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A Species Distribution Modeling Problem: 
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 eBird data 

 12 bird species 

 3 synthetic species 

 3124 observations from 

New York State, May-July 

2006-2008 

 23 covariates 

 

 



Two Cultures 
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 Occupancy Models 

 MacKenzie, et al., 2002 

 Boosted Regression Trees 

 Friedman, 2001 

 Elith et al, 2006 

 Elith, Leathwick & Hastie, 

2008 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 
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Occupancy-Detection Model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

Occupancy 
features (e.g.  
elevation, 
vegetation) 

Detection 
features (e.g.  
time of day, 
effort) 

Observed presence/absence 
Yit | Zi ~ Bern(Zidit) 

True (latent) presence/absence 
Zi ~ Bern(oi) 

Probability of occupancy 
(function of Xi) 

Probability of detection 
(function of Wit) 

Sites 

Visits 

MacKenzie, et al, 2006 
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Parameterizing the model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

𝑍𝑖~𝑃(𝑍𝑖|𝑋𝑖): Species Distribution Model 

 𝑃 𝑍𝑖 = 1 𝑋𝑖 = 𝑜𝑖 = 𝐹(𝑋𝑖)  “occupancy probability” 

𝑦𝑖𝑡~𝑃(𝑦𝑖𝑡|𝑧𝑖 , 𝑤𝑖𝑡): Observation model 

 𝑃 𝑌𝑖𝑡 = 1 𝑍𝑖 , 𝑊𝑖𝑡 = 𝑍𝑖𝑑𝑖𝑡 

 𝑑𝑖𝑡 = 𝐺(𝑊𝑖𝑡)  “detection probability” 
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Standard Approach: Log Linear (logistic 

regression) models 
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 log
𝐹 𝑋𝑖

1−𝐹 𝑋𝑖
= 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝐽𝑋𝑖𝐽 

 log
𝐺 𝑊𝑖𝑡

1−𝐺 𝑊𝑖𝑡
= 𝛼0 + 𝛼1𝑊𝑖𝑡1 + ⋯ + 𝛼𝐾𝑊𝑖𝑡𝐾 

 Fit via maximum likelihood 

 Can apply hypothesis tests to assess importance of 

covariates 

 𝐻0: 𝛽1 = 0 

 𝐻𝑎: 𝛽1 > 0 



Results on Synthetic Species with Nonlinear 

Interactions 
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 Predictions exhibit high 

variance because model 

cannot fit the nonlinearities 

well 



A Flexible Predictive Model 
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 Predict the observation 𝑦𝑖𝑡 from the combination of 

occupancy covariates 𝑥𝑖 and detection covariates 𝑤𝑖𝑡 

 Boosted Regression trees 

 log
𝑃 𝑌𝑖𝑡=1 𝑋𝑖,𝑊𝑖𝑡

𝑃 𝑌𝑖𝑡=0 𝑋𝑖,𝑊𝑖𝑡
= 𝛽1𝑡𝑟𝑒𝑒1 𝑋𝑖 , 𝑊𝑖𝑡 + ⋯ + 𝛽𝐿𝑡𝑟𝑒𝑒𝐿(𝑋𝑖 , 𝑊𝑖𝑡) 

 Fitted via functional gradient descent  

 Model complexity is tuned to the complexity of the data 

 Number of trees 

 Depth of each tree 

 



Results 
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 Systematically biased because 

it does not capture the latent 

occupancy 

 Underestimates occupancy at 

occupied sites to fit detection 

failures 

 Much lower variance than the 

Occupancy-Detection model, 

because it can handle the 

non-linearities 
P
(Z

) 



Two Cultures: Summary 
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 Advantages 
 Supports latent variables 

 Supports hypothesis tests on 
meaningful parameters 

 Disadvantages 
 Model must be carefully designed 

(interactions? non-linearities?) 

 Data must be transformed to 
match modeling assumptions 
(linearity, Gaussianity) 

 Model has fixed complexity so 
either under-fits or over-fits 

 Advantages 
 Model complexity adapts to data 

complexity 

 Easy to use “off-the-shelf” 

 Disadvantages 
 Cannot support latent variables 

 Cannot provide parametric 
hypothesis tests 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 



The Dream 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 
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A Simple Idea: 

Parameterize 𝐹 and 𝐺 as boosted trees 
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 log
𝐹 𝑋

1−𝐹 𝑋
= 𝑓0(𝑋) + 𝜌1𝑓1(𝑋)  + ⋯ + 𝜌𝐿𝑓𝐿(𝑋) 

 log
𝐺 𝑊

1−𝐺 𝑊
= 𝑔0 𝑊 + 𝜂1𝑔1 𝑊 + ⋯ + 𝜂𝐿𝑔

𝐿(𝑊) 

 Perform functional gradient descent in 𝐹 and 𝐺 
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Results: OD-BRT 

 Occupancy probabilities are 

predicted very well 



Interpreting Non-Parametric Models: 

Partial Dependence Plots 
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 Simulate 

manipulating 

one variable 

(e.g., Distance 

of Survey) 

 Visualize the 

predicted 

response 

 

Distance of survey 



Partial Dependence Plot 

Synthetic Species 3 

 OD-BRT 

correctly 

captures the bi-

modal detection 

probability 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Time of Day 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Duration of 

Observation 
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Effort in Hours 



