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Abstract—This paper proposes an efficient algorithm for
finding the channel capacity of discrete memoryless thresholding
channels (DMTCs) that are typically used in Pulse Amplitude
Modulation (PAM). While there are efficient algorithms for
determining capacity of a discrete memoryless channel (DMC),
it is difficult to obtain the capacity of a DMTC. Unlike a typical
DMC channel whose the capacity is a convex function of the
input distribution, the capacity of a DMTC is a non-convex
function of both the input distribution and decision thresholds.
To resolve this problem, we propose an efficient algorithm for
approximating the channel capacity of a DMTC using a novel
modified k-means algorithm whose computational complexity
is reduced by a factor of M

logM
over the standard k-means

algorithm, where M relates to the precision resolution of the
solution. Both theoretical and numerical results are provided to
verify the proposed algorithm.

Keyword: channel quantization, algorithm, mutual informa-
tion, threshold, partition, optimization.

I. INTRODUCTION

A communication system can be modeled by an abstract
channel with a set of inputs at the transmitter and a set
of corresponding outputs at the receiver. Often times the
transmitted symbols (inputs) are different from the receiving
symbols (outputs), i.e., errors occur due to many factors such
as the physics of signal propagation through a medium or
thermal noise. Thus, the goal of a communication system is
to transmit the information reliably at the fastest rate. The
fastest achievable rate with vanishing error for a given channel
is defined by its channel capacity which is the maximum mu-
tual information between input and output random variables.
For an arbitrary discrete memoryless channel (DMC) that is
specified by a given channel matrix, the mutual information
is a concave function of the input probability mass function
[1]. Thus, many efficient algorithms/closed-form expressions
exist to find the channel capacity of DMC [2], [3]. On the
other hand, in many real-world scenario, the channel matrix
is not given. Rather, the channel matrix is designed under the
consideration of many factors such as power consumption,
encoding/decoding speeds, and so on. As a result, the mutual
information is no longer a concave function of the input dis-
tribution alone, but is a possibly non-concave/convex function

Figure 1: A DMTC K inputs and K outputs using K − 1
thresholds.

in both input distribution and the parameters of the channel
matrix.

In fact, many real-world communication scenarios can be
modeled as a channel with discrete inputs, additive continuous
noise, the discrete outputs as a result of quantizing the
sum of continuous noise and discrete inputs. In such cases,
each quantization scheme produces a different channel ma-
trix which ultimately determines the channel capacity. Thus,
designing an optimal quantizer is critical. Many quantizers
are based on some intuitive objectives such as minimizing the
MSE distortion and error rate [4] or maximizing the mutual
information (capacity) between the inputs and outputs [5],
[6]. Recently, designing quantizers that maximize the mutual
information is also important in the design of Polar code and
LDPC code decoders [7]. We also note that these quantizers
assume the input distribution is given and the output is discrete
while only in [8] and [9], the quantization of continuous
output channel is investigated. Specifically, only in [9], a near
optimal algorithm is constructed for maximizing the mutual
information of continuous output channel as a function of both
quantizer and input distribution.

Discrete Memoryless Thresholding Channel. One impor-
tant class of quantizer is the thresholding quantizer which
maps a continuous value u ∈ R to a discrete value v such
that every distinct v corresponds to one single continuous
interval covering u. Such quantizer is suitable for the decoder
that uses Pulse Amplitude Modulation (PAM) in which the
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output symbols are recovered based on the magnitude of
received signals. Fig. 1 shows the setup of a discrete memo-
ryless thresholding channel (DMTC). In this setup, the input
xi ∈ X = {x1, . . . , xK} are assumed to be discrete. The
received signal u ∈ R is drawn from the conditional density
pU |X(u|xi). pU |X(u|xi) models the effect of noise. The noise
can have different characteristics for different transmitted
signals. u is then quantized into vi, vi ∈ V = {v1, . . . , vK}
as the output using a quantizer Q:

Q(u) = vi, if hi−1 ≤ u < hi, (1)

with h0 = −∞ and hK = +∞. A quantizer Q(.), therefore,
is equivalent to a threshold vector h = {h1, . . . , hK−1}.

