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Sustainable Management of the
Earth’'s Ecosystems |.

= The Earth’s Ecosystems are complex

= We have failed to manage them in a sustainable way
= Why?

1. Our knowledge of function and structure is inadequate
= Doak et al (2008): Ecological Surprise

2. Optimal management requires spatial planning over horizons of 100+
years
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Computer Science can help! |

1. Lack of knowledge of function and

2. Spatial planning "




Computational Sustainability

= The study of computational
methods that can contribute
to the sustainable
management of the earth’s
ecosystems
= biological

= social
= economic

= Data 2 Models = Policies

10/22/2012 SBRN 2012
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Example Research Efforts Sensor

Placement

= Objectives

detection probability

improving model accuracy
improving causal understanding
improving policy effectiveness

= Key Tool: Submodular Functions

= Formulate the problem in terms of a
submodular objective

= Greedy algorithm then works well and
has provable performance

Leskovec et al, KDD2007
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Data Interpretation

= Insect identification for population counting
= Raw data: image
= Interpreted data: Count by species

10/22/2012 image: Qing Yao SBRN 2012
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Data Integration Sensor

Placement
= Integrating heterogeneous data sources to —
predict when migrating birds will arrive: s et h
= Landsat (30m; monthly) Interpretation
= |and cover type \. Y,
= MODIS (500m:; daily/weekly) R
= land cover type Data

= “greening” index Integration

\_ J

= Census (every 10 years)
= human population density
= housing density and occupation
= |[nterpolated weather data (15 mins)

= rain, snow, solar radiation, wind speed & direction,
humidity

= Integrated weather data (daily)
= warming degree days

= Digital elevation model (rarely changes)
= elevation, slope, aspect Landsat NDVI:

10/22/2012 SBRN 2012 .


http://ivm.cr.usgs.gov/viewer/
http://ivm.cr.usgs.gov/viewer/

Model Fitting

= Species Distribution Models
= create a map of the distribution of a species
= Meta-Population Models

= model a set of patches with local extinction and
colonization

= Migration and Dispersal Models
= model the trajectory and timing of movement

10/22/2012 SBRN 2012
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Example Fitted Model: STEM
Model of Bird Species Distribution

slide courtesy of Daniel Fink



Policy Optimization
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Policy Optimization

Observations Fitted Model

Kilomeatars

10/22/2012 Leathwick¥@tzde 2008
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Policy Execution

= Repeat
= Observe Current State
= Choose and Execute Action

= Need to continually improve our models
and update our policies

= Challenge: We must start taking actions
while our models are still very poor.
= How can we make our models robust to both
the “known unknowns” (our known

uncertainty) and the “unknown unknowns”
(things we will discover in the future)

10/22/2012 SBRN 2012

Sensor
Placement
e v N
Data

Interpretation

\ J

4 ¥ A

Data
Integration

4

Model Fitting

y,
v
4 N
Policy
Optimization
4 ¥ N
Policy
Execution

\ /

13



Outline:
Three Projects at Oregon State | sensor |.

Placement
\ 2
= Data Interpretation Data
= Automated Data Cleaning Interpretation
= Project TAHMO : 2
Data
= Model Fitting Integration
= Explicit Observation Models —Y
= Flexible Latent Variable Models Model Fitting
" " " " \ )
= Policy Optimization —
= Managing Fire in Eastern Oregon Policy
= Algorithms for Large Spatial MDPs \Optlmlzatlon)
L 2
Policy
Execution

10/22/2012 SBRN 2012 14



Project TAHMO
20,000 hydro-met stations for Africa

= Africa is very poorly sensed

= Only a few dozen weather stations
reliably report data to WMO (blue points
in map)

* Project TAHMO (tahmo.org)
= TU-DELFT & Oregon State University

= Design a complete
hydrology/meteorology sensor station at
a cost of EUR 200

= Deploy 20,000 such stations across
Africa

SBRN 2012




Project TAHMO
20,000 hydro-met stations for Africa South
America ??

