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ABSTRACT
Partitioning algorithms play a key role in many scientific and
engineering disciplines. A partitioning algorithm divides a set
into a number of disjoint subsets or partitions. Often, the qual-
ity of the resulted partitions is measured by the amount of im-
purity in each partition, the smaller impurity the higher quality
of the partitions. Let M be the number of N -dimensional el-
ements in a set and K be the number of desired partitions,
then an exhaustive search over all the possible partitions to
find a minimum partition has the complexity of O(KM ) which
quickly becomes impractical for many applications with mod-
est values of K and M . Thus, many approximate algorithms
with polynomial time complexity have been proposed, but few
provide the bounded guarantee. In this paper, we propose a
linear time algorithm with bounded guarantee based on the
maximum likelihood principle. Furthermore, the guarantee
bound of the proposed algorithm is better than the state-of-the-
art method in [1] for many impurity functions, and at the same
time, for K ≥ N , the computational complexity is reduced
from O(M3) to O(M).

Index Terms— Partition, approximation, impurity.

1. INTRODUCTION

Partitioning plays a key role in many scientific and engineer-
ing disciplines. A partitioning algorithm divides a set of M
N -dimensional elements into K disjoint subsets or partitions
to optimize an objective function. Often, the quality of the
resulted partitions is measured by the amount of impurity in
each partition, the smaller impurity the higher quality of the
partitions. Typically, the amount of impurity is measured by
a real-valued function over the resulted partitions. In general,
for a given impurity measure specified by a function over the
partitions, finding the minimum impurity partitions is an NP-
hard problem [2, 3]. Since the number of possible partitions
is KM , an exhaustive search over all the possible partitions
to find a minimum partition has the complexity of O(KM )
which quickly becomes impractical for many applications
with modest values of K and M . To that end, many approxi-
mate algorithms with polynomial time complexity have been
proposed, but few provide bounded guarantee [4–17]. Many
of these algorithms exploit the concavity of the impurity func-
tion to speed up the running time [5], [8], [9], [17], [18].
For example, Burshtein et al. [8] and Coppersmith et al. [5]
provided algorithms and theoretical analysis for the partition-
ing problem for a general concave impurity function called

"frequency-weighted impurity". These "frequency-weighted
impurity" are concave functions over its second argument.
Two popular impurity functions the Gini index [9] and Shan-
non entropy [4] belong to this class of frequency-weighted
impurity. Burshtein et al. and Coppersmith et al. showed that
an optimal frequency-weighted impurity partition is separated
by hyperplane cuts in the space of probability distributions.
From this insight, they also proposed polynomial time algo-
rithms to determine the optimal partitions [5], [8]. Based on
the work of Burshtein et al., Kurkoski and Yagi proposed an
algorithm to find the globally optimal partition that minimizes
entropy impurity in O(M3) when N = 2 [19]. Although
many heuristic algorithms have been proposed, there are few
results in finding algorithms that provides a bounded guar-
antee on the performance. To fill this gap, recently Laber
et al. [20] constructed a 2-approximation algorithm with the
computational complexity of O(2NM logM) for binary par-
tition (K = 2). In other words, Laber et al. showed that the
impurity achieved by their algorithm is at most a factor of 2
away from the true optimal impurity. As the extension of the
work in [20], Cicalese et al. [1] proposed a heuristic algorithm
for the number of partitions K > 2 based on dynamic pro-
gramming technique in [19]. Their proposed algorithm runs in
polynomial time O(M3) and can achieve log2(min{N,K})-
approximation for the entropy impurity and 3-approximation
for the Gini index impurity.

In this paper, we propose a linear time algorithm with
bounded guarantee based on the maximum likelihood prin-
ciple for a wide class of impurity functions. To keep the
generality of the impurity functions, instead of the providing
a constant factor approximation, the proposed algorithm pro-
vides both the upper bound and the lower bound differently
for different impurity functions. We show that for many well-
known impurity functions such as entropy and Gini index,
these bounds are theoretically better than that of the state-
of-art method in [1] while the computational complexity is
reduced from the polynomial time complexity O(M3) to the
linear time complexity O(M) for K ≥ N .

