Bridging the two cultures: Latent variable statistical modeling with boosted regression trees

Thomas G. Dietterich and Rebecca Hutchinson

Oregon State University Corvallis, Oregon, USA

ESA 2012 11/15/2012

A Species Distribution Modeling Problem:

eBird data

- I2 bird species
- 3 synthetic species
- 3124 observations from New York State, May-July 2006-2008
- > 23 covariates

ERD 2.0 Traveling & Stationary 2004-09

11/15/2012

Two Cultures

Probabilistic Graphical Models

- Occupancy Models
 - MacKenzie, et al., 2002

Flexible Nonparametric Models

- Boosted Regression Trees
 - Friedman, 2001
 - Elith et al, 2006
 - Elith, Leathwick & Hastie, 2008

Occupancy-Detection Model

Parameterizing the model

 $\begin{aligned} Z_i \sim P(Z_i | X_i) &: \text{Species Distribution Model} \\ P(Z_i = 1 | X_i) = o_i = F(X_i) \text{ "occupancy probability"} \\ y_{it} \sim P(y_{it} | z_i, w_{it}) &: \text{Observation model} \\ P(Y_{it} = 1 | Z_i, W_{it}) = Z_i d_{it} \\ d_{it} = G(W_{it}) \text{ "detection probability"} \end{aligned}$

Standard Approach: Log Linear (logistic regression) models

•
$$\log \frac{F(X_i)}{1 - F(X_i)} = \beta_0 + \beta_1 X_{i1} + \dots + \beta_J X_{iJ}$$

• $\log \frac{G(W_{it})}{1 - G(W_{it})} = \alpha_0 + \alpha_1 W_{it1} + \dots + \alpha_K W_{itK}$

- Fit via maximum likelihood
- Can apply hypothesis tests to assess importance of covariates

•
$$H_0: \beta_1 = 0$$

• $H_a: \beta_1 > 0$

Results on Synthetic Species with Nonlinear Interactions

 Predictions exhibit high variance because model cannot fit the nonlinearities well

True Occupancy Probabilities

A Flexible Predictive Model

- Predict the observation y_{it} from the combination of occupancy covariates x_i and detection covariates w_{it}
- Boosted Regression trees

• $\log \frac{P(Y_{it}=1|X_i,W_{it})}{P(Y_{it}=0|X_i,W_{it})} = \beta_1 tree_1(X_i,W_{it}) + \dots + \beta_L tree_L(X_i,W_{it})$

Fitted via functional gradient descent

Model complexity is tuned to the complexity of the data

- Number of trees
- Depth of each tree

Results

- Systematically biased because it does not capture the latent occupancy
 - Underestimates occupancy at occupied sites to fit detection failures
- Much lower variance than the Occupancy-Detection model, because it can handle the non-linearities

True Occupancy Probabilities

Two Cultures: Summary

Probabilistic Graphical Models

Advantages

- Supports latent variables
- Supports hypothesis tests on meaningful parameters

Disadvantages

- Model must be carefully designed (interactions? non-linearities?)
- Data must be transformed to match modeling assumptions (linearity, Gaussianity)
- Model has fixed complexity so either under-fits or over-fits

Flexible Nonparametric Models

- Advantages
 - Model complexity adapts to data complexity
 - Easy to use "off-the-shelf"
- Disadvantages
 - Cannot support latent variables
 - Cannot provide parametric hypothesis tests

The Dream

A Simple Idea: Parameterize *F* and *G* as boosted trees

•
$$\log \frac{F(X)}{1 - F(X)} = f^0(X) + \rho_1 f^1(X) + \dots + \rho_L f^L(X)$$

•
$$\log \frac{G(W)}{1 - G(W)} = g^0(W) + \eta_1 g^1(W) + \dots + \eta_L g^L(W)$$

 \blacktriangleright Perform functional gradient descent in F and G

Results: OD-BRT

 Occupancy probabilities are predicted very well

True Occupancy Probabilities

True Occupancy Probabilities

Interpreting Non-Parametric Models: Partial Dependence Plots

- Simulate manipulating one variable (e.g., Distance of Survey)
- Visualize the predicted response

Partial Dependence Plot Synthetic Species 3

 OD-BRT correctly captures the bimodal detection probability

Summary: We can have our cake (latent variables, interpretable submodels) and eat it too (have flexible, easy-to-use modeling tools)

Concluding Remarks

- With limited data, the most accurate predictive model is much simpler than the "true model"
- Predictive accuracy on a single data set is *not* a sufficient criterion for a scientific model

Predictive Accuracy of

"True Model"

Most Accurate

Predictive Model

accuracy

Acknowledgements

- Liping Liu: Boosted Regression Trees in OD models
- Steve Kelling and colleagues at the Cornell Lab of Ornithology
- National Science Foundation Grants 0083292, 0307592, 0832804, and 0905885