The capacity is found by selecting the optimal input p.m.f
p∗X and the optimal thresholds h∗ that maximize the mutual
information I(X;V ). To our knowledge this problem is
difficult and not well-studied [8].

In this paper, we propose an efficient algorithm for approx-
imating the channel capacity of this DMTC using a novel
modified k-means algorithm with the Kullback-Leibler (KL)
metric. We show that the computational complexity of the

proposed algorithm is reduced by factor of
M

logM
over the

standard k-means algorithm.

II. PROBLEM FORMULATION AND SOLUTION APPROACH

Fig. 1 shows the setup of a DMTC. The input set consists
of K discrete transmitted symbols x1 < x2 < · · · < xK .
Due to a continuous noise, the received signal is u ∈ R

and is modeled via the conditional density pU |X(u|xi). We
note that pU |X(u|xi) can have different statistics associated
with each transmitted signals xi. In the special case where
ui = xi + ni with ni’s are i.i.d, then pU |X(u|xi) is simply
a shifted version of pU |X(u|xj), ∀i, j. u is then quantized
into K discrete outputs vi ∈ V = {v1, . . . , vK}. Since the
thresholding quantization is used, there are K − 1 thresholds
h1 ≤ h2 ≤ · · · ≤ hK−1. The channel capacity is the
maximum mutual information, therefore it is a solution to the
following optimization problem:

C = max
pX ,Q

I(X;V ), (2)

where pX is the input p.m.f and Q(.)=h={h1,. . . ,hK−1} is
the quantizer with,

Q(u) = vi, if hi−1 ≤ u < hi. (3)

We note that this type of quantizer is not optimal in general.
Depending on the characteristics of noise, for a DMTC with a
given K output symbols, the optimal quantizer might consists
more than K − 1 thresholds. The reason is that there might
be multiple distinct intervals consisting u that maps to a vi.
On the other hand, it can be shown that this thresholding
quantizer structure is actually optimal for many real-world
scenarios [6]. In this paper, we will focus on finding capacity
for this thresholding quantizer.

Unfortunately, I(X;V ) is not a convex/concave function
in pX and h, making this problem difficult to solve. To this

end, we propose the Algorithm 1 that efficiently finds the
capacity by solving two simpler sub-problems iteratively. The
main idea is to use the alternating direction algorithm that
(1) maximizes I(X;V ) with respect to pX while keeping h
fixed, which then (2) maximizes I(X;V ) with respect to h
while given pX . The steps (1) and (2) are repeated until a
convergence is reached. In particular, let I(X;V ) be written
as a function I(pX , h) of pX and h, then sub-problem 1 is:

P1: Maximize:
I(pX , h)

s.t:
0 � pX � 1,

1T pX = 1.

P1 is a constrained convex optimization problem since for a
fixed h, I(pX , h) is a concave function [1], [2], [3], and can be
solved efficiently using gradient descent algorithms [1]. The
constraints are imposed to make pX is a valid p.m.f.

The sub-problem 2 is:
P2: Maximize:

I(pX , h)

s.t:

hi ≤ hi+1, i = 1, 2, . . . ,K − 2.

In solving P2, pX is fixed while h is the optimization
variable. In general, P2 is not as easy to solve as P1 since
I(pX , h) is not a convex/concave function in relation to h.
However, there are methods for solving P2 effectively, e.g.,
using the k-means algorithm. In this paper, we propose a
modified version of k-means algorithm that takes advantage
of the structure of the noise to speed up the time complexity
significantly. Also, since P1 is readily solved, the rest of the
paper will be focused on the algorithm and analysis for solving
P2 using the modified k-means algorithm.

Algorithm 1 Maximizing the mutual information. ε is a small
given value for convergence; t is the iteration.