2. PROBLEM FORMULATION

We assume that the data set Y to be partitioned consists of M
discrete data points generated from an underlying probabilis-
tic model. Specifically, let X be a discrete random variable
taking on the values x1, x2, . . . , xN with a given probability
mass vector px = (p(x1), p(x2), . . . , p(xN )). Let Y be an-
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other discrete random variable taking on values y1, y2, . . . , yM
which follows a given conditional probability p(yj |xi). The
goal is to design a mapping Q that partitions Y into K parti-
tions z1, z2, . . . , zK ∈ Z such that a given impurity function
over the resulted partitions is minimized.

Q(Y )→ Z.

In this setting, for given p(xi) and p(yj |xi), p(xi, yj) are
assumed to be given ∀i, j. Thus, each data point yj is repre-
sented by a joint distribution vector px,yj =(p(x1, yj),p(x2, yj),
. . . , p(xN , yj)). Each mapping Q induces a joint distribution
vector px,zk = (p(x1, zk), p(x2, zk), . . . , p(xN , zk)) between
X and Z = zk. The conditional distribution of X given
Z p(xi|zk) and the marginal probability mass function of Z
p(zk) can be determined from px,zk . We want to find an op-
timal mapping Q∗ to minimize the impurity function IQ that
satisfies two following conditions:

• (Required) IQ has the following form:

IQ =
K∑

k=1

N∑
i=1

p(zk)f(p(xi|zk)), (1)

where f(.) : R → R+ is a non-negative concave func-
tion.

• (Optional) f(x) = xl(x) where l(x) : R → R is a
convex function. This second condition is optional in
the sense that we use it in the analysis of the constant
factor approximation for the proposed algorithm. The
algorithm itself does not make use of this condition.

Many popular impurity functions such as entropy and Gini in-
dex satisfy our conditions. Noting that in [1] and [20], to guar-
antee the constant factor approximation, the authors consid-
ered a class of impurity concave functions f(.) with an addi-
tional condition on xf ′′(x) being a non-increasing function.

3. IMPURITY MINIMIZATION ALGORITHM

In this section, we first construct both upper and lower bounds
for impurity functions of the form in (1). Using these bounds,
we show that the proposed maximum likelihood algorithm
achieves a constant factor approximation. First, define:

k∗ = argmax
1≤i≤N

p(xi|zk), (2)

eQ =

K∑
k=1

p(zk)p(xk∗ |zk), (3)

and
emax = max

Q
eQ. (4)

For a given k, xk∗ is most likely to produce zk. Therefore,
eQ is the weighted sum of the maximum likelihood of each
xk∗ for each zk. In addition, from (2), 1/N ≤ eQ ≤ 1. We
also note that each mapping Q induces a p(xi, zk) and thus
p(xi|zk). So k∗ and eQ are different for different Q. Our ap-
proach to find the minimum impurity is to find two functions:

u(eQ) and l(eQ) such that l(eQ) ≤ IQ ≤ u(eQ). Further-
more, we show that u(eQ) and l(eQ) are decreasing functions
for many impurities. Therefore, by minimizing u(eQ), i.e.,
maximizing eQ, we can bound the minimum value of IQ be-
tween u(eQ) and l(eQ) for some eQ.

3.1. Upper Bound of The Impurity Function

We have the following theorem for the upper bound of an im-
purity function IQ.

Theorem 1. (Upper bound) For any given mapping Q that
induces eQ, let

u(eQ) = f(eQ) + (N − 1)f(
1− eQ
N − 1

), (5)

then:
u(eQ) ≥ IQ. (6)

Proof. From the definition of the impurity function, we have:

IQ =
K∑

k=1

N∑
i=1

p(zk)f(p(xi|zk))

=
K∑

k=1

p(zk)f(p(xk∗ |zk)) +
K∑

k=1

N∑
i6=k∗,i=1

p(zk)f(p(xi|zk))

