
Towards Adaptive Packet Scheduler with Deep-Q
Reinforcement Learning

Qiwei Wang∗, Thinh Nguyen†, Bella Bose‡,
∗School of Electrical Engineering and Computer Science, Oregon State University, wangqi@oregonstate.edu
†School of Electrical Engineering and Computer Science, Oregon State University, thinhq@eecs.oregonstate.edu
‡School of Electrical Engineering and Computer Science, Oregon State University, bose@eecs.oregonstate.edu

Abstract—The traditional way to design a packet scheduler
is usually based on the prior knowledge of networking environ-
ments. With advanced networking technologies, we propose a
Deep-Q (DQ) learning framework for packet scheduler to take
advantage of more available information. The packet scheduler
optimizes the application-specific quality of service (QoS) require-
ments, and adapt to the changing network environment. The DQ
framework integrates the online Q-learning algorithm and a deep
neural network, making it applicable to problems of large size.
Without any prior training or network traffic models, the DQ-
based scheduler progressively learns a good policy in real-time,
based directly on the available observations.

I. INTRODUCTION

Communication and networking technologies have ad-
vanced tremendously over the past several decades. Notably,
the original ”end-to-end” argument [1] for designing ”dumb”
and ”fast” physical and link layer devices (e.g., routers and
switches) are now less applicable with the declining cost of
silicon. In fact, the trend in recent years has been to design
fast and sophisticated hardware to efficiently support various
networking abstractions for many emerging networking tech-
nologies such as network virtualization and Software Defined
Network (SDN) [2], which provides many benefits such as
network isolation, flexible routing, workload orchestration, or
application-specific Quality of Service (QoS). Those software,
hardware and the information across various OSI layers must
be optimized jointly. In this paper, we study a packet scheduler,
an important component of the virtualization technologies, for
determining which packets should be sent at which time slots
to achieve QoS requirements for various applications under re-
source constraints. Specifically, we propose the Deep-Q (DQ)
framework for implementing adaptive packet schedulers. The
DQ framework integrates a deep neural network with online Q-
learning algorithms. It enables a DQ-based packet scheduler to
learn a good packet transmission policy in real time , and can
be deployed without any prior knowledge of network traffic
models. We posit that with the declining cost of silicon, it is
feasible and beneficial to implement a sophisticated DQ-based
packet scheduler that learns to improve itself based on the
massive amount of data it observes over time, rather than using
some schemes with fixed designed parameters that are often
sub-optimal under different network conditions. It is shown
in the simulation results that the presented DQ algorithm has
the ability to adapt quickly when environmental parameters
change.

II. RELATED WORK/BACKGROUND

There is rich literature on resource and scheduling algo-
rithms. In particular, the packet scheduler problem can be
formulated as a Markov Decision Process (MDP) problem
[3]. An MDP problem is well studied as a stochastic dynamic
programming problem with many algorithmic solutions such

as Backward Induction , Value Iteration or Policy Iteration.
MDP solutions are purely model-based. That is, given a state
s and action a, the precise model of the transition probability
T (s, a, s′) and the instant reward r(s, a) must be provided to
the algorithm. This approach is less useful in the real world
scenarios, where models cannot be accurately determined. A
more popular approach is the online Reinforcement Learning
(RL). One particular algorithm is the Q-learning algorithm [4],
to be described shortly. Using the Q-learning algorithm, an RL
agent learns an optimal state-action pair by interacting with
the real environment without any modeling knowledge of the
environment. At each time step, the learning agent examines
the current state s and takes an action a that maximizes
a specified value Q(s, a) related to the total reward. With
this mechanism, it is easy to implement an online learning
algorithm that gradually improves the agent’s performance.
As a result, RL has been applied to network/communication
control optimization. For example, the routing scheme in [5]
employed multi-agent RL to improve delivery time and avoid
congestion. And in [6], the scheduling-admission problem of
time-varying channels is formulated as a constrained MDP.
Then, an improved online learning algorithm was shown to
outperform traditional Q-learning.