= South America is also very poorly
sensed

10/22/2012 SRR 16



Challenges |

=Sensor Placement

= Multiple criteria:
= accuracy of reconstructing maps of

= temperature, precipitation, solar radiation, wind speed and direction,
relative humidity

= accuracy of estimates of composite variables
= Evapo-transpiration

= robustness to sensor failure

= accessibility and safety

= Continent-scale Data Quality Control

= Sensors fail for infinitely many reasons
= Detect failures and impute missing data

10/22/2012 SRR 17



A Problem Closer to Oregon...
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Functions of a Data Cleaning
Method

= An ideal method should produce two things given raw data:
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Functions of a Data Cleaning
Method

= An ideal method should produce two things given raw data:
= A label that
marks anomalies
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Functions of a Data Quality Control
Method

= An ideal method should produce two things given raw data:
= A label that
marks anomalies
= An imputation
of the true value
(with some
confidence measure)
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Method: Probabilistic Modeling Using a
Bayesian Network with Hidden Variables I.

State of the sensor

1 = working; 0 = broken St

True temperature

Observed temperature

P(O; = 0|S; = 1,T; = x) = Normal(o |x, €?)
P(0; = 0|S; = 0,T; = x) = Normal(o |0,1000)

10/22/2012 EE 2 %)



Anomaly Detection Via
Probabilistic Inference |.

State of the sensor
1 = working; 0 = broken

St

True temperature

Observed temperature

Query: What is the most likely value of S,?
argmax P(S; = s|0;)
S

10/22/2012 SBRN 2012 o4



Imputation Via
Probabilistic Inference

St




Improving the Model:
Markov Model of Temperature |.

" St St

N\

P(S:|S:-1): Sensors tend
to stay in the same state

P(T;|T¢-1): Temperature
changes slowly (15 minute
time step)

Query: argmax P(S;|0¢, O¢_1, ...)
St

10/22/2012 EE 2 26



Improving the Model:
Multiple Sensors

o

St 4 )
Dependency between T! and T2 —)
P(th |Tt2—1’ Ttl) /\
) N

J 2
g St—l
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Probabilistic Inference is Infeasible
in the Single Sensor Model

= Single sensor Markov model query: argmax P(S¢, S¢—1, ... |0¢, O¢—1, --.)
St,St_1,m

= Requires time exponential in the length of the time series

= Solution:
= Commit to each S; in time order

= §; = argmax P(S; = s|0,)
S

= S, == argmax P(S, = s|S;, 0,)
S

= Also bound the variance of T;

= Each of these inferences is easy

10/22/2012 EE 2 28



Probabillistic Inference is Infeasible
in the Multiple Sensor Model |.

= Even if we commit to values for S}, S7 ..., S for K sensors,
we must compute an intermediate data structure of size 2%

= Possible Solution: SearchMAP. At each time t,
= Start with (S%,...,5%) =S8, = (1,1, ..., 1) // all sensors working

= Perform a greedy search to maximize P(S;|0%, ..., 0f) by “breaking”
one sensor at a time

= Polynomial in K

10/22/2012 SRR 29



Comparison of Approximate
Inference Methods

o
—

= SearchMAP

= Faults injected into clean 4% V97002282905, f = ‘
data §° €5 T
= randomized spike, bias R /. |
(offset), and flatline faults ( cer ffffrfgs'\gfnile‘
generated from a first-order , -l PPMAPow ‘
Markov model * st
= Algorithms W
\ —&— searchMAP
= Loopy BP MaxProduct (best o T thptresampe
of EP and BP-related -
methods) rta
= Rao-Blackwellized particle T
filters ﬁ
\
|
o1

o

Sensor Count
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Approximate Inference with Many Sensors
vS. Exact Inference with Fewer Sensors?

0.90

= For a given target sensor,
order the remaining

)
. (o)
sensors by their mutual g }
. . 0]
information to the target o ‘
. o
= Exact (within time-step) . ‘
. . . ( —— searchMAP
inference is feasible for < 9 T
Sensors _ - 19 3 JothAP

15 2

= Conclusions: s v et e B e e e s e B
c —— hMAP
= searchMAP is better, even A AP

for < 9 sensors! -9~ jointMAP

= |ts bias toward all sensors
working seems to be
slightly advantageous

= only slight benefit of >9
Sensors

Degrees C.
20 30 40

10

—_—
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Next Steps

= Improved models for multiple types of sensors
= temperature
= precipitation
= wind speed
= wind direction
= relative humidity
= soil radiation
= soil moisture
= These are not jointly Gaussian!