Summary: We can have our cake (latent variables, 

interpretable submodels) and eat it too (have 

flexible, easy-to-use modeling tools) 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 
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• Easier to use 

• More accurate 



Concluding 

Remarks 
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 With limited data, the 

most accurate predictive 

model is much simpler 

than the “true model” 

 Predictive accuracy on a 

single data set is not a 

sufficient criterion for a 

scientific model 

 
complexity 

ac
cu

ra
cy

 

Most Accurate 

Predictive Model 

Predictive Accuracy of 

“True Model” 
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Regression Trees 
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 Interactions are captured by 

the if-then-else structure of 

the tree 

 Nonlinearities are 

approximated by piecewise 

constant functions 

 Tree can be flattened into a 

linear model: 

𝑋1 ≥ 3 

𝑋2 ≥ 0 𝑋2 ≥ 0 

𝑌1 = 
−5 

𝑌1 = 
3 

𝑌1 = 
8 

𝑌1 = 
1 

𝑌1 = −5 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 ≥ 0 + 3 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 < 0 + 
           8 ⋅ 𝐼 𝑥1 < 3, 𝑋2 ≥ 0 + 1 ⋅ 𝐼(𝑋1 < 3, 𝑋2 < 0) 



Functional Gradient Descent 

Boosted Regression Trees 
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 Friedman (2000), Mason et al. (NIPS 1999), Breiman (1996) 

 Fit a logistic regression model as a weighted sum of regression 
trees: 

 

log
𝑃 𝑌 = 1

𝑃 𝑌 = 0
= 𝑡𝑟𝑒𝑒0(𝑋) + 𝜂1𝑡𝑟𝑒𝑒1(𝑋) + ⋯ + 𝜂𝐿𝑡𝑟𝑒𝑒𝐿(𝑋) 

 

 

 When “flattened” this gives a log linear model with complex 
interaction terms 



L2-Tree Boosting Algorithm 
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 Let 𝐹0 𝑋 = 𝑓0(𝑋) = 0 be the zero function 

 For ℓ = 1, … , 𝐿 do 

 Construct a training set Sℓ = 𝑋𝑖 , 𝑌 𝑖
𝑖=1

𝑁
  

 where 𝑌  is computed as 

 𝑌 𝑖 =
𝜕𝐿𝐿 𝐹

𝜕𝐹
 
𝐹=𝐹ℓ−1 𝑋𝑖

      “how we wish 𝐹 would change at 𝑋𝑖” 

 Let 𝑓ℓ = regression tree fit to 𝑆ℓ 

 𝐹ℓ ≔ 𝐹ℓ−1 + 𝜂ℓ𝑓
ℓ 

 The step sizes 𝜂ℓ are the weights computed in boosting 

 This provides a general recipe for learning a conditional 
probability distribution for a Bernoulli or multinomial 
random variable 



Alternating Functional Gradient Descent 

 Loss function 𝐿(𝐹, 𝐺, 𝑦) 

 𝐹0 = 𝐺0 = 𝑓0 = 𝑔0 = 0 

 For ℓ = 1, … , 𝐿 

 For each site 𝑖 compute  

𝑧 𝑖 = 𝜕𝐿(𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1, 𝑦𝑖)/𝜕𝐹ℓ−1 𝑥𝑖  

 Fit regression tree 𝑓ℓ to 𝑥𝑖 , 𝑧 𝑖 𝑖=1
𝑀  

 Let 𝐹ℓ = 𝐹ℓ−1 + 𝜌ℓ𝑓
ℓ 

 For each visit 𝑡 to site 𝑖, compute 

𝑦 𝑖𝑡 = 𝜕𝐿 𝐹ℓ 𝑥𝑖 , 𝐺ℓ−1 𝑤𝑖𝑡 , 𝑦𝑖𝑡  
/𝜕𝐺ℓ−1 𝑤𝑖𝑡  

 Fit regression tree 𝑔ℓto 𝑤𝑖𝑡, 𝑦 𝑖𝑡 𝑖=1,𝑡=1
𝑀,𝑇𝑖  

 Let 𝐺ℓ = 𝐺ℓ−1 + 𝜂ℓ𝑔
ℓ 
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Multiple Visit Data 

27 

Detection History 

 

Site 

True occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 6am) 

Visit 3 

(clear day, 9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 

11/15/2012 ESA 2012 



Covariates 
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Synthetic Species 2 

 𝐹 and 𝐺 nonlinear 

log
𝑜𝑖

1 − 𝑜𝑖
= −2 𝑥𝑖

1
2

+ 3 𝑥𝑖
2

2
− 2𝑥𝑖

3
 

log
𝑑𝑖𝑡

1 − 𝑑𝑖𝑡
= exp(−0.5𝑤𝑖𝑡

4
) + sin(1.25𝑤𝑖𝑡

1
+ 5) 
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Predicting 
Occupancy 

 

Synthetic 

Species 2 
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Open Problems 
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 Sometimes the OD model finds trivial solutions 

 Detection probability = 0 at many sites, which allows the Occupancy 
model complete freedom at those sites 

 Occupancy probability constant (0.2) 

 

 Log likelihood for latent variable models suffers from local 
minima 

 Proper initialization? 

 Proper regularization? 

 Posterior regularization? 

 

 How much data do we need to fit this model? 

 Can we detect when the model has failed? 
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