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Abstract—Given an original discrete source X with the distri-
bution pX that is corrupted by noise to produce a noisy data
Y with the given joint distribution p(X,Y ). A quantizer/classifier
Q : Y → Z is then used to classify/quantize Y to a discrete
partitioned output Z having probability distribution pZ . Next,
Z is transmitted over a discrete memoryless channel (DMC) with
a given channel matrix A that produces the final discrete output
T . One wants to design an optimal quantizer/classifier Q∗ to
minimize the end-to-end impurity/cost function F (X,T ) between
the input X and the final output T . Our result generalizes
some previous results. First, an iteration linear time complexity
algorithm is proposed to find the locally optimal quantizer.
Second, we show that the optimal quantizers produce the hard
partitions that are equivalent to the cuts by hyper-planes in the
space of the posterior distribution pX|Y . This result provides a
polynomial-time complexity algorithm to find the globally optimal
quantizer. Finally, in the special case where the source X is
binary, an efficient algorithm is proposed to find the truly global
optimal partition.

Keyword: quantization, impurity, communication channel.

I. INTRODUCTION

Channel optimized partition/quantization is a common ap-
proach to lossy-compression data source-channel coding that
aims to minimize the end-to-end distortion when the quan-
tized/classified data is transmitted over a noisy channel. Due
to the huge volume of data and the limited rate of the
transmission channel, the data should be coded/quantized at
the local stations/nodes before transmitted over a channel to
the central station/node. The quality of the relay channel that
is specified by its channel matrix, therefore, is important. Of
course, one should design the partition/classification based on
the channel matrix of the relay channel. From the source
coding perspective, the quality of quantization/partition is
normally measured by the end-to-end distortion between the
input and the final output. While the squared-error distortion
often uses to measure the distortion of scalar quantization,
it is less appropriate for other problems in communication
context, for example, maximizing the mutual information
or minimizing the compression rate where other distortion
measurements such as Kullback-Leiber divergence are more
preferred.

In this paper, we consider the design of quantizer with the
aim of minimizing the end-to-end impurity between the input

and the final output produced by a relay channel. The impurity
termed the loss function that measures the "impurity" of the
partitioned sets. Some of the popular impurity functions are
entropy function and Gini index [1], [2], [3], [4]. For example,
when the empirical entropy of a set is large, this indicates
a high level of non-homogeneity of the elements in the set,
i.e., "impurity". Impurity function was vastly used in learning
theory, decision tree and communication [1], [2], [3], [5],
[6], [7]. Therefore, finding the optimal partition minimizing
impurity function has various applications. For example, if
the impurity is conditional entropy, minimizing impurity is
equivalent to maximizing the mutual information between the
input and the final output [5], [8], [9], [10], [11]. Therefore,
partition/quantization that minimizes the entropy impurity has
many applications in design of polar code and LDPC code
decoder [12], [13].

To that end, the problem of finding the optimal quantizer
that minimizes the end-to-end impurity between the input and
the final output of a relay channel is an interesting problem that
covers many sub-problems in [5], [8], [14], [15]. For example,
if the relay channel matrix is an identity matrix, our setting
is back to the model in [5], [8] using conditional entropy
impurity function. If the impurity function is conditional
entropy, our problem can be viewed as the problem in [14],
[15]. It is worth noting that to solving these problems, the
methods in [14] and [15] are based on the famous information
bottleneck method (IBM) [16] while the results in [5] and [8]
are based on the result in [2]. On the other hand, our approach
is based on the method in [3] to characterize the necessary
condition of the optimal partition. The more detail of these
sub-problems can be viewed in Section II, Table I.