≤ f(
K∑

k=1

p(zk)p(xk∗ |zk))+
K∑

k=1

N∑
i 6=k∗,i=1

p(zk)f(p(xi|zk)) (7)

≤ f(
K∑

k=1

p(zk)p(xk∗ |zk))

+
K∑

k=1

p(zk)[(N−1)f(
∑

i=1,i6=k∗ p(xi|zk)
N − 1

)] (8)

= f(eQ) + (N − 1)
K∑

k=1

p(zk)f(
1− p(xk∗ |zk)

N − 1
) (9)

≤ f(eQ) + (N − 1)f(

∑K
k=1 p(zk)(1− p(xk∗ |zk))

N − 1
) (10)

= f(eQ) + (N − 1)f(
1− eQ
N − 1

), (11)

where (7) is due to concavity of f(.) and
∑K

k=1 p(zk) = 1, (8)
is due to Jensen inequality for concave function, (9) is due to
the definition of eQ and

∑N
i=1,i6=k∗ p(xi|zk)+p(xk∗ |zk) = 1,

(10) is due to concavity of f(.) together with
∑K

k=1 p(zk) = 1,
(11) is due to

∑K
k=1 p(zk) = 1. If f(.) is entropy function, our

bound is identical to Fano’s inequality [21].

Theorem 2. u(eQ) is a monotonic decreasing function.

Proof. By taking the derivative of u(eQ) and noting that eQ ≥
1/N , ∀Q, it is possible to show that u′(eQ) < 0 or u(eQ) is a
monotonic decreasing function.

Based on Theorem 2, let emax be the maximum value over
all eQ i.e., emax = maxQ eQ, then u(emax) has the minimum
value. Since u(eQ) is an upper bound of IQ, u(emax) provides
a good upper bound for IQ∗ . We now state an important result
that characterizes the structure of the emax mapping (Qemax ).
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Theorem 3. (Structure of the emax mapping) Let Z and X
be the sample spaces of Z and X , respectively. Let j∗ =
argmaxi p(xi, yj) and define mapping Qemax with the follow-
ing structure:

Qemax(yj) = zj∗ . (12)

(a) If |Z| = |X |, then Qemax produces emax = maxQ eQ.
Conversely, for any Q that produces emax, Q must have the
structure of Qemax .

(b) If |Z| > |X |, then Qemax still produces emax =
maxQ eQ. However, it is not necessary that for any Q that
produces emax, Q must have the structure of Qemax .

Proof. Please see our extension version.

3.2. Algorithm

Based on the upper bound in Theorem 1, to minimize the
impurity function, one wants to minimize the impurity’s up-
per bound u(eQ). Based on Theorem 2, to minimize u(eQ),
one wants to maximize eQ. Let VK be the set of binary N -
dimensional vectors v’s, each contains exactly K entries 1
and N − K entries 0. Thus, the size of VK is

(
N
K

)
. For

each v = (v1, v2, . . . , vN ), define the N -dimensional vector:
p′x,yj

= (v1p(x1, yj), v2p(x2, yj), . . . , vNp(xN , yj)) then
p′x,yj

has exactly K non-zero entries. Next, we consider the
following possible cases.

1. K = N : When K = N , VK = VN contains exactly
one v which is v = (1, 1, . . . , 1). Using Theorem 3-(a)
with p(xi, yj) replaced by p′(xi, yj) will produce emax.

2. K < N : When K < N , there are
(
N
K

)
mappings Q

that partition K-dimension vectors p′x,yj
to K parti-

tions. Moreover, from the necessary condition in Theo-
rem 3-(a), at least one of mapping in this

(
N
K

)
mappings

must achieve emax.
3. K > N : From Theorem 3-(b), the partition which

achieves emax is exactly the same with the partition
when K = N .

Based on these possible cases and using Theorem 3, the
algorithm follows.

Running time of Algorithm 1: To find the partition that
generates emax, we need to search over all the possible map-
pings v ∈ VK . For each v, Algorithm 1 has complexity of
O(M). Since there are

(
N
K

)
possible v if K < N , Algorithm

1 has the complexity of O(
(
N
K

)
M). In the worst case when

K = N/2, the complexity of Algorithm 1 is O(2N/2M).
However, if K ≥ N , there is only one mapping v and the
running time of algorithm is O(M).