= Methods that work at multiple spatial scales
= continent scale

10/22/2012 SRR 32



Outline:
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Three Projects at Oregon State | sensor
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= Data Interpretation Data
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Species Distribution Modeling

Observations Fitted Model

Kilomeatars

10/22/2012 Leathwick¥@tzde 2008



Project eBird
www.ebird.org

= VVolunteer Bird Watchers
= Stationary Count
= Travelling Count

= Time, place, duration, distance travelled

= Species seen
= Number of birds for each species or ‘X’ which means > 1

= Checkbox: This is everything that | saw

= 8,000-12,000 checklists per day uploaded
= \We need more observers in South Americal!

10/22/2012 SRR 35



A Species Distribution Modeling
Problem:

= eBird data

=12 bird species
= 3 synthetic species

= 3124 observations from
New York State, May-
July 2006-2008

= 23 features

10/22/2012 SRR 36



Imperfect Detection

10/22/2012 SRR 37



Multiple Visits to the Same Sites

True Visit 1 Visit 2 Visit 3
occupancy (rainy day, (clear day, (clear day,
(latent) 12pm) 6am) 9am)

(forest, 0
elev=400m)

B
(forest,
elev=500m)

C
(forest,
elev=300m)

D
(grassland,
elev=200m)

10/22/2012 SBRN 2012




Occupancy-Detection Model

MacKenzie, et al, 2006

t=1,...,T

i=1,...,M

z;~P(z;|x;): Species Distribution Model

P(z; = 1|x;) = 0; = F(x;) “occupancy probability”

vie~P(vit|z;, wir): Observation model
P(yie = 1lz;, wy) = z;dy;
d;; = G(w;) “detection probability”

10/22/2012

SBRN 2012
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Standard Approach: Log Linear
(logistic regression) models

F(X;)
"log P Bo + p1Xi1 + -+ B Xy

1
1+exp( —BTX)

= Same as F(X;) =

= Same as G(Wit) = 1+exp(—alTWy)

= Fit via maximum likelihood

= Can apply hypothesis tests to assess importance of
covariates
“"Hy: ;=0
“H,;:6,>0

10/22/2012 SBRN 2012 40



Results on Synthetic Species with
Nonlinear Interactions

= Predictions exhibit high
variance because model
cannot fit the nonlinearities
well

0.4 0.6 0.8 1.0

True Occupancy Probabilities

10/22/2012 SRR 41



A Flexible Predictive Model |

= Predict the observation y;; from the combination of
occupancy covariates x; and detection covariates w;;

= Boosted Regression trees

P(Y;it=11X;,Wit)
P(Y;t=0|X;,Wit)

= Fitted via functional gradient descent (Friedman, 2001, 2010)
= Model complexity is tuned to the complexity of the data

= Number of trees
= Depth of each tree

= log = Pitrees (X;, W) + -+ + Brtree, (X;, W)

10/22/2012 SBRN 2012 45



Results

= Systematically biased
because it does not capture
the latent occupancy

= Underestimates occupancy at
occupied sites to fit detection
failures
= Much lower variance than the
Occupancy-Detection model,
because it can handle the
non-linearities True Occupancy Probabilities

10/22/2012 SBRN 2012 43



Two Approaches: Summary

= Advantages
= Supports latent variables

= Supports hypothesis tests on
meaningful parameters

= Disadvantages

= Model must be carefully designed
(interactions? non-linearities?)

= Data must be transformed to
match modeling assumptions
(linearity, Gaussianity)

= Model has fixed complexity so
either under-fits or over-fits

10/22/2012 SBRN 2012

= Advantages

* Model complexity adapts to data
complexity

= Easy to use “off-the-shelf”
= Disadvantages
= Cannot support latent variables

= Cannot provide parametric
hypothesis tests

44
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A Simple ldea:

Parameterize F and G as boosted trees I.
10§ s = FOC0) + puf1(X) + -+ puf )
G (W)

"log o = g’ W) +n,9* (W) + -+ n,g" (W)

=Perform functional gradient descent in F and G

10/22/2012 SBRN 2012 46



Results: OD-BRT -
= Occupancy probabilities are 2 *
predicted very well o

00 02 04 06 08 10

True Occupancy Probabilities

OD-BRT

10/22/2012 True Occupancy Frobabilities True Occupancy Probabilities
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Outline:
Three Projects at Oregon State

