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Bird Distribution and Migration |

= Management:
= Many bird populations are declining
= Predicting aircraft-bird interactions
= Siting wind farms
= Night-time lighting of buildings (esp. skyscrapers)
= How will climate change affect bird migration and survival?

= Science:

= What is the migration decision making policy for each species
= When to start migrating?
= How far to fly each night?
= When to stop over and for how long?

= When to resume flying?
= What route to take?
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Why bird migration is poorly
understood |.

= |t is difficult to observe
= Takes place at continental scale (and beyond)

= Impossible for the small number of professional ornithologists to collect
enough observations

= Very few birds have been individually tracked
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What Data Are Available?

=Birdwatcher count data: eBird.org
*Doppler weather radar
=Night flight calls
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eBird Data EE ki =

= Bird watchers record their observations in a
database through eBird.org.

= “Citizen Science” Total eBird Checklists/Area
. . April (All Years)
= Dataset available for analysis 0000408

= Features

= LOTS of data!
= ~3 million observations reported last May

= All bird species (~3,000)
= Year-round
= Continent-scale

= Challenges
= Variable quality observations
= No systematic sampling design
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Doppler Weather Radar |.

= Weather radar detects migrating birds
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Night Flight Calls

= Many species of migrating birds emit flight
calls that can be identified to species or
species group

= New project at Cornell to roll out a large
network of recording stations

= Automated detection and classification

= DTW kernel
= Damoulas, et al, 2010
= Results on 5 species
= Clean recordings
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Prediction Tasks

=Species Distribution Models

= Given site described by feature vector x

= Predict whether a target species s will be present y =1
= At a particular point in time
= At any time throughout the year

=Bird Migration Models

= Given observations from ebird, radar, flight calls
= Reconstruct migration behavior

= Given observations + weather forecast
= Predict migration behavior for next 24 hours, next 5 days
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Species Distribution Model
Challenges

1. Partial Detection
= Observer may not detect the species even though it is present
2. QObserver Expertise
= Observer may not recognize the species even though it is detected
3. Sampling Bias
= Birders choose where and when to observe
4. Population Size Effects

= Bird population may be too small to occupy all suitable habitat
= Unoccupied and occupied sites may be identical

5. Spatial Dynamics

= In order to occupy habitat, the birds must discover it, so it needs to be
accessible

6. Spatial and Temporal Dynamics of other species
= Food: insect and plant species
= Competitors/Predators
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1. Imperfect Detection
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Multiple Visit Data

True Visit 1 Visit 2 Visit 3
occupancy (rainy day, (clear day, (clear day,
(latent) 12pm) 6am) 9am)

(forest, 0
elev=400m)

B
(forest,
elev=500m)

C
(forest,
elev=300m)

D
(grassland,
elev=200m)
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Occupancy-Detection Model

MacKenzie, et al, 2006

t=1,...,T
i=1,...,M

z;~P(z;|x;): Species Distribution Model

P(z; = 1|x;) = 0; = F(x;) “occupancy probability”

vie~P(vit|z;, wir): Observation model
P(yie = 1lz;, wy) = z;dy;
d;; = G(w;) “detection probability”
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The Power of Probabilistic
Graphical Models |.

= Probabilistic graphical models have many advantages
= Excellent language for representing models
= Learning and reasoning via probabilistic inference
= Support hidden (latent) variables

= However, they have disadvantages

= Designer must choose the parametric form of each probability
distribution

= Must decide on the number and form of interactions
= Data must be scaled and transformed to match model assumptions

= Somewhat difficult to adapt the complexity of the model to the amount
and complexity of the data

NICTA/ANU May 2012
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Important Contribution of Machine
Learning: Flexible Models

= Classification and Regression Trees
= Require no model design
= Require no data preprocessing or transformation
= Automatically discover interactions as needed
= Achieve high accuracy via ensembles

= Support Vector Machines
= Still require data preprocessing and transformation
= Powerful methods for tuning model complexity automatically
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Goal: Combine Probabilistic
Graphical Models with Flexible [
Models

