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A Species Distribution Modeling Problem: 
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 eBird data 

 12 bird species 

 3 synthetic species 

 3124 observations from 

New York State, May-July 

2006-2008 

 23 covariates 

 

 



Two Cultures 
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 Occupancy Models 

 MacKenzie, et al., 2002 

 Boosted Regression Trees 

 Friedman, 2001 

 Elith et al, 2006 

 Elith, Leathwick & Hastie, 

2008 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 
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Occupancy-Detection Model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

Occupancy 
features (e.g.  
elevation, 
vegetation) 

Detection 
features (e.g.  
time of day, 
effort) 

Observed presence/absence 
Yit | Zi ~ Bern(Zidit) 

True (latent) presence/absence 
Zi ~ Bern(oi) 

Probability of occupancy 
(function of Xi) 

Probability of detection 
(function of Wit) 

Sites 

Visits 

MacKenzie, et al, 2006 
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Parameterizing the model 

Yit Zi 

i=1,…,M 

t=1,…,T 

Xi Wit 

oi dit 

𝑍𝑖~𝑃(𝑍𝑖|𝑋𝑖): Species Distribution Model 

 𝑃 𝑍𝑖 = 1 𝑋𝑖 = 𝑜𝑖 = 𝐹(𝑋𝑖)  “occupancy probability” 

𝑦𝑖𝑡~𝑃(𝑦𝑖𝑡|𝑧𝑖 , 𝑤𝑖𝑡): Observation model 

 𝑃 𝑌𝑖𝑡 = 1 𝑍𝑖 , 𝑊𝑖𝑡 = 𝑍𝑖𝑑𝑖𝑡 

 𝑑𝑖𝑡 = 𝐺(𝑊𝑖𝑡)  “detection probability” 

11/15/2012 ESA 2012 5 



Standard Approach: Log Linear (logistic 

regression) models 
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 log
𝐹 𝑋𝑖

1−𝐹 𝑋𝑖
= 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝐽𝑋𝑖𝐽 

 log
𝐺 𝑊𝑖𝑡

1−𝐺 𝑊𝑖𝑡
= 𝛼0 + 𝛼1𝑊𝑖𝑡1 + ⋯ + 𝛼𝐾𝑊𝑖𝑡𝐾 

 Fit via maximum likelihood 

 Can apply hypothesis tests to assess importance of 

covariates 

 𝐻0: 𝛽1 = 0 

 𝐻𝑎: 𝛽1 > 0 



Results on Synthetic Species with Nonlinear 

Interactions 
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 Predictions exhibit high 

variance because model 

cannot fit the nonlinearities 

well 



A Flexible Predictive Model 
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 Predict the observation 𝑦𝑖𝑡 from the combination of 

occupancy covariates 𝑥𝑖 and detection covariates 𝑤𝑖𝑡 

 Boosted Regression trees 

 log
𝑃 𝑌𝑖𝑡=1 𝑋𝑖,𝑊𝑖𝑡

𝑃 𝑌𝑖𝑡=0 𝑋𝑖,𝑊𝑖𝑡
= 𝛽1𝑡𝑟𝑒𝑒1 𝑋𝑖 , 𝑊𝑖𝑡 + ⋯ + 𝛽𝐿𝑡𝑟𝑒𝑒𝐿(𝑋𝑖 , 𝑊𝑖𝑡) 

 Fitted via functional gradient descent  

 Model complexity is tuned to the complexity of the data 

 Number of trees 

 Depth of each tree 

 



Results 
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 Systematically biased because 

it does not capture the latent 

occupancy 

 Underestimates occupancy at 

occupied sites to fit detection 

failures 

 Much lower variance than the 

Occupancy-Detection model, 

because it can handle the 

non-linearities 
P
(Z

) 



Two Cultures: Summary 
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 Advantages 
 Supports latent variables 

 Supports hypothesis tests on 
meaningful parameters 

 Disadvantages 
 Model must be carefully designed 

(interactions? non-linearities?) 