The outline of our paper is as follows. In Section II, we
describe the problem formulation. In Section III, we provide
the optimality condition for the optimal partition. In Section
IV, we provide an iteration algorithm that can find a locally
optimal solution and show that the optimal partition is equiv-
alent to the cuts by hyper-planes in the probability space of
the posterior probability. Based on the hyper-plane cuts, we
describe a polynomial time algorithm that can determine the
truly global optimal partition if the source X is binary. Finally,
we provide a few concluding remarks in Section V.
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II. PROBLEM FORMULATION

Fig. 1 illustrates our model. The input set consists of N
discrete symbols X = {X1, X2, . . . , XN} with a given pmf
pX = [p1, p2, . . . , pN ]. X is sent over a channel modeled
by a conditional distribution pY |X . The received Y consists
of M discrete points Y = {Y1, Y2, . . . , YM} having the
pmf pY = [pY1

, pY2
, . . . , pYM

] and the joint distribution
p(Xn,Ym), ∀ n = 1, 2, . . . , N and m = 1, 2, . . . ,M . Y is
quantized to into the partitioned output Z = {Z1, Z2, . . . , ZK}
having the pmf pZ = [pZ1 , pZ2 , . . . , pZK

] using a quantizer
Q : Y → Z. Note that Q can be a stochastic quantizer i.e.,
0 ≤ pZk|Ym

≤ 1. The partitioned output Z is then transmitted
over a relay channel having a channel matrix A to result
in the final output T = {T1, T2, . . . , TH} having the pmf
pT = [pT1 , pT2 , . . . , pTH

]. A is a stochastic matrix where
entry Akh denotes the conditional probability pTh|Zk

i.e., the
probability of transmitter transmits Zk but the receiver receives
Th. Quantizer Q is a mapping from Y to Z as illustrated in Fig.
2. Our goal is finding an optimal quantizer Q∗ that minimizes
the end-to-end impurity/cost function F (X,T ) between the
input X and the final output T .

To design the optimal quantizer Q∗ such that the end-to-end
impurity function is minimized, we are interested in solving
the following optimization problem:

Q∗ = min
Q

F (X;T ), (1)

where the impurity/cost function takes the form:

F (X,T ) =
H∑

h=1

F (X,Th), (2)

with F (X,Th) denotes the impurity/cost corresponding to the
final output Th.

F (X,Th) = pTh
f(pX1|Th

, pX2|Th
, . . . , pXN |Th

). (3)

The total impurity/cost F (X,T ), therefore, is the summa-
tion of impurity/cost in each final output F (X,Th). The factor
pTh

denotes the weight of the final output Th, f(.) is a concave
function that measures the impurity/cost in final output Th and
pXn|Th

denotes the conditional probability of Xn given Th.
For convenient, define:

p(X,Ym) = [p(X1,Ym), p(X2,Ym), . . . , p(XN ,Ym)], (4)
p(X,Th) = [p(X1,Th), p(X2,Th), . . . , p(XN ,Th)], (5)
pX|Th

= [pX1|Th
, pX2|Th

, . . . , pXN |Th
]. (6)

Now, suppose that a quantizer Q quantizes Q(Ym) → Zk

with the probability pZk|Ym
, then:

p(Xn,Zk) =
∑

Ym∈Y
p(Xn,Ym)pZk|Ym

. (7)

However, the final output T can be computed via the
partitioned output Z and the given channel matrix A. Thus,
p(Xn,Th) can be determined by:

p(Xn,Th) =
K∑

k=1

p(Xn,Zk)Akh. (8)

Figure 1: The quantizer/classifier Q is designed to minimize
the impurity function between the input X and the final output
T .

Figure 2: Quantizer Q is a mapping from Y to Z.

Now, the impurity function in each final output Th can be
rewritten by:

F (X,Th)=(

N∑
n=1

p(Xn,Th))f
( p(X1,Th)∑N

n=1 p(Xn,Th)

, . . . ,
p(XN,Th)∑N
n=1 p(Xn,Th)

)
where

∑N
n=1 p(Xn,Th) is the weight of Th and

p(Xn,Th)∑N
n=1 p(Xn,Th)

denotes the conditional distribution pXn|Th
. The function

F (X,Th), therefore, is only the function of the joint distribu-
tion vector p(X,Th) = [p(X1,Th), p(X2,Th), . . . , p(XN ,Th)]. For
convenient, in the rest of this paper, we denote F (X,Th) by
F (p(X,Th)).

