy probability
= G(W;;) = d;; Is the detection probability

= Standard approach
= Represent F and G as logistic regression models

= Qur ldea:

= Represent F and G using boosted regression trees
= Learn them via boosting

= This can be done using functional gradient descent (Mason & Bartlett, 1999;
Friedman, 2000; Dietterich, et al, 2008; Hutchinson & Dietterich, 2011)

1/26/2012 TCS Distinguished Lecture
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Experiment

= Algorithms:

= Supervised methods:
= S-LR: logistic regression from (x;, w;;) = vi;
= S-BRT: boosted regression trees (x;, w;t) = y;;
= Occupancy-Detection methods:
= OD-LR: F and G logistic regressions
= OD-BRT: F and G boosted regression trees
= Data:
= 12 bird species
= 3 synthetic species
= 3124 observations from New York State, May-July 2006-2008
= All predictors rescaled to zero mean, unit variance
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Synthetic Species

= Synthetic Species 2: F and ¢ nonlinear
2 2
0; X exp (—2 [xi(l)] + 3 [xi(z)] — in(B))

d;+ X exp (exp (—O.Swi(t4)) + sin (1.25Wl-(t1) + 5))
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Outline:
Three Projects at Oregon State

= Data Interpretation
= Automated Data Cleaning

= Model Fitting
= Explicit Observation Models

= Policy Optimization
= Managing Fire in Eastern Oregon
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Managing Wildfire in Eastern
Oregon

= Natural state (hypothesized):

= Large Ponderosa Pine trees with
open understory

= Frequent “ground fires” that remove
understory plants (grasses, shrubs)
but do not damage trees
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= Fires have been suppressed since
1920s

= Large stands of Lodgepole Pine

= Heavy accumulation of fuels in
understory

= Large catastrophic fires that kill all
trees and damage soils

= Huge firefighting costs and lives lost
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Study Area: Deschutes National
Forest

= ~4000 Management Units

= Goal: Return the landscape to its
“natural” fire regime

= Which management units should
be treated each year?

1/26/2012 TCS Distinguished Lecture e



Game Against Nature

= For each time step t

= Our turn:

= Observe current state s; (i.e., state of
all MUs)

= Choose action vector a;
= Execute the actions in the MUs

= Nature’s turn:

= Stochastically ignite and burn fires on
the landscape (Implemented by ignition
model + fire spread model)

= Grow trees and fuel (Implemented by
forest growth model)

5] Treated

St+1
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Formulation as a Markov Decision
Process

= State of each MU:
= Age of trees
= {0-9, 10-19, 20-29, 30-39, 40-49}
= Amount of fuel
= {none, low, medium, high, very high}
= 25 possible combinations

= 254000 nhossible states for the
landscape

= Actions in each MU each decade
= Do nothing
Fuel treatment (costs money)

Harvest trees (makes money, but
increases fuel) Study area in Deschutes National Forest
Harvest + Fuel

44000 hossible actions over landscape

1/26/2012 TCS Distinguished Lecture @



Open Problem: Solving This MDP |.

= One-shot Method [Wel, et al., 2008]

= Run 1000s of simulated fires to generate fire risk map and fire propagation
graph

= Formulate and solve Mixed Integer Program to compute optimal one-shot
solution

= Challenge:
= Develop methods that can solve the MDP over long time horizons
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Summary o | |
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Computational Sustainability |

= There are many opportunities for computing to contribute
to a sustainable planet

= There are many challenging computer science research
problems to be solved

= CCC is sponsoring Computational Sustainability tracks at
leading conferences this coming year including ICML and
JAVAVAY

= |Institute for Computational Sustainability:
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Thank-you

= Ethan Dereszynski: Automated Data Cleaning
= Rebecca Hutchinson: Boosted Regression Trees in OD models

= Claire Montgomery, Rachel Houtman, and Sean McGregor: Fire
challenge

= National Science Foundation Grants 0705765, 0832804, and 0905885
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