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Abstract—We present a novel approach to perform multiplica-
tive noise removal, utilizing the recent developments of diffusion
models. We show that multiplicative noise, which commonly
appears in images produced by synthetic aperture radar (SAR),
laser, or optical lenses, can be well-modeled by a Geometric
Brownian process in the logarithmic domain. This process admits
a time-reversal stochastic differential equation (SDE), which is
utilized to perform noise removal. We conduct extensive experi-
ments to compare our approach with classical methods as well
as state-of-the-art Deep Learning-based approaches. Our models
significantly outperform others in terms of perception-based
metrics such as LPIPS and FID, while remaining competitive
in traditional pixel-based metrics like PSNR and SSIM.

Index Terms—multiplicative noise, diffusion process, brownian
motion, stochastic differential equations

I. INTRODUCTION

Multiplicative noise removal is a long standing problem in
computer vision and has been studied by many researchers
over the past few decades. Unlike additive noise, which
is usually the result of thermal fluctuations during image
acquisition or transmission, multiplicative noise happens when
multiple copies of the signal with random scaling factors
are added together. This often happens due to the internal
physical construction of the image capturing devices, i.e.
optical lenses, radar/laser imaging, ultrasound sensors, etc.
Because of this, removing multiplicative noise, sometimes
referred to as despeckling, often requires more sophisticated
approaches compared to its counterpart additive noise. Popular
approaches include modelling the noise using Partial Differ-
ential Equations (PDEs) , converting into additive domain
and optimize using Total Variation (TV) objective [2]], and
applying MAP estimation [3]]. Classical methods based on
block-matching technique also works well for this problem
[4]).

Recently, deep learning based methods have been introduced
with great successes in denoising performance [5] [6] [7]] [8].
These methods usually use image-to-image translation archi-
tecture, where the neural networks directly predict the clean
images, or the amount of noise generated by the stochastic
process, without much assumption on the noise dynamics.
Thus, many of these models can be applied to reverse different
kinds of corruptions, including multiplicative noise. However,
these techniques mostly rely on per-pixel” metrics such as
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Fig. 1. Samples generated by our methods, on images randomly
selected from CelebA dataset. From left to right are the original,
corrupted by multiplicative noise (noise level 0.08), and denoised
versions.

MSE, PSNR, or SSIM, which has been observed to not
correlate well with human perception [9].

In this work, we propose the novel application of Stochastic
Differential Equations (SDEs) to perform multiplicative noise
removal. We show that the dynamics of multiplicative noise
is well captured by SDEs, specifically Geometric Brownian
motion. We then derive the reverse SDEs which are used to
generate denoised samples. By running extensive experiments
on two different datasets, we demonstrate the effectiveness
of our method on creating clean images that achieve high
perception scores. We discuss the construction of our approach
in Section [T} with experiments details in Section [[V]

II. RELATED WORK

Over the last few years, with the advances of deep learning,
there has been active research in applying convolutional neural



network (CNN) to image denoising problems, especially for
speckle or multiplicative noise. Notable works can be found
in [6] [[7] [8]l. In these texts, the common theme is to perform
image-to-image translation with a CNN acting as the mapping
function. This CNN is usually trained to minimize MSE or
PSNR loss directly on the pairs of clean and noisy images.
Some works propose to use specially-crafted features as the
input, such as frequency features [[10], or wavelet features
[11], and sub-bands [12]]. These works are usually limited
to grayscale images, and are often matched in performance
by DnCNN [5]], and outperformed by NAFNet [13], MPRNet
[14]], or Restormer [[15].

Recently, there is a line of works applying diffusion tech-
nique to this problem. In [16], the authors propose a DDPM-
like architecture for despeckling, but this model needs to be
re-trained for each noise level. Similarly, [[17] [18] also use
DDPM framework with minor modifications. These works
still limit their testing to greyscale images only. We find the
discussion in [[19]] to be the most related to our work, albeit
with different assumption of the noise characteristics and the
construction of the diffusion process, where the authors still
rely on the DDPM equations.