Noting that the impurity function f(.) is concave and
satisfies the following inequality:

f(λa+ (1− λ)b) ≥ λf(a) + (1− λ)f(b),∀λ ∈ (0, 1), (9)

for all probability vector a = [a1, a2, . . . , aN ] and b =
[b1, b2, . . . , bN ] with equality happens if and only if a = b.

Corresponding to the setting of f(.), N and the channel
matrix A, our problem generalizes many sub-problems as
listed in Table I. Based on the concave property of f(.),
an iteration algorithm is proposed to find the locally optimal
quantizer. Moreover, we show that the optimal quantizers (lo-
cal and global) produce a hard partition that is equivalent to the
cuts by hyper-planes in the space of the posterior probability
pX|Y . This interesting property finally yields a polynomial
time algorithm to determine the truly global optimal quantizer.

Ref. A f(.) N
[2] Identity matrix x x
[5] Identity matrix Entropy 2
[8] Identity matrix Entropy x
[15] x Entropy x
[14] x Entropy x
[17] Identity matrix Gini index x
[18] Identity matrix Gini index x

Table I: Our problem generalizes many existing sub-problems.
Symbol "x" is used if there is no specific setting.
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III. PROPERTIES OF OPTIMAL PARTITIONS

We first begin with some properties of F (X,Th).

Proposition 1. The impurity/cost in each subset Th is defined
by F (X,Th) which has the following properties:

(i) The impurity/cost function is proportional increasing/
decreasing to its weight: if p(X,Ta) = λp(X,Tb), then

F (X,Ta)

F (X,Tb)
= λ. (10)

(ii) The impurity gain after partition is always non-negative:
If p(X,Ta) = p(X,Tb) + p(X,Tc), then

F (X,Ta) ≥ F (X,Tb) + F (X,Tc). (11)

Proof. (i) From p(X,Ta) = λp(X,Tb), then pX|Ta
= pX|Tb

and pTa
= λpTb

. Thus, using the definition of F (X,Th) in
(3), it is obviously to prove the first property.

(ii) By dividing both side of p(X,Ta) = p(X,Tb) + p(X,Tc)

to pTa
, we have

pX|Ta
=
pTb

pTa

pX|Tb
+
pTc

pTa

pX|Tc
. (12)

Now, using the original definition in (3),

F (X,Ta) = pTaf(pX|Ta
)

= pTa
f [
pTb

pTa

pX|Tb
+
pTc

pTa

pX|Tc
] (13)

≥ pTa [
pTb

pTa

f(pX|Tb
) +

pTc

pTa

f(pX|Tc
)] (14)

= pTb
f(pX|Tb

) + pTc
f(pX|Tc

)

= F (X,Tb) + F (X,Tc), (15)

with (13) is due to (12), (14) due to concave property of f(.)
which is defined in (9) using λ =

pTb

pTa

, 1 − λ =
pTc

pTa

, (15)

due to the definitions in (3) and (5).

Now, we are ready to show the main result which charac-
terizes the condition for the optimal partition Q∗.

Theorem 1. Suppose that the optimal quantizer Q∗ yields
the optimal partitioned output Z = {Z1, Z2, . . . , ZK} and the
optimal final output T = {T1, T2, . . . , TH}. We define vector
ck = [c1k, c

2
k, . . . , c

N
k ], k = 1, 2, . . . , T where:

cnk =
∂F (p(X,Tk))

∂p(Xn,Tk)
,∀n ∈ {1, 2, . . . , N}. (16)

Define the "distance" from Ym ∈ Y to Zk is:

D(Ym, Zk) =
H∑

h=1

N∑
n=1

[cnkp(Xn,Ym)]Akh. (17)

Then,
(i) The globally optimal quantizer of the problem (1) is a

deterministic quantizer (hard clustering) i.e., pZi|Yj
∈ {0, 1},

∀ i, j.
(ii) Data Ym is quantized to Zs if D(Ym, Zs) ≤ D(Ym, Zk)

for ∀k ∈ {1, 2, . . . ,K} and s 6= k.