= Major open problem in machine learning

= Current efforts:
= Kernel (SVM) methods for computing with probability distributions
= Bayesian Non-Parametric Models: Dirichlet process mixture models

= Our approach: Boosted regression trees
= Represent F and G using weighted sums of regression trees

= Learn them via boosting

= This can be done using functional gradient descent (Mason & Bartlett,
1999; Friedman, 2000; Dietterich, et al, 2008; Hutchinson & Dietterich,

2011)
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L2-Tree Boosting Algorithm

(Friedman 2000)

= Let FO(X) = f°(X) = 0 be the zero function
“For¥=1,..,Ldo

= Construct a training set $¢ = {(X}, ¥ )}l 1

= where Y is computed as
__ OLL(F)
oF Ip=r1(x%)

= Let f¢ = regression tree fit to S*
- Ff — F{’ 1 + 1, ff
= The step sizes n, are the weights computed in boosting

= This provides a general recipe for learning a conditional probability
distribution for a Bernoulli or multinomial random variable

= ¥ how we wish F would change at X*
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Alternating Functional Gradient

Descent |.

= Loss function L(F, G, y)
s FO = 0 — ozgo=
sForf=1,..,L

= For each site i compute

Zy = OL(F* 1 (x), G L, y)) JOF 1 (xy)

= Fit regression tree f* to {(x;, Z;)}}1,

“Let F¥ = F~1 + p,f?

= For each visit t to site i, compute

Vie = aL(F{)(xl-), G{)_l(Wit);Yit) /G (wyy)

= Fit regression tree g*to {(wit,y’it)}fi’fft:l

= Let G =Gt +1,g°
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Experiment

= Algorithms:

= Supervised methods:

= S-LR: logistic regression from (x;, w;;) = y;;

= S-BRT: boosted regression trees (x;, w;;) = y;;
= Occupancy-Detection methods:

= OD-LR: F and G logistic regressions

= OD-BRT: F and G boosted regression trees

= Data:
= 12 bird species
= 3 synthetic species
= 3124 observations from New York State, May-July 2006-2008
= All predictors rescaled to zero mean, unit variance
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Synthetic Species

= Synthetic Species 2: F and G nonlinear
2 2
0; X exp (—2 [xi(l)] + 3 [xi(z)] — in(3))

d; < exp (exp (—O.Swi(t4)) + sin (1.25wi(t1) + 5))



S-LR
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Partial Dependence Plot
Synthetic Species 1

=OD-BRT has
the least bias
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Partial Dependence Plot
Synthetic Species 3

=OD-BRT has
the least bias
and correctly
captures the
bi-modal
detection
probability
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2. Variable Expertise

* Problem: expert and novice observers
contributing observations to citizen science
data generate different mistakes/biases

= Solution: extend occupancy models so that
observer expertise affects the detection
model

11/15/2012
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Occupancy-Detection-Expertise
(ODE) model |.

Expertise probability = Expert/novice observer
N

Observer

s

covariates

+— QObservers
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Expert vs Novice Differences

Average Difference in True Detection Probability

Common birds Hard-to-detect
birds
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Citizen scientists tend Cardinals
to stay close to home '

How can we make
good predictions
across the whole US?

Distribution of check lists mentioning
explicit presence or absence of Cardinal
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Covariate Shift Reweighting

=Distribution of training data: P,, ;. (x)
= Target test distribution P,, . (x) is uniform

= Reweight training examples according to
Prost(x)
r(x) =

Pirain (x)

*Fit classifier to weighted training data
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Density Estimation |

=Assume x € R? d-dimensional Euclidean space

=L et v be a volume of R4
Nv
N|v|

"Ptrain (x|v) =

=Volume is a tricky concept
= Effective dimension of the data may be much less than d
= Sample complexity of scales with the dimension
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Direct Density Ratio Estimation
(Sugiyama et al., 2011, 2012) I.