To the best of our knowledge, we are the first to directly
model this problem using SDE, which captures the dynamics
of the noise process, and derive the sampling equation which
is then used to perform denoising.

III. METHODS
A. Diffusion models

This section gives a brief overview of SDEs, It6’s calculus,
and the application to generative modeling.

Let 3(t) be a Brownian motion indexed by time ¢, i.e. 5(t)
is a random process with independent and zero-mean Gaussian
increment, then the classic result from Itd’s calculus gives
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Utilizing this result, one can solve the following SDE
dz(t) = f(z(t),t)dt + L(z(t),t)dB(t) )

where f(.), L(.) are some functions, z(t) is the random
process of interest, and dx(t) represents the (random) in-
finitesimal change of x(t). Notably, under certain smoothness
assumptions, there exists a unique SDE that models the reverse
process:

do(T —t) = — f(x(T —t), T — t)dt
+ L(z(T —t), T — t)dB(T — t) 3)
+ L*(T — t)V log pr—dt

where pp_; denotes the distribution of (7T — t). In-depth
discussions regarding the proof and existence of this process
can be found in [20].

If V log pr_; is known, one can can run (3)) to generate new
sample x(T — t) that comes from data distribution pr_;(x).
This motivates the search for an efficient method to estimate
Vlogpr_, also known as the score function. Let sg(z),
parameterized by 6, be the estimation of Vlogp(z). Then
[21] provides an efficient way to compute sg(x) without

needing access to Vlogp(z). This result was used in [22]
to train neural networks for images generation tasks that
achieve high-quality results, with a small tweak, the model
learns V log pr_(z), instead of Vlogp(x), leading to more
stable training. This approach is referred to as Score-based
Generative Models (SGMs).

In a parallel development, [23]] proposed a similar frame-
work from Markov chain perspective, named Diffusion De-
noising Probabilistic Models (DDPM). DDPM formulation
yields a simple regression objective, which is shown to be
equivalent to SGM’s objective under Gaussian noise assump-
tion [24]]. In this paper, we use the SDE-based formulation
because of its flexibility, allowing us to directly model the
desired underlying dynamics of the noise process.

B. Noise models

In this section, we introduce multiplicative noise, and show

how SDE can be used to model the dynamics of this process.
A real-valued signal z € R is corrupted by multiplicative

noise is modeled as
I =e€x 4

where € € R is a random variable, usually modeled as having
Gamma or Log-normal distribution [25], and 7 is the corrupted
version of z. Here, we extend this noise process to multi-
dimensional x € R%, with the assumption that this corruption
affects each component independently

XxX=x0e€ ©)

where € € R? and ©® represents the element-wise multipli-
cation. We now show that () can be well modeled by the
following SDE

dx = a(t)x(t) © dB(t) (6)

where «(t) is some time-varying scalar function and (3(t) is
a Brownian motion on R<. Indeed, the solution to @ (proofs
omitted due to space constraints) is given as

Tt,i = T0,i €XP ( - /Ot %aZ(T)dT + (/Ot a2(7')d7') %n) @)

where z; ; denotes the i-th entry of x(¢), and n ~ N(0, 1).
Since n is Gaussian, the exponential term in (7) follows Log-
normal distribution, satisfying our previous assumption on €. If
we select x(0) to be the clean image x, then with appropriate
value of ¢, z(¢) = x is well modeled by (6).

We can now apply Anderson’s theorem to derive the reverse
SDE for () and use score-matching technique to construct
a denoising model. But this formulation gives a rather com-
plicated reverse SDE. Instead, we propose to apply a simple
logarithmic transformation to x, this yields a much simpler
reverse SDE, with the additional advantage of being able to
apply the results from [24]], making the loss function easier to
derive.