While RL has been widely applied, many challenges need
to be further studied to make the RL algorithms useful for
real-world problems with a large state space and a fast-
changing environment. In particular, the combination of RL
and deep learning utilizes the neural network as a non-linear
function approximator, enabling the learning agent to deal with
complicated Q functions and enormous size of state spaces.
This combination is applied to some of the most current
research on resource scheduling. [7][8] purposed RL-based
packet schedulers for multi-path TCP (MPTCP) to achieve
higher overall network throughputs. [9] presented an RL-based
flexible Radio Resource Management (RRM) scheme for 5G
access network. It selects one of multiple frequency blocks
at each time slot to satisfy each users requirement of delay
and packet delivery rate. Compared to existing literature, our
research is focused on a more generalized framework such that
both states and reward functions can be adjusted for multiple
objectives. Furthermore, with a specific queueing example, we
discussed a few details of the DQ framework to increase its
performance, including the choice of optimizer, experience
replay and the delayed update of target neural network.

III. PROBLEM DEFINITION

A. Problem Scenario
For clarity, we describe a LAN scenario where the packet

scheduler is implemented at the Access Point (AP). We assume
several users running a total of N applications with different
QoS requirements such as data rate, packet loss rate, and delay.

2020 Workshop on Computing, Networking and Communications (CNC)

978-1-7281-4905-9/20/$31.00 ©2020 IEEE 118Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 11,2020 at 20:18:32 UTC from IEEE Xplore. Restrictions apply.

The links between each user and the AP are characterized
by different channel conditions. Due to the limitation of
processing power and channel capacity available, the AP
can only serve a limited number of users/applications in a
fixed amount of time. The goal of the AP is to dynamically
allocate its resources to satisfy all users’ QoS requirements.
Since the network conditions can change quickly, the AP’s
resource allocation policy should adapt to the new network
conditions timely. Fig. 1 shows the components involving the
AP’s operations.

1) External environment: The environment is modeled as a
black box to the AP. The parameters of the environment
can be the channel quality, data rates, movement speed
and direction of each user, and the like. The AP can
only infer the external environment by interacting with
it and observing the outputs, or in RL terminology, the
immediate rewards.

2) Observable states: The observable state is the internal
states of the AP that can be observed and used to infer
about the environment and make a good decision. States
can be pending packets to be transmitted, current packet
loss count, and the like.

3) Resources: Examples of resources are computational
power or total bandwidth.

4) QoS requirements: Examples of QoS requirements are
minimum bandwidth or maximum delay requested by an
application. The AP needs to find the policy that satisfies
those requirements.

5) Policy: A policy is a mapping between the observable
states and an action, such as sending a packet from a
particular application given the current backlogs of all
other applications.

By observing the states and actions, together with the cor-
responding rewards over time, the goal of the smart AP is
to learn a policy that optimally allocates its resources while
satisfying the users’ QoS requirements.

Figure 1: Problem framework

We now focus on the particular problem of designing a
packet scheduler to provide QoS for different applications.
A packet scheduler uses multiple queues for different ap-
plications as shown in Fig. 2. The en-queue and de-queue
rates determine the data rates, delay, and packet loss rates
of the applications. Assuming that each user/application is
associated with a buffer of length Li, i = 0, 1, ..., N−1. Time
is discretized into small time slots with the length of T0. To

simplify the analysis, in a single time slot, we assume that the
AP will take one action to transmit first, then a new packet
arrives.

Departure of a packet: At the beginning of each time slot,
the AP observes the current network state and decides which
packet from the queues (applications) to serve, i.e., selects
a packet from a queue and transmits. Depend on the QoS
requirements, the AP can also do nothing if necessary (e.g.,
to save energy). The channel associated with each application
is modeled with the packet delivery rate (PDR), denoted as
qi, i = 0, 1, ..., N − 1. If a transmission attempt fails, the
transmitted packet has to be put back in the queue for re-
transmission.

Arrival of a packet: At each time slot, a packet might arrive,
and it will be added to the end of the appropriate queue. The
probability of a packet arrival for each application is denoted
as pi, i = 0, 1, ..., N − 1. If the time slot length T0 is small
enough, the arrival model is approximately Poisson, and pi
can be found by the average throughput of an application.
After a packet arrives, if its destination queue/buffer is full,
the packet is dropped. The packet scheduler is trained to
minimize a certain objective, such as the probability of a
packet drop due to full queue as a result of channel conditions.
In this paper, the objective of a smart packet scheduler is to
find a policy that minimizes the packet loss rates. We note
that the AP can only observe the current backlog length of
each queue (applications) at the beginning of a time slot. The
environmental parameters pi and qi are not available.