 Data must be transformed to 
match modeling assumptions 
(linearity, Gaussianity) 

 Model has fixed complexity so 
either under-fits or over-fits 

 Advantages 
 Model complexity adapts to data 

complexity 

 Easy to use “off-the-shelf” 

 Disadvantages 
 Cannot support latent variables 

 Cannot provide parametric 
hypothesis tests 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 



The Dream 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 
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A Simple Idea: 

Parameterize 𝐹 and 𝐺 as boosted trees 
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 log
𝐹 𝑋

1−𝐹 𝑋
= 𝑓0(𝑋) + 𝜌1𝑓1(𝑋)  + ⋯ + 𝜌𝐿𝑓𝐿(𝑋) 

 log
𝐺 𝑊

1−𝐺 𝑊
= 𝑔0 𝑊 + 𝜂1𝑔1 𝑊 + ⋯ + 𝜂𝐿𝑔

𝐿(𝑊) 

 Perform functional gradient descent in 𝐹 and 𝐺 
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Results: OD-BRT 

 Occupancy probabilities are 

predicted very well 



Interpreting Non-Parametric Models: 

Partial Dependence Plots 

11/15/2012 ESA 2012 14 

 Simulate 

manipulating 

one variable 

(e.g., Distance 

of Survey) 

 Visualize the 

predicted 

response 

 

Distance of survey 



Partial Dependence Plot 

Synthetic Species 3 

 OD-BRT 

correctly 

captures the bi-

modal detection 

probability 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Time of Day 
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Partial 

Dependence 

Plot 

Blue Jay vs. 

Duration of 

Observation 
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Effort in Hours 



Summary: We can have our cake (latent variables, 

interpretable submodels) and eat it too (have 

flexible, easy-to-use modeling tools) 

Probabilistic 

Graphical 

Models 

Flexible 

Nonparametric 

Models 

Flexible 

Nonparametric 

Probabilistic 

Models 
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• Easier to use 

• More accurate 



Concluding 

Remarks 
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 With limited data, the 

most accurate predictive 

model is much simpler 

than the “true model” 

 Predictive accuracy on a 

single data set is not a 

sufficient criterion for a 

scientific model 

 
complexity 

ac
cu

ra
cy

 

Most Accurate 

Predictive Model 

Predictive Accuracy of 

“True Model” 
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Regression Trees 
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 Interactions are captured by 

the if-then-else structure of 

the tree 

 Nonlinearities are 

approximated by piecewise 

constant functions 

 Tree can be flattened into a 

linear model: 

𝑋1 ≥ 3 

𝑋2 ≥ 0 𝑋2 ≥ 0 

𝑌1 = 
−5 

𝑌1 = 
3 

𝑌1 = 
8 

𝑌1 = 
1 

𝑌1 = −5 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 ≥ 0 + 3 ⋅ 𝐼 𝑋1 ≥ 3, 𝑋2 < 0 + 
           8 ⋅ 𝐼 𝑥1 < 3, 𝑋2 ≥ 0 + 1 ⋅ 𝐼(𝑋1 < 3, 𝑋2 < 0) 



Functional Gradient Descent 

Boosted Regression Trees 
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 Friedman (2000), Mason et al. (NIPS 1999), Breiman (1996) 

 Fit a logistic regression model as a weighted sum of regression 
trees: 

 

log
𝑃 𝑌 = 1

𝑃 𝑌 = 0
= 𝑡𝑟𝑒𝑒0(𝑋) + 𝜂1𝑡𝑟𝑒𝑒1(𝑋) + ⋯ + 𝜂𝐿𝑡𝑟𝑒𝑒𝐿(𝑋) 

 

 

 When “flattened” this gives a log linear model with complex 
interaction terms 



L2-Tree Boosting Algorithm 
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 Let 𝐹0 𝑋 = 𝑓0(𝑋) = 0 be the zero function 