C. Loss function in the logarithmic domain
Let us denote y;; = log x; ;. Now, equation becomes

t t
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0 0



which can also be expressed in differential vector form to
obtain the SDE

dy: = —%a%mdt + a(t)dB(t) ©)

This has the corresponding time-reversal (proofs omitted due
to space constraints)

dyr—+ = (%0[2(T — )1+ a2(T - )V long,t(yT,t)>dt
+ (T — t)dB(T — t) (10)

where T is the terminal time index, i.e. at which the forward

SDE (9) stopped.
Applying Euler-Maruyama discretization to (9) and (T10),

where «(t) is selected to be d‘zl(tt) with o(t) is some

differentiable function having non-negative slope, gives the
following pair of SDEs

Ve =Yk-1— 1(cr(k) —o(k—1))1
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To derive the loss function, note that equation (TI) has a
Gaussian transition kernel p(yilyi—1) = N(yr;yr—1 —
3(o(k)—o(k—1))1,0(k)—o(k—1)). Thus, results from [24]
applies, which states the following connection between SGMs
and DDPMs: let s*(x¢,t) and n*(x¢,t) be the minimizers of
SGM and DDPM objectives, respectively, then n*(x¢,t) =
—y/var(x;)s* (xq, t) if p(x¢|x;—1) is Gaussian, where var(x;)
denotes the variance of the stochastic process at time ¢. This
means the denoising objective from DDPM can be readily
applied to our formulation in the logarithmic domain, giving
the following trainable loss

Lo sea = EyBi[[[ns + /o (k) —o(O)solye, BIE]  (13)

D. Sampling techniques

In practice, instead of sampling directly using (I2), Proba-
bility flows ODE or Implicit probabilistic models (DDIM)
are often used to enhance image quality and sampling effi-
ciency (i.e. reducing number of time steps). By experimenting,
we find that Probability flows ODE approach produces the best
result for our purpose. The ODE sampling equation is given
as (proofs omitted due to space constraints)

1
YE—k =YK—k+1+ 3 (O’(K —k+1)—o(K — k)) (1—1—
VlO%?K—kH(YK—kH)) (14)

For completeness, we also provide the corresponding DDIM
sampling equations (T3)), as well as quantitative comparisons

Original ODE DDIM Stochastic

Noisy

Fig. 2. Comparing between different sampling techniques on ran-
domly selected CelebA images, at noise level 0.12. The first two
columns include the original images and their noised versions,
respectively. These are followed by the results generated by our model
using ODE, DDIM, and stochastic samplers, respectively.

between ODE, DDIM, and the vanilla Stochastic samplers in
Table [l Some qualitative examples are provided in Fig. [2}
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Thus, by transforming the data into the logarithmic domain,
we can take advantage of the simplicity of DDPM framework,
while still being able to accurately capture our noise model
thanks to the flexibility of SDE. Furthermore, since log is a
bijective transformation for positive variables, we can easily
recover our images from the samples generated in logarithmic
domain by taking the exponential.

The appendix and Pytorch implementation are publicly
available at:
https://github.com/anvuongb/sde_multiplicative_noise_removal.

1V. EXPERIMENTS
A. Experiment settings

We ran our experiments on CelebA and UC Merced Land
Use datasets, using U-Net as the backbone architecture for
our neural networks. The training was done on 100,000 images
from the CelebA dataset, while testing was performed on 2,096
images from CelebA holdout set and another 2,096 images
from UC Merced Land Use, images were resized to 224x224
pixels. We did not finetune on the land use dataset since we
wanted to test the generalization of directly modeling the noise
dynamics.

The diffusion model is trained by optimizing (T3], then
the noise removal process is performed using (T4) to sample
from the trained model. For baseline models, we have selected
several denoising methods, ranging from classical signal pro-
cessing techniques to modern CNN-based frameworks:
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Fig. 3. Comparing between different denoising models on randomly selected CelebA image, at noise level 0.12.

| Sampling technique | FID | | LPIPS| | PSNRT | SSIMT |
ODE 13.9156 0.0365 31.8902 0.9348
DDIM 25.3188 0.0882 28.6549 0.9032
Stochastic 32.3811 0.1075 26.8267 0.8493
TABLE I

COMPARISON OF DIFFERENT SAMPLING TECHNIQUES ON CELEBA DATASET AT NOISE LEVEL 0.12

Block-matching and 3D filtering (BM3D) [4].

