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A Species Distribution Modeling Problem:

» eBird data

|2 bird species

3 synthetic species

3124 observations from
New York State, May-July
2006-2008

23 covariates

Longitude

“*Audubon

@
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Two Cultures

Probabilistic Flexible
Graphical Nonparametric
Models Models
» Occupancy Models » Boosted Regression Trees
» MacKenzie, et al., 2002 » Friedman, 2001

» Elith et al, 2006

» Elith, Leathwick & Hastie,
2008
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Occupancy-Detection Model

Occupancy

features (e.g. Detection
elevation, Probability of occupancy Probability of detection features (e.g.
vegetation) (function of X,) (function of W) time of day,
effort)
dit
t=1,..., T4 Visits
i=1,...,M< Sites
True (latent) presence/absence Observed presence/absence
Z .~ Bern(o) Y. | Z,~ Bern(zd.)
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Parameterizing the model

O;
Oz

Zi~P(Z;|X;): Species Distribution Model

P(Z; = 11X;) = 0; = F(X;) “occupancy probability”
Vit~P (Vit|z;, wir): Observation model

P(Yy = 11Z;, W) = Z;dy;

d;y = G(W;;) “detection probability”
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Standard Approach: Log Linear (logistic
regression) models

F(X;)

> 1081_F(Xi) = Po + 1 Xi1 + -+ B X
GWit)
4 logl—G(VI;it) = Uy + a1Wit1 + -+ aKWitK

» Fit via maximum likelihood

» Can apply hypothesis tests to assess importance of
covariates

HO:ﬁl =0
Ha:ﬁl > 0
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Results on Synthetic Species with Nonlinear
Interactions

» Predictions exhibit high
variance because model
cannot fit the nonlinearities
well S

06 08 1.0
I

0.4

0.2

0.0

True Occupancy Probabilities
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A Flexible Predictive Model

» Predict the observation y;; from the combination of
occupancy covariates x; and detection covariates w;;
» Boosted Regression trees

P(Yi=1|X;,W;¢)
P(Y;¢=0|X;W;¢)

= Pytree; (Xi, Wi) + -+ + Brtree, (X;, Wy)
Fitted via functional gradient descent

» Model complexity is tuned to the complexity of the data
Number of trees

Depth of each tree
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Results

» Systematically biased because
it does not capture the latent
occupancy

Underestimates occupancy at
occupied sites to fit detection
failures
» Much lower variance than the
Occupancy-Detection model,
because it can handle the
non-linearities

P(Z)

1.0

02 04 06 08

0.0

S-BRT

True Occupancy Probabilities
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Two Cultures: Summary

Probabilistic Flexible

Graphical
Models

Nonparametric
Models

» Advantages » Advantages
» Supports latent variables »  Model complexity adapts to data
» Supports hypothesis tests on complexity
meaningful parameters » Easy to use “off-the-shelf”
» Disadvantages » Disadvantages
»  Model must be carefully designed » Cannot support latent variables

(interactions? non-linearities?) »  Cannot provide parametric
» Data must be transformed to hypothesis tests

match modeling assumptions

(linearity, Gaussianity)

» Model has fixed complexity so
either under-fits or over-fits
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The Dream

Probabilistic Flexible

Graphical Nonparametric
Models Models

Flexible
Nonparametric

Probabilistic
Models
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A Simple Idea:
Parameterize F and G as boosted trees

 log 1o = FOC0 + puf1 () + -+ pu L)

G
» log = = 9" W) + 119" (W) + - + g™ (W)

» Perform functional gradient descent in F and G
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Results: OD-BRT S
» Occupancy probabilities are g .
predicted very well N
g h I I I I I [
0.0 02 04 06 08 1.0
True Cccupancy Probabilities
S=-BRT OD=-BRT

True Occupancy Probabilities True Occupancy Probabilities



Interpreting Non-Parametric Models:
Partial Dependence Plots

» Simulate
manipulating
one variable
(e.g., Distance
of Survey)

» Visualize the

predicted
response
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Partial Dependence Plot
Synthetic Species 3