1: t = 0, E = 1 � E is any number larger than ε

2: Choose initial random vectors p
(t)
X and h(t)

3: While E > ε
4: p

(t+1)
X = argmaxpX

I(pX , h(t)) � fixed h(t)

5: h(t+1) = argmaxh I(p
(t+1)
X , h) � fixed p

(t+1)
X

6: E = |I(p(t+1)
X , h(t+1))− I(p

(t)
X , h(t))|

7: t = t+ 1
8: End
9: return I(p

(t)
X , h(t))

III. MUTUAL INFORMATION MAXIMIZATION GIVEN pX

We discuss the algorithm and its analysis for the sub-
problem P2. The proposed algorithm is based on the mod-
ified k-means algorithm using KL-divergence as the distance
metric. Before discussing the rationale for using the KL-
divergence and the k-means algorithm, let us define the
notations.
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Notation. Let xu denote the conditional pmf:

xu = (pX|U (x=x1|u), pX|U (x=x2|u), . . . , pX|U (x=xK |u)),
where

pX|U (x|u) =
pU |X(u|x)pX(x)∑

x′∈X pX|U (u|x′)pX(x′)
.

Define
φi(u) = pU |X(u|xi)

as the conditional noise density of u given the transmitted
signal xi, then

xu = [
p1φ1(u)

∑K
j=1pjφj(u)

,
p2φ2(u)

∑K
j=1pjφj(u)

, . . . ,
pKφK(u)

∑K
j=1pjφj(u)

], (4)

where pj denotes jth vector component of pX .
Similarly, let xvi

denote the conditional p.m.f

xvi = (pX|V (x=x1|v=vi), . . . , pX|V (x=xK |v=vi)), (5)

where
pX|V (x|v) =

pV |X(v|x)pX(x)∑
x′ pX|V (V |x′)pX(x′)

.

Also,
pV |X(v|x) =

∫
u:Q(u)=v

pU |X(u|x).

A. k-means Algorithm With KL-Divergence Using A General
Quantizer

In this section, we provide justification for using k-means
algorithm with KL-divergence for maximizing I(X;V ).

Kullback-Leibler Divergence. KL divergence of two prob-
ability vectors a = (a1, a2, . . . , aJ) and b = (b1, b2, . . . , bJ)
of the same outcome set is defined as

D(a||b) =
J∑

i=1

ai log(
ai
bi
). (6)

For a given u and a given quantizer that produces vi =
Q(u), the KL-divergence between the conditional pmfs xu
and xvi is denoted as D(xu||xvi

). If the expectation is taken
over U , i.e., over the noise distribution, and V = Q(U) for
any quantizer, then from Lemma 1 [5], we have:

EU [D(xu||xvi)] = H(X|V )−H(X|U)

= I(X;U)− I(X;V ).

Since for a fixed pX and the conditional noise density
φi(x), I(X;U) is fixed and independent of the quantizer Q.
Thus, maximizing I(X;V ) over Q is equivalent to minimizing
EU [D(xu||xvi

)] with optimal quantizer:

Q∗ = min
Q

EU [D(xu||xvi)]. (7)

k-means Algorithm. Now, the optimal Q∗ in Eq. (7) can
be found effectively using a k-means algorithm. A generic
k-means algorithm is conceptually a clustering algorithm
that classifies a cloud of M discrete points into K clusters
(sets) C1, C2, . . . , CK such that if a point x ∈ Ci then
d(x,Ci) ≤ d(x,Cj), ∀j, where d(x,C) denotes some distance
metric of the point x to the set C. Often, d(x,C) is defined

as the distance from x to the centroid of the set C. k-means
algorithm works as follows. First, K centroids are randomly
selected. Next, each point x is assigned to the a cluster whose
centroid is closest the point x. After all the points have been
assigned, the centroids of each cluster are recomputed. The
assignment of the points to the clusters then starts again
with the new centroids, then new centroids based on the new
assignment are again recomputed. The process keeps on until
there is no change in cluster membership.