Figure 2: Application flows are modeled as queues

B. Markov Decision Problem

Now we model our problem as an MDP problem:
States: At a time slot t, the observable state is an N−1 tuple,
denoting the backlog length of each application.

st = (lt0, l
t
1, ..., l

t
N−1), (1)

where lti is the backlog length of application i at time slot t.
Actions: For simplicity, we assume only deterministic pol-

icy. That is, at each time slot, the agent either send one packet
for one of the applications or not to send at all. The total
number of possible action is N +1. at, the action at time t, is
determined by the policy. After an action is taken, the agent
interacts with the environment and observes the state of the
next time slot, st+1.

Instant Rewards: Given st, at, st+1, the AP will obtain the
an instant reward Rt, which is the sum of instant rewards from
all applications:

Rt =
N−1∑
i=0

ri(s
t, at, st+1). (2)

2020 Workshop on Computing, Networking and Communications (CNC)

119Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 11,2020 at 20:18:32 UTC from IEEE Xplore. Restrictions apply.

For each application, its QoS requirements can be modeled by
choosing an appropriate ri(·). A typical ri(·) can be a function
of current backlog length, accumulated lost packets, and so on.
For this paper, as an example, we consider the packet loss due
to a full backlog buffer, so a negative constant Ci is assigned
to each application as a penalty for packet loss, that is:

ri(s, a, s
′) =

{
Ci, if a packet is lost.
0, elsewise.

Remark 1: By changing Ci for each application, the controller
is able to distribute the network resources unevenly to some of
the applications. Thus, the priority for each application can be
designed by the assignment of Ci. A larger Ci means smaller
penalty, indicating the corresponding application has a higher
priority when the network is congested. The effect of different
values of Ci is shown in Section V.

Optimal policy: The optimal policy is a policy that max-
imizes the estimated discounted reward, that is, a mapping
π∗(s)→ a such that the total discount reward:

Rtotal = E[
∑
t

βtRt], (3)

is maximized. β is a discount parameter between 0 and
1. Since the instant reward is the penalty of packet loss,
maximizing Rtotal will minimize the expectation of packet
loss.

Given the environment model, this problem can be solved
exactly by many well-known algorithms such as the value
iteration (VI). However, since the environment changes dy-
namically, and the AP does not know its parameters, we will
use model-free online learning algorithms.

IV. APPROACHES

A. Q-learning with function approximation
Given a policy π, to estimate the goodness of a state-

action pair, define the value Qπ(s, a) as the discounted reward
starting at state s and taking action a Mathematically, :

Qπ(s, a) = Rtotal|(π, s, a), (4)

The optimal Q value satisfies:

Q∗(s, a) = Es′ [r(s, a) +maxa′Q(s′, a′)], (5)

in which s′ is the possible next state if the agent takes action
a in state s. The optimal policy will be:

π(s) = argmaxaQ
∗(s, a). (6)

Given an initial value of Q(s, a) for all s, a pairs, when a
transition (s, a, s′, r(s, a)) is observed, a model-free online
learning agent uses the temporal differential to update the Q
value as:

Q(s, a) = Q(s, a) + α(r(s, a) +maxa′Q(s′, a′)−Q(s, a)).
(7)

To find the accurate values Q(s, a) for all (s, a) pairs, each
state and action should be sufficiently explored by the agent.
To accomplish this, a following exploration/exploit policy is
often used:

a =

{
argmaxa∈AQ(s, a),with probability ε,
Random action with probability 1− ε. (8)

In this specific problem setting, the state and action space
can get very large. For example, 10 users with a maximum

queue length of 20 will result in 2010 states. With limited
computation resources at the AP, it is not realistic to store
a huge table for all (s, a) pairs and to visit all (s, a) pairs.
Instead, a practical approach is to use function approximation
which extracts a feature vector φ(s, a) from s, and the Q(s, a)
table can be approximated by a function F (·):

Q̂(s, a) = F (φ(s, a)). (9)

If F (·) is convex and can be parameterized by a vector θ, the
optimal Q̂(s, a) can be found by minimizing the square error
loss function:

||Q̂(s, a)−Q(s, a)||2, (10)

using a gradient method over θ. Since the true value of
Q(s, a) in Eq.10 is not immediately available during the online
training, we use a sampled version to replace Q(s, a):

Qsample(s, a) = r(s, a) + βmaxa′Q̂(s′, a′). (11)

Thus, the stochastic gradient update rule for θ will be:

θ ← θ+α(r(s, a)+maxa′Q̂(s′, a′|θ)−Q̂(s, a|θ))∇θQ̂(s, a|θ).
(12)

B. Non-linear function approximation with neural network
(NN)

In this section, we describe a non-linear function approxi-
mator based on the DQN framework introduced in [10]. Due
to the large number of states, we use a neural network with
multiple hidden layers to approximate the Q(s, a).