< 4 — Truth
» OD-BRT R
S-BRT
COI"I"GCt')’ 2 OD-BRT

captures the bi-
modal detection
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: S - ---- S-LR
Partial . opur
Dependence | PG
Plot o |-
Blue Jay vs.  ° | s
Time of Day
-
° [ [ [ [ [ [
-2 =1 0 1 2 3
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Summary: We can have our cake (latent variables,
interpretable submodels) and eat it too (have

Probabilistic Flexible
Graphical Nonparametric

Models Models

Flexible * Easier to use
Nonparametric * More accurate

Probabilistic

Models
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Concluding
Remarks

» With limited data, the

most accurate predictive

model is much simpler
than the “true model”

» Predictive accuracy on a

single data set is not a
sufficient criterion for a
scientific model

Most Accurate Predictive Accuracy of
Predictive Model “True Model”

accuracy

complexity
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Regression Trees

» Interactions are captured by
the if-then-else structure of
the tree

» Nonlinearities are

approximated by piecewise

constant functions @ w
» Tree can be flattened into a

linear model:

8 -I(x;<3,X,>0)+1-1(X; <3,X,<0)
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Functional Gradient Descent
Boosted Regression Trees

» Friedman (2000), Mason et al. (NIPS 1999), Breiman (1996)

» Fit a logistic regression model as a weighted sum of regression
trees:

| PY=1)
5Py = 0)

= tree®(X) + nytreet(X) + -+ + n treel (X)

» When “flattened” this gives a log linear model with complex
interaction terms
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L2-Tree Boosting Algorithm

» Let FO(X) = fY(X) = 0 be the zero function
» For{ =1, ..,L do

Construct a training set S* = {(Xi, Yi)}livzl

where Y is computed as
i = OLL(P)
OF Ip=ft-1(x%)

Let f* = regression tree fit to S*

Ft = Ft=1 4 p,f?
» The step sizes 71, are the weights computed in boosting
» This provides a general recipe for learning a conditional

probability distribution for a Bernoulli or multinomial
random variable

“how we wish F would change at X*”
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Alternating Functional Gradient Descent

» Loss function L(F, G,y)
rFO=G6°=f"=¢"=0
» For{=1,...,L

26

For each site i compute
Zy = OL(F* 1 (x), G*~1, y) JOF =1 (x;)
Fit regression tree f* to {(x;, Z;)}I~,
Let F* = F'=1 4 p,f?
For each visit t to site i, compute
Vie = OL(F (x), G* " (W), yie) /0GT " (wye)

M,T;

Fit regression tree gto {{w;,, Vie)}iZ1'peq

Let G = G'~ 1 +n,9°

Hutchinson, Liu, Dietterich, AAAI 201 | ESA 2012
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Multiple Visit Data

Site

True occupancy
(latent)

Visit |
(rainy day,
|2pm)

Visit 2
(clear day, 6am)

Visit 3
(clear day, 9am)

A
(forest,
elev=400m)

B
(forest,
elev=500m)

C
(forest,
elev=300m)

D
(grassland,
elev=200m)
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Covariates

28

Human population per sq. mile

Number of housing units per sq. mile

Percentage of housing units vacant

Elevation

L X9

Percent of surrounding 22,500 hectares

in each of 15 habitat classes from the
National Land Cover Dataset

Time of day

Observation duration

Distance traveled during observation

Day of year
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Synthetic Species 2

» FF and G nonlinear

% _ _5[, ] @1% _ 5,3
logl_Oi— lei ] +3[xi ] 2x;
d.
log 7 u;l = exp(—O.SWi(t4)) + sin(1.25wi(t1) + 5)
— it
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S-LR
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Open Problems

» Sometimes the OD model finds trivial solutions

Detection probability = 0 at many sites, which allows the Occupancy
model complete freedom at those sites

Occupancy probability constant (0.2)

» Log likelihood for latent variable models suffers from local
Minima
Proper initialization?
Proper regularization?
Posterior regularization!?

» How much data do we need to fit this model?
Can we detect when the model has failed?
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