= Data Interpretation
» Project TAHMO
= Automated Data Cleaning

= Model Fitting
= Explicit Observation Models
» Flexible Latent Variable Models

= Policy Optimization
= Managing Fire in Eastern Oregon
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Managing Wildfire in Eastern

Oregon

= Natural state (hypothesized):

= Large Ponderosa Pine trees with
open understory

= Frequent “ground fires” that remove
understory plants (grasses, shrubs)
but do not damage trees

= Fires have been suppressed since
1920s

= Large stands of Lodgepole Pine

= Heavy accumulation of fuels in
understory

= Large catastrophic fires that kill all
trees and damage soils

= Huge firefighting costs and lives lost

10/22/2012 SBRN 2012



Study Area: Deschutes National
Forest

= Goal: Return the landscape to its
“natural” fire regime

= Management Questions:
= LET-BURN: When lightning ignites
a fire, should we let it burn?

= FUEL TREATMENT: Which units
should have mechanical fuel
removal?

= ~4000 management units

10/22/2012 SRR 51



Formulating LETBURN as a Markov

Decision Process (S,A,R, T, y) I.
ignition action fire outcome new ignition
‘ >- fire simulator >‘ lightning >‘
\L simulator

®

= State space: S
= 4000 management units; each unit is in one of 25 local states
= Global state space is 254990
= Action space: A
= At fire ignition time t, a; € {LETBURN,SUPPRESS}
= Reward function: R(s, ¢, a)
= Cost of lost timber value
= Cost of lost species habitat
= If SUPPRESS, then cost of fire suppression

10/22/2012 EE 2 59



Formulating LETBURN as a
Markov Decision Process |.

ignition action fire outcome new ignition

> > S— >
‘ - fire simulator ‘ lightning ‘
\L simulator

= Transition function: T (s;41|S¢, a¢)

* T(ses1lsear) = P(€¢ Ise ar) - P(Sp41lSe)

= Includes forest growth at the end of each fire season
= Discount factor y
= Optimization goal

= Maximize sum of discounted rewards:

* Erl[ry +yry +y2rs + -]

10/22/2012 EE 2 53



Solving the MDP
No existing methods... |.

ignition action fire outcome new ignition

> > _ _ >
‘ - fire simulator ’ lightning ‘

simulator

®

= Promising Approaches:

= Approximate Policy lteration (Fern & Givan, 2005)
= represent the policy as a classifier
= train using Monte Carlo trials
= Policy Gradient (Williams, 1992)
= represent the policy as a function
= train via Monte Carlo gradient estimates

10/22/2012 SBRN 2012 a4



A Simpler Problem |

*|s there any benefit to allowing fires to burn for just
one year?
*Year 1: LETBURN
*Years 2-100: SUPPRESS

= Evaluate via Monte Carlo trials

10/22/2012 SRR 55



Expected Benefit of LETBURN

(Suppress all fires after year 1)

35

30

Frequency
3 o

—_
()]

RN
o

10/22/2012

mean = S2.47 median =
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N
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Ex
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Next Steps

= Single Year LETBURN Study:
= Several model improvements
* Include standard forest harvest policy
* Include more accurate timber value

= 100-year Dynamic LETBURN Study

= Needed: MDP algorithms that can scale to the immense state
space
= Approximate Policy lteration? (Fern et al.)

10/22/2012 SRR 57



FUEL TREATMENT

= For each time step t

= Qur turn: 5,
= Observe current state s; (i.e., state
of all MUs)
= Choose action vector a;
= Execute the actions in the MUs
= Nature’s turn:
= Stochastically ignite and burn fires At
on the landscape (Implemented by B3] Treated
ignition model + fire spread model)
= Grow trees and fuel (Implemented
by forest growth model)
St+1

10/22/2012 SRR Image: Wei et al, 2008 58



Formulation as a Markov Decision
Process

= State of each MU:
= Age of trees (years)
= {0-9, 10-19, 20-29, 30-39, 40-49}
= Amount of fuel
= {none, low, medium, high, very high}
= 25 possible combinations