Since the k-means algorithm minimizes the sum of dis-
tances of every point to its centroid, therefore, based on our
discussion of KL divergence above, to find Q∗ we can treat xu

(function of u) as a K-dimensional point, xvi as the centroid
of the cluster Ci, and D(xu||xvi) as the distance of the point
xu to to the centroid xvi .

Because u is a continuous value and k-means algorithm
is used only for discrete points, we first discretize the range
of u into M bins of equal width ε, with u1, u2, . . . , uM as
the center values. The k-means algorithm finds vi = Q∗(uj),
for ∀ j = 1, 2, . . . ,M , i = 1, 2, . . . ,K. Note that this is a
general quantizer which requires a lookup table consisting of
M entries. If the actual u value is not in one of the ui then
we pick the nearest ui to feed to the quantizer. As seen, the
larger M results in a better approximation, but also results in
a larger lookup table for Q∗(uj). Algorithm 2 shows the k-
means algorithm using KL divergence as the distance metric.

We note that the Cluster assignment step (Line 4) is similar
to classical k-means algorithm, however, the distance metric is
KL divergence. In the Computing centroids step (Line 5), the
centroids are updated using Eq. (9). The proof can be viewed
in Proposition 1 of [10] for all the Bregman divergences whose
special case is the KL divergence. We note that the proof in
[10] is for discrete domain, however, a similar result can be
easily established for continuous domain. Due to the limitation
of space, please see the proof in our extension version.

Computational Complexity of Algorithm 2. As described,
there are two main iterative operations in a generic k-means
algorithm to cluster M points into K clusters, namely, the
computing centroid operation and the cluster assignment
operation. Since each point in Algorithm 2 is a vector of
K-dimensional space, the computational complexities of the
computing centroid operation is O(KM) and of the cluster
assignment operation is O(K2M). Since, the cluster assign-
ment operation is most expensive, the overall complexity of
the k-means algorithm is O(K2MT ) = O(K

2

ε T ) where ε
is the width of the discretized interval, i.e., the precision
of the solution, and T is the number of iterations. In the
new k-means algorithm using a thresholding quantizer (rather
than a general quantizer), we show that the complexity is
significantly reduced to O(TK2 logM).

B. k-means Algorithm with KL Divergence Using Threshold-
ing Quantizer

In this section, we present a modified version of the k-
means algorithm in III-A using a thresholding quantizer. By
taking advantage of the structure of a thresholding quantizer,
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Algorithm 2 k-means algorithm with KL divergence as a
distance metric

1: Input: pX , φi(u), K, M .
2: Ouput: Cluster Cj , j = 1, 2, . . . ,K. Given Cj , the

quantizer Q(ui) → vj if xui ∈ Cj .
3: Initialization: Discretize u into to M values:

u1, u2, . . . , uM , and compute xui
for each ui. Pick

an arbitrary quantizer Q(.), i.e., pick K arbitrary xvj ,
j = 1, 2, . . .K.

4: Step 1 (Cluster assignment): Cluster xu1 , xu2 , . . . , xuM

into one of the cluster Cj with the centroid xvj .

Cj = {ui|D(xui ||xvj ) ≤ D(xui ||xvs), ∀s �= j}, ∀j. (8)

5: Step 2 (Computing centroids): Computing centroids for
each cluster Cj :

(xvj
)i =

∫
Cj
(pX)iφi(u)du∑K

k=1

∫
Cj
(pX)kφk(u)du

, ∀i, j, (9)

where (pX)i and (xvj )i denote ith component of pX and
xvj .

