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Two Questions:

+ Can bagging help SVMs?

¢+ |f so, how should SVMs be tuned to give
the best bagged performance?
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The Answers

+ Can bagging help SVMs?
= Yes

¢ |f so, how should SVMs be tuned to give
the best bagged performance?

= Tune to minimize the bias of each SVM
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SVMs

minimize: ||w||?+C X &
subjectto: y, (w-x.+b)+¢& 1

+ Soft Margin Classifier

= Maximizes VC dimension subject to soft separation of
the training data

= Dot product can be generalized using kernels K(x;,x;;c)
= Set C and o using an internal validation set

+ Excellent control of the bias/variance tradeoff: Is
there any room for improvement?
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Bias/Variance Error Decomposition
for Squared Loss

+ For regression problems, loss is (Y — y)?

= error? = bias? + variance + noise
= Esl(y-y)21 = (Esly] - f(x))?+ Esl(¥ — Es[¥1)? + El(y — f(x))?

+ Bias: Systematic error at data point x
averaged over all training sets S of size N

+ VVariance: Variation around the average
* Noise: Errors in the observed labels of x
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Example: 20 points
y =X+ 2 sin(1.5x) + N(0,0.2)
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: 50 fits
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Variance Reduction and Bagging

¢ Bagging attempts to simulate a large
number of training sets and compute the
average prediction y . of those training
sets

¢ |t then predicts y,

¢+ |f the simulation is good enough, this
eliminates all of the variance
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Bias and Variance for 0/1 Loss
(Domingos, 2000)

+ At each test point x, we have 100 estimates:
Yis s Ya00 €0-1,+1}

+ Main prediction: y_ = majority vote

¢ Bias(x) = 0 ify_ is correct and 1 otherwise

+ Variance(x) = probability thaty =y,
» Unbiased variance V(x): variance when Bias =0
= Biased variance Vg(x): variance when Bias = 1

¢ Error rate(x) = Bias(x) + V,(x) — Vg(X)
+ Noise Is assumed to be zero
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Good Variance and Bad Variance

¢ Error rate(x) = Bias(x) + V,(x) — Vg(X)

* Vg(x) is “good” variance, but only when the
bias is high

* V(x) is “bad” variance

+ Bagging will reduce both types of variance.
This gives good results if Bias(x) is small.

¢ Goal: Tune classifiers to have small bias and
rely on baqgging to reduce variance
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Lobag

+ Given:
» Training examples {(x.,y;)}N._,
= Learning algorithm with tuning parameters o
s Parameter settings to try {a4,0,,...}

* Do:

= Apply internal bagging to compute out-of-bag
estimates of the bias of each parameter setting. Let
o” be the setting that gives minimum bias

= Perform bagging using o*
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Experimental Study

+ Seven data sets: P2, waveform, grey-
landsat, spam, musk, letter2 (letter
recognition ‘B’ vs ‘R’), letter2+noise (20%
added noise)

* Three kernels: dot product, RBF (c =
gaussian width), polynomial (c = degree)

¢+ Training set: 100 examples

¢ Bias and variance estimated on test set
from 100 replicates
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Example:
Letter2, RBF kernel, c = 100

minimum
error

minimum
bias

| |
avg. error
bias
unbiased var.
biased var
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Results: Dot Product Kernel

single

bagging

Change in Error Rate

P2 waveform landsat letter2letter2+noise spam
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Results (2): Gaussian Kernel

bagging-

single

lobag

Change in Error Rate

P2 waveform landsat letter2letter2+noise spam
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Results (3): Polynomial Kernel

single +
bagging

Change in Error Rate

P2 waveform landsat letter2letter2+noise spam
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McNemar’s Tests:
Bagging versus Single SVM

= Wins
O Ties
B Losses

= BN

Linear Polynomial RBF
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McNemar's Test:
Lobag versus Single SVM

= Wins
O Ties
B Losses

mees 20 BN

Linear Polynomial RBF
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McNemar's Test:
Lobag versus Bagging

= Wins
O Ties
B Losses

— ‘ ‘ I

Linear Polynomial RBF
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Results: McNemar's Test
(wins — ties — losses)

Kernel

Lobag vs
Bagging

Lobag vs
Single

Bagging vs
Single

Linear

3—-206-1

23—-7-0

21-9-0

Polynomial

12 -23-0

17 -17 -1

9-24-2

Gaussian

17 -17 -1

18 -15-2

9-22-4

Total

32 -66—-2

58 — 39 -3

39-55-6
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Discussion

¢ For small training sets

= Bagging can improve SVM error rates, especially
for linear kernels

= Lobag is at least as good as bagging and often
better

+ Consistent with previous experience
= Bagging works better with unpruned trees

= Bagging works better with neural networks that are
trained longer or with less weight decay

8/22/2003 ICML 2003



Conclusions

* | obag is recommended for SVM problems with
high variance (small training sets, high noise,
many features)

+ Small added cost:

= SVMs require internal validation to set C and o

= Lobag requires internal bagging to estimate bias for
each setting of C and o

¢ Future research:
= Smart search for low-bias settings of C and
= Experiments with larger training sets
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