4. CONSTANT FACTOR APPROXIMATION
ANALYSIS FOR ENTROPY AND GINI INDEX

In this section, we state a few results for establishing the con-
stant approximation property of Algorithm 1. The following
theorem establishes a lower bound for IQ. This lower bound
predicates on the second condition f(x) = xl(x) where l(x)
is a convex function. It is not used explicitly in the algorithm
but is used in the analysis to establish the constant factor ap-
proximation property of the algorithm.

Algorithm 1 Finding Qemax and emax.

1: Input: Dataset Y = {y1, . . . , yM}, p(xi, yj), K, and N .
2: Output: Partition Z = {z1, z2, . . . , zK}.
3: If K < N : V = VK
4: If K ≥ N : V = VN
5: For v ∈ V
6: For 1 ≤ j ≤M , 1 ≤ i ≤ N
7: Step 1: Projection.

p′(xi, yj) = vip(xi, yj). (13)

8: Step 2: Finding the maximum likelihood.

j∗ = argmax
1≤i≤N

{p′(xi, yj)}. (14)

9: Step 3: Partition assignment.

Q(yj)→ zj∗ . (15)

10: End For
11: Computing emax: Using the resulted partitions

Z = {z1, z2, . . . , zK} and (3) to compute emax.
12: End For
13: Return: Returning Z = {z1, z2, . . . , zK} and emax.

Theorem 4. (Lower bound) For any given mapping Q that
induces eQ, we have:

IQ ≥ l(eQ). (16)

Proof. Please see our extension version.

Theorem 5. (R(emax)-approximation) Algorithm 1 pro-
vides R(emax)-approximation for both entropy and Gini index
impurities where:

R(emax) =
u(emax)

l(emax)
. (17)

Proof. Let IQ∗ be the minimum impurity and IQemax be the
impurity produced by running Algorithm 1. Now, assume that
Q∗ produces eQ∗ . From the definition of emax, eQ∗ ≤ emax.
Moreover, it is straightforward to show that l(eQ) for both
entropy and Gini index impurities are decreasing functions.
Thus, IQ∗ ≥ l(eQ∗) ≥ l(emax). Therefore,

IQemax

IQ∗
≤ u(emax)

mineQ l(eQ)
=

u(emax)

l(emax)
= R(emax). (18)

Thus, the impurity produced by Algorithm 1 is guaranteed to
be away from the true solution by at most a factor of R(emax).

The result in Theorem 5 can be applied for any con-
cave impurity function f(x) = xl(x) with l(x) being a
non-increasing function. Next, we show that R(emax)-
approximation is better than the approximation in [1] for
both the entropy impurity and the Gini index impurity.

Theorem 6. Algorithm 1 provides a 2-approximation for Gini
index impurity.
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Impurity Data set K emax R(emax) Alg. 1 Iter-Alg. Alg. 1/Iter-Alg.

Entropy 20NEWS 20 0.2420 1.9630 3.9658 3.9043 1.01575
RCV1 103 0.2185 2.7215 4.7935 4.5667 1.04966

Gini index 20NEWS 20 0.2420 1.2021 0.9055 0.8890 1.01856
RCV1 103 0.2185 1.2108 0.9206 0.9052 1.01701

Table 1: Entropy and Gini index impurities using 20NEWS and RCV1 data sets.

Proof. For the Gini index impurity function, f(x) = x(1−x)
and l(x) = 1− x. Thus,

R(emax) =
f(emax) + (N − 1)f(

1− emax

N − 1
)

l(emax)

=
emax(1−emax)+(N−1)1−e

max

N−1 (1− 1−emax

N−1 )

1−emax
(19)

= emax + 1− 1− emax

N − 1
≤ emax + 1 ≤ 2, (20)

with (19) due to f(x) = x(1−x) and l(x) = 1−x, (20) due to
a bit of algebra and emax ≤ 1. Noting that one can use emax+1
as another approximation for Gini index impurity.