1) Features and NN model: We model this problem as
a regression problem. Instead of extracting the feature from
(s, a) pair, only the state is used to generate the input feature.
The output layer of the NN contains N +1 neurons and each
of them is associated with an action, as shown in Fig. 3. By
doing this we take advantage of the smaller action space size
(number of applications, usually way less than the number of
states), so we can obtain the Q̂(s, a) value for all actions and
find the best action in just one pass of forward propagation.
The input feature vector is the vector presentation of the

Figure 3: An example of the NN model

backlog lengths of all applications at the beginning of each
epoch. The backlog lengths are normalized over the total queue
size such that 0 ≤ φi(s) ≤ 1:

φ(s) = [l0/L0, l1/L1, ..., lN−1/LN−1]. (13)

2) Experienced replay: For most of the time, the action is
taken by choosing a corresponding to the maximum output
of the NN. As a result, a slight change of NN parameters
may cause a totally different policy and alters the learning
trajectory. As a result, updating the NN parameters using only
one sampled Q(s, a) is very risky and may result in very
unstable performance.

2020 Workshop on Computing, Networking and Communications (CNC)

120Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 11,2020 at 20:18:32 UTC from IEEE Xplore. Restrictions apply.

To counter this effect, we employ experienced replay
[10][11]. Experience replay uses a memory pool to memorize
the newest M transitions. At the beginning of each time slot,
the agent takes actions based on the output of the NN, and
the transition (s, a, s′, r) is recorded in the memory pool. The
oldest transition is deleted if the pool is full. Then, rather
than using just one sampled Q(s, a), a mini-batch is randomly
chosen from the pool to perform gradient descent update of
the NN parameters θ.

3) Loss function: As in Eq. 11, Qsample(s, a) is used to
estimate the true value of Q(s, a). Then, stochastic gradient
descent method is used to carry out one step of update to
minimize the mean square error:

fc =
||Qsample(s, a)− Q̂(s, a)||2

size of mini-batch
. (14)

4) Delayed update of target NN: Note that in Eq. 11,
we still need one pass of forward propagation of the NN to
find the Q̂(s′, a′). When the NN parameters are updated, the
sample itself changes too. In the meantime, in one update
step, only one biased sample of transition (or one mini-batch
if using Experienced replay) is used to update the whole
neural network. This update can be very inaccurate and may
negatively impact the future learning trajectory. To further
improve the stability of the algorithm, a dual NN structure
is introduced. The decision NN is used to find the current
best action and is updated at each time slot by the mini-batch.
The target NN is used to find the Qsample(s, a). The target
NN is only updated at every Ttarget time slots by copying the
current decision NN to it. Thus, the target NN is updated with
all transactions (or multiple mini-batches) that are sampled
during Ttarget time. For most of the time, the decision NN
is optimized towards a ”fixed target” instead of a target that
keeps changing. If the decision NN and target NN are denoted
as θ and θ′, respectively, the new update rule is:

θ ← θ+α(r(s, a)+maxa′Q̂(s′, a′|θ′)−Q̂(s, a|θ))∇θQ̂(s, a|θ)
(15)

5) Learning procedure: The complete learning algorithm is
shown in Fig. 4 and Algorithm 1.
• Decision Phase: At the beginning of each time slot, the

agent observes the state and feeds the input feature vector
into the decision NN. Based on the output, the agent
either does random exploration or takes the action a that
is associated with the maximum NN output. At the end of
the time slot, the agent observes the state s′ and instant
reward r′, then records the transition (s, a, s′, r) in the
memory.

• Learning Phase: A mini-batch is randomly chosen from
the memory and is used to update the decision NN’s
parameters by the stochastic gradient descent algorithm.
If the number of time slots is a multiple of Ttarget, then
copy the decision NN to the target NN.