Speckle reducing anisotropic diffusion (SRAD) [[].
Gaussian denoising in latent space DnCNN [5] .
Transfomer-based: MPRNet [[14] and Restormer [15]].
NAFNet [[13]], the current state-of-the-art in noise removal
and image restoration.

GAN-based DeblurGAN [27].

Regarding training settings, we trained our model with
T = 500 diffusion steps, linear noise schedule o(k) €
[0.0001,0.02], and Adam optimizer. For DnCNN, NAFNet,
MPRNet, Restormer, and DeblurGAN, we followed the op-
timal training options provided by the authors. All mod-
els are trained for 100 epochs. Training was done on 2x
RTX3090 under Ubuntu using Pytorch framework. Since
DnCNN, NAFNet, MPRNet, Restormer, and DeblurGAN need
to be trained for some specific noise levels, we chose two
different noise variances [0.04, 0.12] for the noise term in (7),
this corresponds to 7' = 100,300 in our diffusion process
formulation. We note that, while these models need to be
trained for each noise level, our framework only needs to
be trained once, then inference can be run at different noise
levels since the noise dynamics is already captured by the SDE
formulation.

For evaluation metrics, we chose to evaluate on perception-
based metrics FID, LPIPS and traditional signal processing

metrics PSNR, SSIM. While PSNR and SSIM are important
measurements in computer vision, they have been shown to
not correlate well with human perception on image restoration
tasks [@] In our experiments, we also observed substantial
discrepancies between these two types of metrics, more de-
tailed discussion is provided in the next section.

B. Experiment results

Results on CelebA datasetEl Quantitative results are pre-
sented in the left half of Table [l Compared to the state-
of-the-art models NAFNet and Restormer, our method shows
slightly worse performance in per-pixel metrics, while achiev-
ing significantly better FID and LPIPS scores, across all tested
noise levels. This is also true when comparing to DnCNN
and MPRNet. We note that these models were architected to
directly optimize for PSNR during training, thus they strive to
achieve the best fidelity at the cost of diverging from the input
distribution. For classical methods, CBM3D (the RGB version
of BM3D) performs respectably, sometimes even coming close
to DnCNN. In contrast, SRAD falls far behind in all metrics,
we suspect this is because the tests were conducted using
RGB images, while this method was originally designed for
grayscale samples only.

"Uncompressed version of images shown in this paper are available at
https://tinyurl.com/icmlade



[ Dataset i CelebA i UC Merced Landuse |
l Noise level [ Model [ [ FID | [ LPIPS | [ PSNR 1 [ SSIM 1t [ [ FID | [ LPIPS | [ PSNR 1 [ SSIM 1t ]

