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Two Questions:

 Can bagging help SVMs?
 If so, how should SVMs be tuned to give 

the best bagged performance?
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The Answers

 Can bagging help SVMs?
 Yes

 If so, how should SVMs be tuned to give 
the best bagged performance?
 Tune to minimize the bias of each SVM
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SVMs

 Soft Margin Classifier
 Maximizes VC dimension subject to soft separation of 

the training data
 Dot product can be generalized using kernels K(xj,xi;)
 Set C and  using an internal validation set

 Excellent control of the bias/variance tradeoff: Is 
there any room for improvement?

minimize: ||w||2 + C i i

subject to:    yi (w · xi + b) + i ¸ 1
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Bias/Variance Error Decomposition 
for Squared Loss

 For regression problems, loss is (ŷ – y)2

 error2 = bias2 + variance + noise
 ES[(ŷ-y)2] = (ES[ŷ] – f(x))2 + ES[(ŷ – ES[ŷ])2] + E[(y – f(x))2]

 Bias: Systematic error at data point x
averaged over all training sets S of size N
 Variance: Variation around the average
 Noise: Errors in the observed labels of x
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Example: 20 points
y = x + 2 sin(1.5x) + N(0,0.2)
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Example: 50 fits
(20 examples each)
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Bias
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Variance
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Noise
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Variance Reduction and Bagging

 Bagging attempts to simulate a large 
number of training sets and compute the 
average prediction ym of those training 
sets
 It then predicts ym

 If the simulation is good enough, this 
eliminates all of the variance
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Bias and Variance for 0/1 Loss 
(Domingos, 2000)

 At each test point x, we have 100 estimates: 
ŷ1, …, ŷ100 {–1,+1}

 Main prediction: ym = majority vote
 Bias(x) = 0 if ym is correct and 1 otherwise
 Variance(x) = probability that ŷ  ym

 Unbiased variance VU(x): variance when Bias = 0
 Biased variance VB(x): variance when Bias = 1

 Error rate(x) = Bias(x) + VU(x) – VB(x)
 Noise is assumed to be zero
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Good Variance and Bad Variance

 Error rate(x) = Bias(x) + VU(x) – VB(x)
 VB(x) is “good” variance, but only when the 

bias is high
 VU(x) is “bad” variance
 Bagging will reduce both types of variance.  

This gives good results if Bias(x) is small.
 Goal: Tune classifiers to have small bias and 

rely on bagging to reduce variance
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Lobag

 Given:
 Training examples {(xi,yi)}N

i=1

 Learning algorithm with tuning parameters 
 Parameter settings to try {1,2,…}

 Do:
 Apply internal bagging to compute out-of-bag 

estimates of the bias of each parameter setting.  Let 
* be the setting that gives minimum bias

 Perform bagging using *
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Experimental Study

 Seven data sets: P2, waveform, grey-
landsat, spam, musk, letter2 (letter 
recognition ‘B’ vs ‘R’), letter2+noise (20% 
added noise)
 Three kernels:  dot product, RBF ( = 

gaussian width), polynomial ( = degree)
 Training set: 100 examples
 Bias and variance estimated on test set 

from 100 replicates
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Example: 
Letter2, RBF kernel,  = 100

minimum 
error minimum 

bias
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Results: Dot Product Kernel
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Results (2): Gaussian Kernel
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Results (3): Polynomial Kernel
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McNemar’s Tests:
Bagging versus Single SVM
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McNemar’s Test:
Lobag versus Single SVM
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McNemar’s Test:
Lobag versus Bagging
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Results: McNemar’s Test
(wins – ties – losses)

Kernel Lobag vs 
Bagging

Lobag vs 
Single

Bagging vs 
Single

Linear 3 – 26 – 1 23 – 7 – 0 21 – 9 – 0 

Polynomial 12 – 23 – 0 17 – 17 – 1 9 – 24 – 2

Gaussian 17 – 17 – 1 18 – 15 – 2 9 – 22 – 4 

Total 32 – 66 – 2 58 – 39 – 3 39 – 55 – 6 



O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

 –
In

te
lli

ge
nt

 S
ys

te
m

s G
ro

up

8/22/2003 ICML 2003 24

Discussion

 For small training sets
 Bagging can improve SVM error rates, especially 

for linear kernels
 Lobag is at least as good as bagging and often 

better
 Consistent with previous experience

 Bagging works better with unpruned trees
 Bagging works better with neural networks that are 

trained longer or with less weight decay
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Conclusions

 Lobag is recommended for SVM problems with 
high variance (small training sets, high noise, 
many features)

 Small added cost: 
 SVMs require internal validation to set C and 
 Lobag requires internal bagging to estimate bias for 

each setting of C and 
 Future research:

 Smart search for low-bias settings of C and 
 Experiments with larger training sets