Remark 1. Algorithm 1 provides a 2-approximation for Gini
index impurity in comparison of a 3-approximation in [1].

Theorem 7. The entropy impurity approximation provided by
Algorithm 1 is better than the approximation in [1] in case of
K ≥ N , i.e., R(emax) < log2(min{N,K}) = log2(N) if

N ≥ Nmin = 2S(emax), (21)

where
S(emax)=

1−emax

−2log(emax)
+

√
4H(emax)(−log(emax))+(1−emax)2

−2 log(emax)
,

and H(x) = −(x log x + (1 − x) log(1 − x)) is the binary
entropy of x.

Proof. Please see our extension version.

If K ≥ N , our bound for entropy impurity is theoretically
better than that of [1] while the computational complexity is
reduced from O(M3) to O(M). When K < N , it is possible
that the algorithm in [1] provides a better approximation. Fig.
1 shows the performance bound of the proposed algorithm vs.
the state of the art in [1]. R(emax) vs. emax ∈ (0.01, 0.99)
for N = K = 10 and N = K = 20 are plotted in red while
the approximations of [1] (log2(N)) are plotted in blue. As
seen, the red curves are always below the blue curves. More-
over, the gaps between our approximation and that of [1] are
proportional to the size of N . That said, for large values of N ,
our approximation is progressively better than that of [1]. We
also note that S(emax) is monotonic increasing. Thus, if emax

increases, then Nmin increases. For example, if emax = 0.5
then (21) holds for Nmin = 2.42, if emax = 0.8, (21) holds
for Nmin = 3.58, if emax = 0.9, (21) holds for Nmin = 4.34,
if emax = 0.999, (21) holds for Nmin = 9.06.

5. NUMERICAL RESULTS
To evaluate the performance of the proposed algorithm, we
used two data sets: 20NEWS and RCV1 [22]. These are
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Fig. 1: R(emax) for entropy using (a) N = 10; (b) N = 20.

widely used for evaluating text classification methods. Ex-
isting algorithms [5], [10], [23] can only find locally optimal
solutions. To approximate a globally optimal solution, many
iterative algorithms use multiple random starting points and
select the best solution. To that end, we compare the im-
purity provided by Algorithm 1 with the impurity produced
by running the iterative algorithms from 100 randomly start-
ing points. Although these iterative algorithms do not guar-
antee to find a globally optimal solution, their performances
were shown in [23] to outperform the clustering methods in
[24] and [25]. The code as well as the datasets are avail-
able at https://github.com/hoangle96/linear_
clustering. Particularly, the dataset 20NEWS contains
M = 51840 vectors of dimension N = 20 while the dataset
RCV1 has 170946 vectors of dimension 103. The joint distri-
bution p(xi, yj) for these data set is computed ahead of time.
We run both Algorithm 1 and the iterative algorithm using
K = 20 for 20NEWS and K = 103 for RCV1. The impu-
rity of these algorithms are provided in Table 1. As seen, the
impurity provided by Algorithm 1 is very close to the impu-
rity obtained from the iterative algorithm (see Alg.1/Iter-Alg.
column in Table 1) (assuming that the iterative algorithm ob-
tains a globally optimal solution). For the entropy impurity,
the running times of Algorithm 1 for 20NEWS and RCV1 data
sets are 0.02 and 0.03 seconds. These are significantly faster
than the running times of iterative algorithm which are 83.57
and 1350.67 seconds, respectively. For the Gini index impu-
rity, the running times of Algorithm 1 for 20NEWS and RCV1
data sets are 0.01 and 0.02 seconds, while the running times of
iterative algorithm are 14.90 and 82.39 seconds, respectively.
Again, Algorithm 1 is significantly faster.

6. CONCLUSION

In this paper, we proposed a guaranteed bounded linear time
algorithm for minimizing a wide class of impurity function in-
cluding entropy and Gini index. In some cases, we showed
that the proposed algorithm is better than the state-of-art al-
gorithms in both terms of computational complexity and the
quality of partitioned outputs.
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