 For ℓ = 1, … , 𝐿 do 

 Construct a training set Sℓ = 𝑋𝑖 , 𝑌 𝑖
𝑖=1

𝑁
  

 where 𝑌  is computed as 

 𝑌 𝑖 =
𝜕𝐿𝐿 𝐹

𝜕𝐹
 
𝐹=𝐹ℓ−1 𝑋𝑖

      “how we wish 𝐹 would change at 𝑋𝑖” 

 Let 𝑓ℓ = regression tree fit to 𝑆ℓ 

 𝐹ℓ ≔ 𝐹ℓ−1 + 𝜂ℓ𝑓
ℓ 

 The step sizes 𝜂ℓ are the weights computed in boosting 

 This provides a general recipe for learning a conditional 
probability distribution for a Bernoulli or multinomial 
random variable 



Alternating Functional Gradient Descent 

 Loss function 𝐿(𝐹, 𝐺, 𝑦) 

 𝐹0 = 𝐺0 = 𝑓0 = 𝑔0 = 0 

 For ℓ = 1, … , 𝐿 

 For each site 𝑖 compute  

𝑧 𝑖 = 𝜕𝐿(𝐹ℓ−1 𝑥𝑖 , 𝐺ℓ−1, 𝑦𝑖)/𝜕𝐹ℓ−1 𝑥𝑖  

 Fit regression tree 𝑓ℓ to 𝑥𝑖 , 𝑧 𝑖 𝑖=1
𝑀  

 Let 𝐹ℓ = 𝐹ℓ−1 + 𝜌ℓ𝑓
ℓ 

 For each visit 𝑡 to site 𝑖, compute 

𝑦 𝑖𝑡 = 𝜕𝐿 𝐹ℓ 𝑥𝑖 , 𝐺ℓ−1 𝑤𝑖𝑡 , 𝑦𝑖𝑡  
/𝜕𝐺ℓ−1 𝑤𝑖𝑡  

 Fit regression tree 𝑔ℓto 𝑤𝑖𝑡, 𝑦 𝑖𝑡 𝑖=1,𝑡=1
𝑀,𝑇𝑖  

 Let 𝐺ℓ = 𝐺ℓ−1 + 𝜂ℓ𝑔
ℓ 
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Multiple Visit Data 

27 

Detection History 

 

Site 

True occupancy 

(latent) 

Visit 1 

(rainy day, 

12pm) 

Visit 2 

(clear day, 6am) 

Visit 3 

(clear day, 9am) 

A  

(forest, 

elev=400m) 

 

1 

 

0 

 

1 

 

1 

B  

(forest, 

elev=500m) 

 

1 

 

0 

 

1 

 

0 

C  

(forest, 

elev=300m) 

 

1 

 

0 

 

0 

 

0 

D  

(grassland, 

elev=200m) 

 

0 

 

0 

 

0 

 

0 
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Covariates 
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Synthetic Species 2 

 𝐹 and 𝐺 nonlinear 

log
𝑜𝑖

1 − 𝑜𝑖
= −2 𝑥𝑖

1
2

+ 3 𝑥𝑖
2

2
− 2𝑥𝑖

3
 

log
𝑑𝑖𝑡

1 − 𝑑𝑖𝑡
= exp(−0.5𝑤𝑖𝑡

4
) + sin(1.25𝑤𝑖𝑡

1
+ 5) 
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Predicting 
Occupancy 

 

Synthetic 

Species 2 
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Open Problems 
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 Sometimes the OD model finds trivial solutions 

 Detection probability = 0 at many sites, which allows the Occupancy 
model complete freedom at those sites 

 Occupancy probability constant (0.2) 

 

 Log likelihood for latent variable models suffers from local 
minima 

 Proper initialization? 

 Proper regularization? 

 Posterior regularization? 

 

 How much data do we need to fit this model? 

 Can we detect when the model has failed? 
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