Algorithm 1. Non-linear Q function approxima-
tion

-Random initialize decision NN parameters θ;
-Set the target NN parameters θ′ = θ;
for i in [0,max number of epochs] do

-Random initialize backlog lengths for all buffers:
(l0, l1, ..., lN−1);
for j in [0,max number of transitions] do

Figure 4: Graph of FC-NN approximation algorithm

-Find feature vector φ(s);
-i = random([0, 1]):
if i < ε then
a = random([a0, a1, ...aN−1]) ;

else
a = argmaxaQ̂(s, a|θ);

end if
-Take action a, observe r, s′ and add (s, a, r, s′) to
history pool;
-Randomly sample a mini-batch from history pool;
-Find Qsample(s, a|θ′) = r + max′aQ̂(s′, a′|θ′) with
target NN;
-Find Q(s, a|θ) with decision NN;
-update θ by Eq.15;

end for
-Update target NN: θ′ = θ.

end for

6) Improvement of Stochastic Gradient Method (SGM): We
use ADAM optimizer [12] as a replacement of SGM for better
convergence speed. An ADAM optimizer is a combination of
gradient with momentum and RMSprop. It shows better con-
vergence performance in many other deep learning algorithms
[13][14]. ADAM’s performance in this problem is evaluated
in Section V.

V. PERFORMANCE EVALUATION

In this section, we show the performance evaluation of
the presented learning algorithm. We assume the AP has
a total capacity of 12 Gbps for all the users. While most
commonly used wireless routers have a smaller capacity, AP
with larger capacity is expected in the future. A scenario with
10 applications is simulated using various channel conditions
and traffic patterns. Hyperparameters of the NN are shown in
Table I.

Hidden layers 64× 32

Mini-batch size 64

History pool size 100000

Parameter initializer Xavier initializer

Delayed update frequency Ttarget 10000T0

Learning rate α 0.0001

Discount rate β 0.9999
Table I: Hyperparameters of the neural network

2020 Workshop on Computing, Networking and Communications (CNC)

121Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 11,2020 at 20:18:32 UTC from IEEE Xplore. Restrictions apply.

First, the applications are associated with a randomly gener-
ated pi and qi for i = 0, 1, ..., 9 to model network conditions
and data rates. We also make

∑
i pi close to the mean of

qi so the total incoming data rate is close to the AP’s total
channel capacity. Thus, the algorithm is running on a slightly
congested environment.

Fig. 5 shows the convergence curve of the total discounted
reward in each epoch, up to 5000 epochs (equivalent to 5
seconds in real time). The plain SGD is very noisy especially
at the beginning since most of the states are not visited. Due
to a fixed learning rate, the total discounted rate converges
very slowly when compared to others. The ADAM optimizer
with a constant step-size converges faster, but it diverges
from the optimal soon after reaching the optimal due to its
instability. A carefully chosen shrinking step-size can deal with
the instability, but it requires fine tuning of the parameters and
a longer converging time. The delayed update of target NN
handles the instability well and it maintains a better converge
time (< 1000 epochs) as shown in Fig. 5. Fig. 6 shows the
average packet loss rate of last 500 epochs of the 5000-epoch
training period. Again, ADAM with delayed target NN update
outperforms others with a much lower packet loss rate of
0.55%, while the packet loss rate of the other three are 22%,
19% and 3%.

0 1000 2000 3000 4000 5000

Number of transitions (1000)

-6000

-5000

-4000

-3000

-2000

-1000

0

T
o
ta

l
d
is

co
u
n
te

d
 r

ew
ar

d
 (

1
0
0
 m

o
v
in

g
 a

v
er

ag
e)

ADAM (constant stepsize, delayed update)

ADAM (constant stepsize)

Stochastic gradient descent

ADAM (shrinking stepsize)

Figure 5: Comparison of performance

0

0.05

0.1

0.15

0.2

0.25

P
ac

k
et

 l
o
ss

 r
at

e

Stochastic gradient descent

Adam with constant step-size

Adam with shrinking step-size

Adam with delayed update

Figure 6: Comparison of average packet loss rate

Now we evaluate the robustness of the algorithm by intro-
ducing a sudden change of the arrival data rates. In Fig. 7, we
randomly choose an application and assign a large pi = 0.35 to
it, while the other 9 applications have pi = 0.05. After training
for 2000 epochs, the large incoming data rate is re-assigned to
another application. In a real scenario, this can happen when

some applications are newly started/reconfigured. It can be
seen that the algorithm adapts to the new environment very
well within a short period of fluctuation (less than 500 epochs,
in our set up that is about 0.5 seconds). The packet loss rate
changes with the total discounted reward accordingly.