6: Step 3: Go to Step 1 until all clusters stop changing or
the maximum number of iterations is reached.

the new algorithm has a much lower complexity. Unlike a
general quantizer that needs a lookup table consisting of M
entries, a thresholding quantizer has only K − 1 thresholds
h = {−∞, h1, . . . , hK−1,+∞} that follows Eq. (3) which
decodes a continuous value u to K contiguous regions such
that if u ∈ (hk−1, hk), the receiver will decode u to vk ∈ V =
{v1, v2, . . . , vK} [9]. Therefore, a thresholding quantizer lends
itself to a simple circuit implementation consisting of a few
comparators. That said, the optimal thresholding quantizer is:

h∗ = argmax
h

I(X;V ). (10)

Algorithm 3 finds h∗ = {h∗
1, h

∗
2, . . . , h

∗
K−1}.

Similar to Algorithm 2, Algorithm 3 is a k-means algo-
rithm with a twist. The computing centroids step (Line 4) in
Algorithm 3 is equivalent to computing centroids step (Line 5)
in Algorithm 2 using Ck = [hk−1, hk]. In particular, instead
of performing the most time consuming classic Clustering
assignment step (Line 4) in Algorithm 2, where the distances
from every point to every centroid are compared, this step is
replaced with step 2 of the Algorithm 3. In this step 2, only
the boundaries of the clusters, specifically, h is updated. This
is possible because the structure of the thresholding quantizer
requires that all values of u’s that maps to the same vi, must be
in a same contiguous region. To update h, Eq. (13) is solved
for every uk. We note that xuk

and xvk are defined in Eqs. (4)
and (5), respectively. We also note that the Eq. (13) effectively
groups u into the right cluster since the group membership
decision occurs when either D(xuk

||xvk−1
) > D(xuk

||xvk) or
D(xuk

||xvk−1
) < D(xuk

||xvk). The root of D(xuk
||xvk−1

) =
D(xuk

||xvk) acts as the boundaries between clusters, i.e.,
h. We will show that with a mild assumption on the noise

Algorithm 3 k-means Algorithm Using Thresholding Quan-
tizer

1: Input: pX , φi(u) = pU |X(u|xi), K, M .
2: Output: h = {h1, h2, . . . , hK−1}
3: Initialization: Randomly choose K−1 thresholds hk ∈ R

for k ∈ {1, 2, . . . ,K − 1} such that hk < hk+1.
4: Step 1 (Computing Centroids): Updating centroids for

each cluster:

xvk
= [(xvk)1, (xvk)2, . . . , (xvk

)K ], (11)

(x∗
vk
)i =

∫ hk

hk−1
piφi(u)du∑K

j=1

∫ hk

hk−1
pjφj(u)du

. (12)

5: Step 2 (Updating Thresholds)
For every k = 1, 2, . . .K − 1, find uk such that:

D(xuk
||xvk−1

) = D(xuk
||xvk

), (13)

hk−1 = uk.

6: Step 3: Go to Step 1 until all hk’s stop changing or the
maximum number of iterations is reached.

density, φi(u), this Step 2 can be solved effectively with
complexity of O(K2 logM), where M , similar to Algorithm
2, is the parameter that controls the precision of solution as the
continuous noise is discretized. The complexity of Algorithm
3 is therefore much lower than Algorithm 2.

The following Theorem 1 states a mild condition that
guarantees Step 2 of Algorithm 3 can be computed in
O(K2 logM).

Theorem 1. Let

Fk(u) = D(xu||xvk−1
)−D(xu||xvk) (14)

be K − 1 functions of u, k = 2, . . . ,K. If the conditional
density φi(u) = pU |X(u|xi) satisfies:

φi(u)

φj(u)
≥ φi(u

′)
φj(u′)

, (15)

for ∀ i ≤ j and u ≤ u′, then
1) Fk(u) is an increasing function.
2) Fk(u) = 0 has a unique root.

Proof. Please see our extension version.

Corollary 1. If the inequality (15) holds, then the computa-
tional complexity of Step 2 in Algorithm 3 is O(K2 logM).