= Direct density ratio estimation
Pregt (x) . Niest(V)  Nerainlvl _ Niest(¥)  Nirgin
r(x) = — . — .
Pirain(x)  Neese|V| Nipain(v) Ntest  Nirain(v)

= The volumes cancel
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Random Projection Trees for
Direct Density Estimation

= RP-Trees (Dasgupta & Freund, STOC 2008)

= Project training data onto random vector

= Two kinds of splits:
= Split by perpendicular bisector randomized near the median of the data
= Split by an interval centered on the median (tails to the left, center to the
right)
= Guarantees that the tree “follows” the data

= Scales with the true dimensionality of the data, rather than the
apparent dimensionality d

11/15/2012 NICTA/ANU May 2012
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Algorithm ldea

= Given
* N¢rqin POINts sampled from Py, 4in
" N¢ost POiINts sampled from P,

= Build an RP tree using the N¢,.,;,, data points l
= Drop the N;,,; data points through the tree

= Prune the tree so that each leaf £ contains at least
= N,,;n data points, and 5 %200 = 0-27

.7 Ntest(f)Ntrain < 1
min — Ntrqin(®Ntest ~ Tmin

= Combine in large ensemble
= Conjectures
= Consistent: #(x) = r(x) as sample sizes —» o

= Generalization bounds on ||#(x) — r(x)||? that depend only on true dimension
of data

NICTA/ANU May 2012
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Results: None Yet
|

= Results of previous study (Damoulas & Dilkina) that
employed kernel density estimates of P;,.;x,

Computed weights Results

i
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NICTA/ANU May 2012 34

11/15/2012



Current State of the Art: STEM
(Fink et al., 2010)

. # regions = 109 & minimum sample size = 25
= |dea:

= Slice space and time into
hyperrectangles: lat x long x time

= Train a decision tree on the data
inside each hyperrectangle

= To predict at a new point x, vote the
predictions of all trees whose
hyperrectangle contains x

H———

= Hyperrectangles:
= Space: random rectangles of fixed
size
= Time: 40-day overlapping intervals
spaced evenly throughout the year
= Discard hyperrectangles that

contain fewer than 25 training
locations




Indigo Bunting: Animation from
static SDM predictions

January 3.200A

Alpr Jtlm Stlep Dtlec
slide courtesy of Daniel Fink




Open Problems

4. Population Size Effects

= Bird population may be too small to occupy all suitable habitat
= Unoccupied and occupied sites may be identical

5. Spatial Dynamics. Occupied habitat can depend on
= Discovery — it can be found by existing bird population

= Accessibility — it can be reached by existing bird population (migration
distance)

6. Spatial and Temporal Dynamics of other species
= Food: insect and plant species
= Competitors/Predators

11/15/2012 NICTA/ANU May 2012
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Modeling Bird Migration |.

= Migration most naturally described at level of individual
behavior, but we can only observe population-level statistics
= \We need a modeling technique to link the two

= Our Approach: Collective Graphical Models

NICTA/ANU May 2012

11/15/2012 38



Modeling Approach

= Place a grid of cells over North America
= State of a bird at time t = cell it occupies attime t

Cell

= Aggregate data: does not track individual birds

11/15/2012 NICTA/ANU May 2012
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Key Modeling Idea |

= Build a model for aggregate data starting with a model of

individual behavior
Replicate Aggregate

=) = (G =
I

Huge model

= Goals
= Infer unobserved quantities about population
= Learn parameters of individual model

NICTA/ANU May 2012
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Step 1: Individual Model |

@ Individual model:
Markov chain



Step 2: iid Population Model |

@ Population model:
iy iid copies of Markov chain




Step 3: Derive aggregate state

variables |.

Population model:
iid copies of Markov chain

RO
GV p—

Transition counts

NICTA/ANU May 2012
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Step 4: Marginalize out the
Individuals

Theorem (Lauritzen, 1996): Count model will have the
same dependency structure as the population model

G @ @ @ Location counts
and transitions

Note that point estimates of these counts give the sufficient
statistics for the individual model

11/15/2012 NICTA/ANU May 2012
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Step 5: Attach Observations |

Location counts
and transitions

Noisy counts

Posterior inference over nq{, nq,, ny, n,3, ... gives sufficient statistics
for the individual model

NICTA/ANU May 2012
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Learning in CGMs