Proof. Due to the limited space, we only provide the out-
line of proof. Suppose that D(Ym, Zs) ≤ D(Ym, Zk) for
∀k ∈ {1, 2, . . . ,K} and s 6= k. Consider two arbitrary optimal
partitioned outputs Zq and Zs and a trial data Ym. Consider
a soft partition optimal quantizer Q∗ that allocates Ym to Zq

with the probability of pZq|Ym
= v, 0 < v < 1. We remind

that p(X,Ym) = [p(X1,Ym), p(X2,Ym), . . . , p(XN ,Ym)] denotes
the joint distribution in the sample Ym. We will determine
the change of impurity function F (X,T ) as a function of t
when changing amount of tvp(X,Ym) from p(X,Zq) to p(X,Zs)

where t is a scalar and 0 < t < 1.
Now, by changing tvp(X,Ym), the new joint distributions in

Zq and Zs are p(X,Zq)− tvp(X,Ym) and p(X,Zs)+ tvp(X,Ym),
respectively. Denote the new joint distribution in each final
output Th after changing tvp(X,Ym) as a function of variable
t is p(X,Th)t

, from (8):

p(X,Th)t
= p(X,Th) − tvp(X,Ym)Aqh + tvp(X,Ym)Ash

= p(X,Th) + tvp(X,Ym)(Ash −Aqh).

Now, denote tvp(X,Ym)(Ash − Aqh) = δth. The total change
of impurity function F (X,T ) is:

It =
H∑

h=1

F (p(X,Th) + δth). (18)

However, from (18) and (16):

∂It
∂t
|t=0 = v

H∑
h=1

N∑
n=1

(cnkp(Xn,Ym))(Ash −Aqh). (19)

From (19) and (17), we have:

∂It
∂t
|t=0 = v[D(Ym, Zs)−D(Ym, Zq)].

From the assumption that D(Ym, Zs) ≤ D(Ym, Zk), ∀k ∈
{1, 2, . . . ,K}, then D(Ym, Zs) ≤ D(Ym, Zq). Thus,

∂It
∂t
|t=0 ≤ 0. (20)

Proposition 2. Consider It which is defined in (18). For 0 <
t < a < 1, we have:

It − I0
t

≥ Ia − I0
a

. (21)

Proof. Due to the limited space, we sketch the proof as
following. First, (21) is equivalent to:

It ≥ (1− t

a
)I0 +

t

a
Ia. (22)

Noting that It (in (18)) is the summation of the impurity in
each partition i.e., It =

∑H
h=1 F (p(X,Th) + δth) and F (.)

admits the properties in Proposition 1-(ii). Thus,

F (p(X,Th)+δth) ≥ (1− t

a
)F (p(X,Th)+δ0h)+

t

a
F (p(X,Th)+δah),

(23)
where δ0h denotes δth at t = 0. Summing up (23) for h =
1, 2, . . . ,H and using a bit of algebra, (22) follows. Please see
the full proof in our extension version.
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Now, we continue to the proof of Theorem 1. From Propo-
sition 2 and the assumption in (20), we have:

0 ≥ ∂It
∂t
|t=0 = lim

It − I0
t

≥ I1 − I0
1

.

Thus, I0 ≥ I1 which obviously implies that by completely
changing amount of vp(X,Ym) from p(X,Zq) to p(X,Zs), the
total of the impurity is obviously non-increasing. After that,
pZq|Ym

= 0 while pZs|Ym
increases an amount of v. By

the induction method and the assumption that D(Ym, Zs) ≤
D(Ym, Zk), ∀k ∈ {1, 2, . . . ,K}, by completely changing
Ym from Zk to Zs, ∀k ∈ {1, 2, . . . ,K}, k 6= s, the
total of the impurity is obviously non-increasing. Therefore,
if D(Ym, Zs) ≤ D(Ym, Zk) ∀k, a new quantizer having
pZk|Ym

= 0, ∀ k 6= s and pZs|Ym
= 1 provides the impurity

at least as the impurity of the soft partition quantizer Q∗.
Thus, (i) the globally optimal quantizer of the problem (1) is a
deterministic quantizer (hard clustering) i.e., pZi|Yj

∈ {0, 1},
∀ i, j and (ii) data Ym is quantized to Zs if D(Ym, Zs) ≤
D(Ym, Zk) for ∀k ∈ {1, 2, . . . ,K} and s 6= k.