ESA 2012 11/15/2012

Supporting Materials

Regression Trees

- Interactions are captured by the if-then-else structure of the tree
- Nonlinearities are approximated by piecewise constant functions
- Tree can be flattened into a linear model:

 $Y_1 = -5 \cdot I(X_1 \ge 3, X_2 \ge 0) + 3 \cdot I(X_1 \ge 3, X_2 < 0) +$ $8 \cdot I(X_1 < 3, X_2 \ge 0) + 1 \cdot I(X_1 < 3, X_2 < 0)$

Functional Gradient Descent Boosted Regression Trees

- Friedman (2000), Mason et al. (NIPS 1999), Breiman (1996)
- Fit a logistic regression model as a weighted sum of regression trees:

$$\log \frac{P(Y=1)}{P(Y=0)} = tree^{0}(X) + \eta_{1}tree^{1}(X) + \dots + \eta_{L}tree^{L}(X)$$

When "flattened" this gives a log linear model with complex interaction terms

L2-Tree Boosting Algorithm

- Let $F^0(X) = f^0(X) = 0$ be the zero function
- For $\ell = 1, \dots, L$ do
 - Construct a training set $S^{\ell} = \{(X^i, \tilde{Y}^i)\}_{i=1}^N$
 - where *Ỹ* is computed as *Ỹⁱ* = ∂LL(F)/∂F |_{F=F^{ℓ-1}(Xⁱ)} "how we wish F would change at Xⁱ"
 Let f^ℓ = regression tree fit to S^ℓ
 - $\blacktriangleright F^{\ell} \coloneqq F^{\ell-1} + \eta_{\ell} f^{\ell}$
- \blacktriangleright The step sizes η_ℓ are the weights computed in boosting
- This provides a general recipe for learning a conditional probability distribution for a Bernoulli or multinomial random variable

Alternating Functional Gradient Descent

• Loss function L(F, G, y)

•
$$F^0 = G^0 = f^0 = g^0 = 0$$

- For $\ell = 1, \dots, L$
 - For each site *i* compute $\tilde{z}_i = \partial L(F^{\ell-1}(x_i), G^{\ell-1}, y_i) / \partial F^{\ell-1}(x_i)$
 - Fit regression tree f^{ℓ} to $\{\langle x_i, \tilde{z}_i \rangle\}_{i=1}^M$
 - Let $F^{\ell} = F^{\ell-1} + \rho_{\ell} f^{\ell}$
 - For each visit t to site i, compute $\tilde{y}_{it} = \partial L \left(F^{\ell}(x_i), G^{\ell-1}(w_{it}), y_{it} \right) / \partial G^{\ell-1}(w_{it})$
 - Fit regression tree g^{ℓ} to $\{\langle w_{it}, \tilde{y}_{it} \rangle\}_{i=1,t=1}^{M,T_i}$
 - Let $G^{\ell} = G^{\ell-1} + \eta_{\ell} g^{\ell}$

Multiple Visit Data

		Detection History		
Site	True occupancy (latent)	Visit I (rainy day, I2pm)	Visit 2 (clear day, 6am)	Visit 3 (clear day, 9am)
A (forest, elev=400m)	Ι	0	Ι	I
B (forest, elev=500m)	Ι	0	Ι	0
C (forest, elev=300m)	Ι	0	0	0
D (grassland, elev=200m)	0	0	0	0

Covariates

$X^{(1)}$	Human population per sq. mile
$X^{(2)}$	Number of housing units per sq. mile
$X^{(3)}$	Percentage of housing units vacant
$X^{(4)}$	Elevation
$X^{(5)} \dots X^{(19)}$	Percent of surrounding 22,500 hectares
	in each of 15 habitat classes from the
	National Land Cover Dataset
$W^{(1)}$	Time of day
$W^{(2)}$	Observation duration
$W^{(3)}$	Distance traveled during observation
$W^{(4)}$	Day of year

Synthetic Species 2

▶ F and G nonlinear

$$\log \frac{o_i}{1 - o_i} = -2 \left[x_i^{(1)} \right]^2 + 3 \left[x_i^{(2)} \right]^2 - 2 x_i^{(3)}$$
$$\log \frac{d_{it}}{1 - d_{it}} = \exp(-0.5 w_{it}^{(4)}) + \sin(1.25 w_{it}^{(1)} + 5)$$

Predicting Occupancy

Synthetic Species 2

OD-LR

0

1.0

0.8

True Occupancy Probabilities

0.6

0.8

1.0

0.4

0.0

0.0

0.2

True Occupancy Probabilities

Open Problems

Sometimes the OD model finds trivial solutions

- Detection probability = 0 at many sites, which allows the Occupancy model complete freedom at those sites
- Occupancy probability constant (0.2)
- Log likelihood for latent variable models suffers from local minima
 - Proper initialization?
 - Proper regularization?
 - Posterior regularization?
- How much data do we need to fit this model?
 - Can we detect when the model has failed?