Now we evaluate the algorithm’s performance under a
sudden change in channel conditions by changing the PDR. As
shown in Fig. 8, in the beginning, the channel PDR associated
with a particular application is qi = 0.9. After training for
1500 epochs (1.5 seconds), the PDR is changed to qi = 0.65.
This could be a result of this user moving away from the
transmitter or behind some obstacles. The channel condition
is so bad that the expectation of the number of transitions to
finish all packets in 1000 time slots is about 1030. In other
words, on average it takes about 1030 transmissions to send
all arriving packets in an epoch. We can see that the algorithm
converges quickly to a point where the packet loss rate is 0.3%,
close to the best it can do. After 3500 epochs (3.5 seconds),
the channel PDR is changed to a good value, qi = 0.99, and
the packet loss rate is back to nearly 0.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (Seconds)

0

0.05

0.1

0.15

0.2

0.25

P
ac

k
et

 L
o
ss

 r
at

e
(1

0
0
 m

o
v
in

g
 a

v
g
)

-2500

-2000

-1500

-1000

-500

0

T
o
ta

l
d
is

co
u
n
te

d
 r

ew
ar

d
 (

1
0
0
 m

iv
in

g
 a

v
g
)

Packet loss rate, environment 1

Packet loss rate, environment 2

Total reward, environment 1

Total reward, environment 2

Figure 7: Dynamic policy adjustment with a sudden change
in traffic rates

0 1 2 3 4 5

Time (Seconds)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ac

k
et

 l
o
ss

 r
at

e
(1

0
0
 m

o
v
in

g
 a

v
g
)

-2000

-1800

-1600

-1400

-1200

-1000

-800

-600

-400

-200

0

T
o
ta

l
d
is

co
u
n
te

d
 r

ew
ar

d
(1

0
0
 m

o
v
in

g
 a

v
g
)

Packet loss rate, environment 1

Packet loss rate, environment 2

Packet loss rate, environment 3

Total reward, environment 1

Total reward, environment 2

Total reward, environment 3

Figure 8: Dynamic policy adjustment with a sudden change
of channel conditions

Next, we show the impact of the instant reward Ci of a
specific user. In this scenario, we set pi = 0.091 and qi = 0.9
for all applications to eliminate the bias from the environment.
Also, we make

∑
i pi slightly larger than average qi to

simulate a more congested network conditions. Fig. 9 shows
the average packet loss when the instant rewards are uniformly
assigned, that is, Ci = −10 for all applications. The packet
loss rate for each application is around 2.5 per 1000 time

2020 Workshop on Computing, Networking and Communications (CNC)

122Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 11,2020 at 20:18:32 UTC from IEEE Xplore. Restrictions apply.

slots. In Fig. 10, application 3’s instant reward is increased
to −1 to decrease its priority. Because the AP does not have
enough resources to fulfill all applications’ requirements, it
serves fewer packets for application 3. As a result, the packet
loss rate of application 3 is increased by a large amount to
give the other 9 applications a better performance. This can
be verified by the decrease of the average packet loss rate from
2.62 to 1.57 per 1000.

1 2 3 4 5 6 7 8 9 10

Application Number

0

0.5

1

1.5

2

2.5

3

3.5

4

A
v
er

ag
e

p
ac

k
et

 l
o
ss

 p
er

 e
p
o
ch

Average = 2.62

Figure 9: Packet loss comparison with uniformed instant
reward

1 2 3 4 5 6 7 8 9 10

Application number

0

2

4

6

8

10

12

14

16

18

20

A
v
er

ag
e

p
ac

k
et

 l
o
ss

 p
er

 e
p
o
ch

Average = 1.57

Figure 10: Packet loss comparison with biased instant reward

Remark 2: Importantly, due to the proposed DQN architec-
ture, one pass of forward/backward propagation (computing
the output for a given input to the DNN) can be very fast.
Also, since the algorithm does not require any hand-labeled
data, the agent can be continuously trained and make real-time
decisions simultaneously in a practical settings where traffic
characteristics and channel conditions change frequently.