Proof. The key to the proof is based on Theorem 1. Since
Fk(u) is an increasing function and has a unique root, one
can employ a bisection algorithm to find the unique root for
Fk(u), which is hk−1. In particular, if for some u1 < u2 and
if Fk(u1) < 0 and Fk(u2) > 0, one can evaluate Fk(

u1+u2

2 )
to determine whether it is larger or smaller than 0. If it is
larger than 0, we repeat the process on the interval [u1,

u1+u2

2 ].
Otherwise, we repeat the process on the interval [u1+u2

2 , u2].
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Figure 2: Achievable rates for K = 2, 3, 4, 5 as a function of
the number of iterations

The process repeats until the solution is found, i.e., within
some ε away from zero. As a result, there are O(logM)
divisions where M ∼ O(1/ε). Since there are K−1 roots for
K − 1 functions Fk(u) and the KL-divergence are computed
over K-dimensional vector, the running time complexity is
therefore O((K− 1)K logM) ∼ O(K2 logM). We note that
using the Newton’s method (rather than bisection method) is
even more efficient if the derivative of Fk(u) is available.

In practice, the inequality (15) usually holds. For example,
in typical communication scenarios where noise is additive,
i.e., u = xi + ni, then we can show that the inequality
(15) hold for a variety of common noise distributions such
as normal distribution, exponential distribution, gamma dis-
tribution, uniform distribution, and more generally, all log-
concave, log-convex distributions (please see our extended
version). Therefore, Algorithm 3 is quite useful in real-world
scenarios.

As for the computing centroid step in Eq. (12), it can be
done in O(K2). The key is that, often times Eq. (12) can be
computed in closed form, and thus can be efficiently computed
with the computational complexity of O(K2). If even the
closed form expression for Eq. (12) is not available, one can
store the results of evaluating the integral

∫ hk

hk−1
piφi(u)du

in Eq. (12) for M possible values of hk ahead of time in
a lookup table since these values do not change. Eq. (12)
is then performed with appropriate values of hk found from
the updating threshold steps. We note that in the regular k-
means algorithm, it is not possible to perform the computing
centroids step in O(K2) since there is no linear structure pro-
duced by hk to allow us exploit the computation of the integral∫ hk

hk−1
piφi(u)du ahead of time for efficient computations.

IV. SIMULATIONS AND NUMERICAL RESULTS

In this section, we compare the performances in terms of
run-time and accuracies of the proposed Algorithm 1 against
those of an exhaustive search. Algorithm 1 employs Algorithm
3 in Line 5, while the exhaustive search performs a grid search
through all the possible pX and h. With sufficiently small

grid, the exhaustive search returns the correct capacity at the
expense of significantly large run-time. Also, we simulate a
communication system with additive noise, i.e.,

u = xi + ni,

where ni are i.i.d N(0, 1). xi = {−1, 1, . . . , 2(K − 1) − 1}.
As a result, φi(u) = N(μi, σi) where μi = −1+2(i−1) and
σi = 1 for ∀ i = 1, 2, . . . ,K.

Fig. 2 illustrates the convergence rates of the proposed
Algorithm 1. As seen, the proposed algorithm converges very
quickly to the correct values of the channel capacity as indi-
cated in the “actual capacity" column after 10 iterations. We
note that the actual capacity is computed using an exhaustive
search with the resolution of ε = 0.1 for K = 2, 3 and
ε = 0.2 for K = 4, 5 while the resolution ε of Algorithm 3 is
always 0.1. As K increases, the proposed algorithm converges
a slightly slower rate, but overall the proposed algorithm is
still a very fast and converges to the right values. In fact, the
average running time of Algorithm 1 and exhaustive searching
using K = 5 are 10.22 and 319725.21 seconds, respectively.
This is because the computational complexity of Algorithm 3
is O(TK2 logM) while the computational complexity of the
exhaustive search is O(MK−1).

V. CONCLUSION

In this paper, we proposed a fast algorithm to find the
sub-optimal quantizer of a discrete input continuous output
channel which maximizes the mutual information between
discrete input and quantized output. Both theoretical and
numerical results are presented to verify our approach.
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