= Migration routes - paths through trellis graph

p,}lB «
2, > locations
1 ] J
() 8) 8)
I p) 3
Time —

- Parameters: 6 = {n;, p};}
= If we could observe the paths, we could infer 8

11/15/2012 NICTA/ANU May 2012
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Network Flow |

= Key observation: collection of M paths = M-unit flow
= To learn @ it is enough to know the flows on each edge

[Sheldon, Kozen, ElImohamed, NIPS 2007]

NICTA/ANU May 2012
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Learning in CGMs |

= Given: Noisy aggregate observations of the # of birds in each cell at each
time step

= Find: The parameters 68 that maximize P(observations|6)

0 = {nirpitj}

NICTA/ANU May 2012
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Learning the Model is Hard |

P(observations|8) = z P(f|60)P(observations|f, 8)
flows f

1

= Solution: Gibbs sampling of the flows

NICTA/ANU May 2012

11/15/2012 49



EM/Gibbs

= Expectation Maximization (EM)
= E-step: Compute E[flow|observations, 6]
= M-step: Update estimates of the model parameters

= Gibbs sampler for the E-step

= Sample from P (flow|observations, 6)

11/15/2012 NICTA/ANU May 2012
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Gibbs Sampler |.

= |nitialize flow arbitrarily, then iteratively update by making
random “moves”

= Traditionally: update a single variable according to
nj 4~P(nj a|observations,nt 4 4)

This violates conservation of flow

NICTA/ANU May 2012
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Make Moves Based on Cycles

= First, select a 4-cycle in trellis uniformly at random

/ \o
- e
@472 o o
N
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Update

= Send ¢ units of flow “around the cycle”

3 -2 -1 0 1
)

Gibbs update rule: select each value of § with probability
proportional to P(new flow | observations, 6)

11/15/2012 NICTA/ANU May 2012
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Flow Update Step

= Make the update

L
Un @
0
N =

B
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Repeat

= Select a new random 4-cycle

@ A.@

D/E l
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Repeat

= Choose O

Smy en g
m;} B

P(5)

0|
oS 858
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Repeat

= Make the update

EEEnN

11/15/2012 NICTA/ANU May 2012
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Requirement |

= Must be able to move between any two valid flows using this set of moves

... a Markov Basis [Diaconis and Sturmfels, 1998]




Markov Basis |.

Theorem: cycles of length four form a Markov basis

2/ \\3

Cb\ N O O X

O X —0 O

O 7) X O
Rt O

(}\\ /O

O O
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Fast Sampling |

= How to sample § quickly when there are many possible values?

Large Population P(9)

-1M 2M
= Theorem: P(6) is log-concave

- Can sample in constant expected running time by rejection sampling [Devroye
1986]

- Running time of Gibbs move is independent of population size

NICTA/ANU May 2012
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Result  [sheldon & Dietterich, NIPS 201 1]

= Running time on EM task

Best exact method
(cubic in M)

Our method
(to 2% relative error)

(%2
©
-
)
O
)
(7))

Population size

= Running time independent of population size
= Previous best: exponential
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Can Generalize to Many Other
Settings |.

= Common situation: only have aggregate data, but want to model
individual behavior

Csex D
@@

:
@ - &g

@& -

Qe
00 O

-

US Census
(privacy)

Multiple target tracking
Fish migration
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CGM to fuse eBird, radar, and

acoustic data

= Species s

= Observers o

= Sites i

= Acoustic stations k
= Radar sites v

= Observation model for
eBird (detection, expertise,
etc.)

= Observation model for
night flight calls (distance
to ground, ambient noise)

= Observation model for
radar (signal cone,
weather, radar “plankton”)

11/15/2012

birds

eBird acoustic radar
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Adding Covariates

radar

acoustic

64
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Summary |

= Fitting Species Distribution Models to Citizen
Science Data
= Imperfect Detection
= Observer Expertise
= Sampling Bias

= Fitting Dynamical Models to Multiple Data Sources
= eBird + radar + night flight calls
= Collective Graphical Models: General Methodology

= Fast Gibbs sampler for CGMs (independent of population
size)

NICTA/ANU May 2012
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