VI. CONCLUSION

In this paper, we describe a DQ framework for implement-
ing adaptive packet schedulers that optimize for application-
specific quality of service (QoS) requirements. The DQ frame-
work integrates a deep neural network with online Q-learning
algorithms that enables a DQ-based packet scheduler to learn
a good packet transmission policy. Importantly, a DQ based
packet scheduler can be deployed without any prior training or
network traffic models. Rather, the DQ- based packet scheduler
progressively learns a good policy in real-time, based directly
on the available observations. Our simulation results indicate
that the proposed DQ-based scheduler can adapt to the changes
in network conditions and/or application requirements in real-
time to achieve various QoS.

REFERENCES

[1] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-
end arguments in system design”, ACM Trans. Comput.
Syst., vol. 2, no. 4, pp. 277–288, Nov. 1984.

[2] H. Shimonishi and S. Ishii, “Virtualized network infras-
tructure using openflow”, in 2010 IEEE/IFIP Network
Operations and Management Symposium Workshops,
2010, pp. 74–79.

[3] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming, 1st. New York, NY,
USA: John Wiley & Sons, Inc., 1994.

[4] F. S. Melo and M. I. Ribeiro, “Q-learning with linear
function approximation”, in Proceedings of the 20th
Annual Conference on Learning Theory, ser. COLT’07,
San Diego, CA, USA, 2007, pp. 308–322.

[5] S. Khodayari and M. J. Yazdanpanah, “Network routing
based on reinforcement learning in dynamically chang-
ing networks”, in ICTAI’05, Nov. 2005, 5 pp.-366.

[6] K. T. Phan, T. Le-Ngoc, M. van der Schaar, and F. Fu,
“Optimal scheduling over time-varying channels with
traffic admission control: Structural results and online
learning algorithms”, IEEE Transactions on Wireless
Communications, vol. 12, no. 9, pp. 4434–4444, Sep.
2013.

[7] H. Zhang, W. Li, S. Gao, X. Wang, and B. Ye, “Reles:
A neural adaptive multipath scheduler based on deep
reinforcement learning”, in IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, Apr.
2019, pp. 1648–1656. DOI: 10.1109/INFOCOM.2019.
8737649.

[8] J. Luo, X. Su, and B. Liu, “A reinforcement learning ap-
proach for multipath tcp data scheduling”, in 2019 IEEE
9th Annual Computing and Communication Workshop
and Conference (CCWC), Jan. 2019, pp. 0276–0280.
DOI: 10.1109/CCWC.2019.8666496.

[9] I. Comfffdfffda, S. Zhang, M. E. Aydin, P. Kuonen,
Y. Lu, R. Trestian, and G. Ghinea, “Towards 5g: A re-
inforcement learning-based scheduling solution for data
traffic management”, IEEE Transactions on Network
and Service Management, vol. 15, no. 4, pp. 1661–1675,
Dec. 2018. DOI: 10.1109/TNSM.2018.2863563.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I.
Antonoglou, D. Wierstra, and M. A. Riedmiller, “Play-
ing atari with deep reinforcement learning”, CoRR,
vol. abs/1312.5602, 2013.

[11] V. Mnih and et.al, “Human-level control through deep
reinforcement learning”, Nature, vol. 518, no. 7540,
pp. 529–533, Feb. 2015, ISSN: 00280836.

[12] D. P. Kingma and J. Ba, “Adam: A method for stochas-
tic optimization”, CoRR, vol. abs/1412.6980, 2015.

[13] B. Baker, O. Gupta, N. Naik, and R. Raskar, “Designing
neural network architectures using reinforcement learn-
ing”, CoRR, vol. abs/1611.02167, 2017.

[14] Z. Zhang, “Improved adam optimizer for deep neu-
ral networks”, in 2018 IEEE/ACM 26th International
Symposium on Quality of Service (IWQoS), Jun. 2018,
pp. 1–2. DOI: 10.1109/IWQoS.2018.8624183.

2020 Workshop on Computing, Networking and Communications (CNC)

123Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on July 11,2020 at 20:18:32 UTC from IEEE Xplore. Restrictions apply.