Remark: To find the optimal quantizer, we only need to
search over all the possible hard quantizers.

IV. ALGORITHMS

A. Practical Algorithm

From the optimality condition in Theorem 1, we should
allocate the data Ym to the partitioned output Zk if and only
if the "distance" D(Ym, Zk) is shortest. Therefore, a simple
alternative optimization algorithm that is very similar to the
k-means algorithm can be applied to find the locally optimal
solution. Our algorithm is proposed in Algorithm 1. We also
note that the distance D(Ym, Zk) is:

D(Ym, Zk) =

H∑
h=1

N∑
n=1

[cnkp(Xn,Ym)]Akh

= pYm

H∑
h=1

N∑
n=1

[cnkpXn|Ym
]Akh.

Therefore, one can ignore the constant pYm while comparing
the distance D(Ym, Zk) and use a simpler version distance
D′(Ym, Zk) as follows:

D′(Ym, Zk) =
H∑

h=1

N∑
n=1

[cnkpXn|Ym
]Akh. (24)

Algorithm 1 works similarly to the k-means algorithm. The
distances from each data point Ym ∈ Y to each partitioned
output Zk ∈ Z are updated per iterations. Next, Ym will
be assigned to Zk if D(Ym, Zk) is the shortest distance.
The complexity of this algorithm, therefore, is O(TNKM)
where T is the number of iterations, N , K, M are the size
of data dimensional, the size of partitioned set Z and the
size of data set Y . Noting that in the case of the impurity
function is entropy and the channel matrix is identity matrix,
our algorithm is identical to the algorithm in [8].

Algorithm 1 Finding the communication optimized partition

1: Input: pX , pY , p(X,Y ), f(.).
2: Output: Z = {Z1, Z2, . . . , ZK}.
3: Initialization: Randomly hard cluster Y into K clusters.
4: Step 1: Updating p(X,Zk) and p(X,Th) for ∀ k ∈
{1, 2, . . . ,K} and h ∈ {1, 2, . . . ,H}:

p(Xn,Zk) =
∑

Ym∈Zk

p(Xn,Ym),

p(Xn,Th) =
K∑

k=1

p(Xn,Zk)Akh,

cnk =
∂F (p(X,Tk))

∂p(Xn,Tk)
,∀n ∈ {1, 2, . . . , N}.

5: Step 2: Updating the membership by measurement the
distance from each Ym ∈ Y to each Zk ∈ Z:

Zk = {Ym|D(Ym, Zk) ≤ D(Ym, Zs)},∀s 6= k, (25)

where D(Ym, Zk) is defined in (17) or in (24).
6: Step 3: Go to Step 1 until all the partitioned outputs
{Z1, Z2, . . . , ZK} stop changing or the maximum number
of iterations has been reached.

B. Hyper-plane separation

Similar to the work in [2], it is possible to show that the
optimal partition is equivalent to the cuts by hyper-planes in
the space of the posterior distribution. Therefore, existing a
polynomial time algorithm that can find the globally optimal
quantizer. The proof is based on the optimality condition in
Theorem 1 which states that if the quantizer Q∗ is optimal
then ∀Ym ∈ Zk, D′(Ym, Zk) ≤ D′(Ym, Zs), ∀s 6= k. We
refer the reader to a similar proof in [6]. Due to the limited
space, the details of proof will be presented in our extension
version.

C. Globally optimal quantizer for binary input data

Algorithm 1 is possible to find the optimal quantizer in a
linear time complexity of O(TNKM) where T is the number
of iterations, N , K, M are the size of data dimensional,
the size of partitioned set Z and the size of data set Y .
Unfortunately, this algorithms can get stuck at a locally
optimal solution which can be far away from the globally
optimal solutions. In this section, we show that if the data
is binary (N = 2), then the global optimal quantizer can be
found efficiently in a polynomial time complexity of O(M3).