= 254000 hossible states for the
landscape

= Actions in each MU each decade
= Do nothing
Fuel treatment (costs money)

Harvest trees (makes money, but
increases fuel) Study area in Deschutes National Forest

Harvest + Fuel
44990 possible actions over landscape

10/22/2012 SRR 59



Solving Spatial MDP

= No existing methods
= Promising Approach: Equilibrium Policy
Gradient

= Define a pixel policy m(0,7n(ij)) that chooses
an action for pixel i, j based on a
neighborhood n(ij)

= Define a Markov Chain as in Gibbs sampling
= Sample an landscape action vector from the
stationary distribution of the chain
= |t is possible to compute the policy
gradient of this MC equilibrium policy
= Crowley, Nelson, & Poole (AAAI 2011)

10/22/2012 SBRN 2012

Ai—1,j-1

Ai—1,j+1

a;j-1

Aij+1

Ait1,j

Ai+1,j+1
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Open Problems |

= Risk-sensitive solutions

= Maximize expected value while keeping the probability of
catastrophic fires below e

=Visualize the resulting policy

10/22/2012 SRR 61



Summary

= Data Interpretation
= Automated Data Cleaning

= Probabilistic modeling +
approximate inference

= Model Fitting
= Explicit Observation Models

= Combine flexible machine learning
with latent variable models

= Policy Optimization

= Managing Fire in Eastern Oregon
= Monte Carlo optimization

10/22/2012 SBRN 2012
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Computational Sustainability |

= There are many opportunities for computing to contribute
to a sustainable planet

= There are many challenging computer science research
problems to be solved

= |nstitute for Computational Sustainability:
http://www.computational-sustainability.org/

10/22/2012 EE 2 63
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Thank-you |

= Ethan Dereszynski: Automated Data Cleaning
= John Selker: Project TAHMO
= Rebecca Hutchinson: Boosted Regression Trees in OD models

= Claire Montgomery, Rachel Houtman, Sean McGregor, Mark Crowley:
Fire challenge

= National Science Foundation Grants 0705765, 0832804, and 0905885

10/22/2012 SRR 64



The Distinguished Speakers Program
Is made possible by

Association for

Computing Machinery

Advancing Computing as a Science & Professio


http://dsp.acm.org/

Questions?



Regression Trees

= Classification and l
regression trees —‘_
= Interactions are captured by
the if-then-else structure of

the tree —‘— —‘—

= Nonlinearities are
[ [

approximated by piecewise T
N

constant functions a

10/22/2012 SBRN 2012
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Representing P(Y|X) using
boosted regression trees |.

*Friedman: Gradient Tree Boosting (2000; Annals of
Statistics, 2011)

= Consider logistic regression:

P(Y=1)
" logp(yzo) = fo + f1 Xy + -+ B X

S Y")}Ii\’=1 are the training examples

= Log likelihood:
“ LL(B) = % Y'log P(¥ = 1[x4 8) + (1 - Y!)log P(¥ = 0[X"; §)

10/22/2012 SRR 68



Fitting logistic regression via
gradient descent

=Let B0 = g% =
*"For¢=1,..,Ldo
= Compute g* = VzLL(B)| =

= g = gradient w.r.t. B
= gt = p*~1 + n,g*° take a step of size 7, in direction of gradient

= Final estimate of S is
Bt =g°+nmgt+-+n.9"
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Functional Gradient Descent
Boosted Regression Trees |.

= Friedman (2000), Mason et al. (NIPS 1999), Breiman (1996)
= Fit a logistic regression model as a weighted sum of regression trees:

P(Y =1)

P =0) - tree®(X) + nytreel(X) + -+ nytreet (X)

log

= When “flattened” this gives a log linear model with complex interaction
terms
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L 2-Tree Boosting Algorithm |

=Let FO9(X) = f%(X) = 0 be the zero function
"Forf{=1,..,Ldo
= Construct a training set S* = {(X?, Y")}Iivzl

= where Y is computed as

OLL(F)
OF |p=pt-1(x?)

= Let ¥ = regression tree fit to S*
= F{’ — F{’—l +77£f£
= The step sizes n, are the weights computed in boosting

= This provides a general recipe for learning a conditional
probability distribution for a Bernoulli or multinomial random
variable

= Vi = how we wish F would change at X*
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