Theorem 2. If the input data is binary (|X| = N = 2), the
globally optimal partition can be found in polynomial time
complexity of O(M3).

Proof. (Sketch). From the result in Sec. IV-B, the optimal
partition is equivalent to the cuts by hyper-planes in the space
of the posterior distribution. If N = 2, X = {X1, X2}, then:

pX|Yj
= [pX1|Yj

, pX2|Yj
] = [pX1|Yj

, 1− pX1|Yj
]. (26)
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Thus, the space of the posterior distribution is 1-dimensional
space respect to the unique variable pX1|Yj

for j =
1, 2, . . . ,M and a hyper-plane in this space is obviously
a scalar between zero and one. To achieve K partitioned
outputs, one requires K − 1 hyper-planes or K − 1 scalars
a1, a2, . . . , aK−1 such that:

0 ≤ a1 < a2 < . . . , aK−1 ≤ 1.

Now, each partitioned output Zi is separated by two scalars
ai−1 and ai such that if ai−1 ≤ pX1|Yj

≤ ai then Yj is
quantized to Zi (Q(Yj) = Zi). Therefore, the problem of
finding the optimal partition can be cast as the problem of 1-
dimensional quantization that can be solved efficiently using
dynamic programming algorithm [5]. The time complexity
of the dynamic programming is O(M3) in the worst case
[5]. Thus, the globally optimal partition can be found in
polynomial time complexity of O(M3). For the detail al-
gorithm, we refer the reader to a very similar work in [5]
for quantization that maximizes mutual information of binary
input channels.

D. Numerical results
We end this section by presenting an example of binary

input channel. Consider a binary input X = {X1 = −1, X2 =
1} having pX = [0.7, 0.3] which is transmitted over an
additive noisy channel with a normal distribution N(0, 1).
Due to the additive property, the received output Y ∈ R is
a continuous-valued signal with the conditional distributions
pY |X1

= N(−1, 1) and pY |X2
= N(1, 1). Y then is quantized

into K = 3 partitioned outputs Z = {Z1, Z2, Z3}. Next, Z
is transmitted over a relay channel with channel matrix A to
result in a final output T .

A =

 0.8 0.1 0.1
0.2 0.7 0.1
0.05 0.05 0.9

 .
Our goal is to design an optimal quantizer Q∗ that maximizes
the mutual information I(X;T ) between the input X and
the final output T . Noting that pX is given and I(X;T ) =
H(X)−H(X|T ), maximizing I(X;T ) is equivalent to min-
imizing the conditional entropy H(X|T ). It is possible to
verify that the conditional entropy satisfies conditions of a
impurity function [5]. Thus, all of the proposed algorithms
can be applied to design the optimal quantizer Q∗ that
maximizes I(X;T ). To use the proposed algorithms, we first
discretize Y to M = 200 pieces Y = [Y1, Y2, . . . , Y200] from
[−10, 10] with the same interval width of ε = 0.1. Next,
Y = [Y1, Y2, . . . , Y200] is sorted according to the increasing
order of pX1|Y . The dynamic programming is used to find
the optimal partition. Finally, the optimal partition is achieved
at Z∗1 = {Y | − 10 ≤ Y < −0.5}, Z∗2 = {Y | − 0.5 ≤
Y < 0.2} and Z∗3 = {Y |0.2 ≤ Y ≤ 10} which produces
I∗(X;T ) = 0.20953. The running time of the dynamic
programming is 2.32 seconds. Noting that a smaller value of
ε (or a higher value of M ) results in a higher accuracy of the
optimal partition at the expense of a larger time and memory
complexities.

V. CONCLUSION

The problem of designing the optimal quantizer that mini-
mizes the end-to-end impurity function between the input and
the final output is investigated. Our result generalizes some
previous results. An iteration algorithm is proposed to find
the locally optimal quantizer in a linear time complexity. In
additional, we also show that the optimal quantizer produces
a hard partition that is equivalent to hyper-plane cuts in the
probability space of the posterior probability. Thus, there exists
a polynomial time algorithm that can determine the globally
optimal quantizer.
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