Ours (ODE) 13.9156 0.0365 31.8902 0.9348 35.7451 0.0753 31.2300 0.9137

DeblurGAN 18.7211 0.0545 29.6118 0.9274 50.6455 0.1291 29.7493 0.8971

0.04 Restormer 21.9359 0.0523 34.1125 0.9664 51.3572 0.1043 32.7498 0.9377

MPRNet 23.0067 0.0544 34.0028 0.9654 64.2903 0.1176 32.5545 0.9352

NAFNet 20.5896 0.0503 34.0764 0.9661 51.4628 0.1063 32.4929 0.9322

DnCNN 26.8650 0.0726 33.1393 0.9542 111.3414 0.1628 31.8040 0.9217

SRAD 47.7516 0.2374 27.5801 0.8476 70.5202 0.3565 27.7434 0.8318

CBM3D 25.1978 0.1282 29.5931 0.9067 74.0214 0.2553 29.8244 0.8836

Ours (ODE) 24.3077 0.0774 28.5567 0.8994 63.2679 0.1333 28.8183 0.8727

DeblurGAN 38.3176 0.0902 24.3920 0.8360 93.9357 0.1916 26.1810 0.8218

0.12 Restormer 29.6475 0.0848 31.5912 0.9473 76.1931 0.1653 30.2727 0.9016

MPRNet 31.5731 0.0906 31.4240 0.9447 98.2022 0.1884 30.0573 0.8965

NAFNet 27.0304 0.0805 31.5588 0.9466 77.2864 0.1644 30.0889 0.8977

DnCNN 33.2722 0.1113 30.5007 0.9281 138.2030 0.2361 29.2134 0.8710

SRAD 70.4303 0.3853 24.3354 0.7311 107.6315 0.4712 25.2329 0.7247

CBM3D 36.2575 0.2128 26.1749 0.8481 100.1406 0.3570 27.1042 0.8144

TABLE II

COMPARISON OF DIFFERENT DENOISING METHODS FOR VARIOUS METRICS AT DIFFERENT NOISE LEVELS ON CELEBA AND UC MERCED LANDUSE
DATASET. THE BEST PERFORMANCE FOR EACH METRIC IS HIGHLIGHTED IN BOLD.
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Fig. 4. Comparing between different denoising models on randomly selected LandUse images, at noise level 0.12.

For DeblurGAN, while it performs fine at low noise level, it
gets substantially worse than other methods across all metrics
when more noise is present in the images. In either case, our
method also beats it decisively.

These observations can also be seen in Figure 3] where we
present denoising results of theses models at noise level 0.12.
Compared to our method, other techniques suffer from over-
smoothing and they usually generate samples that lack high-
frequency details. This is the drawback of using PSNR as an
optimization objective, where the denoisers have the tendency
of collapsing into the mean statistics of the images, creating
smoothing effect. In contrast, our proposed model tends to be
much better at preserving finer details, such as facial hair and
clothes wrinkles.

Out-of-distribution results on Land Use dataset. To

evaluate the generalization capability of our method, we re-
run the previous experiments on the UC Merced Land Use
dataset, which is a small dataset (containing 2,096 samples)
captured from satellites. Besides being out-of-distribution, we
note that this is a much harder dataset to do denoising on, due
to the blurriness and color shifting of satellite imaging. We
present quantitative results in the right half of Table [l While
there is large degradation in performance across the board, we
again see that our method achieves the best FID and LPIPS
scores, while being slightly worse in terms of PSNR and
SSIM. Surprisingly, DnCNN performs much worse in terms
of FID, while remaining competitive in the other metrics.

Qualitatively, from Figure 4] it is observed that our method
retains finer details of the images. DnCNN, NAFNet, MPRNet,
Restormer, and DeblurGAN produce over-smoothed samples,



losing details of the ground, while SRAD and BM3D generate
images that completely lack high-frequency components.

Overall, we see that our method achieves competitive per-
formance on PSNR and SSIM, while producing more realistic
samples that are closer to the true input distribution, as
measured by FID and LPIPS metrics. Furthermore, we show
empirically that the method can generalize well to out-of-
distribution dataset, which is crucial in applications where data
samples are limited.

V. CONCLUSION

In conclusion, this paper introduces a novel SDE-based
diffusion model for removing multiplicative noise. The work
presents the construction of the forward and reverse SDEs
that directly captures the dynamics of the noise model. In
addition, it also establishes the training objective as well as
multiple different sampling equations based on Probability
flows and DDIM techniques. The proposed model is compared
to classical image processing algorithms, including BM3D and
SRAD, as well as the modern CNN-based methods. Extensive
experiments on different datasets demonstrate that our method
outperforms the current state-of-the-art denoising models in
perception-based metrics across all noise levels, while still
remaining competitive in PSNR and SSIM.

Going forward, we will explore the application of diffusion
steps reduction techniques to noise removal problems. While
these techniques have been applied successfully in generative
tasks, it greatly reduces the quality of generated samples in
our problem. Thus, care need to be taken when dealing with
tasks that are sensitive to small perturbation like denoising.
Furthermore, while deterministic sampling is usually used to
speedup generation, it is a desirable property in noise removal
tasks. Specifically, we would like the process to produce the
exact clean image, not something close in terms of distribution,
which is modeled by the current diffusion loss. This has
connections to conditioning using Doob’s h-transform, and
could hold interesting research venue, we leave it to future
works.

REFERENCES

[1] Yongjian Yu and Scott T Acton, “Speckle reducing anisotropic diffu-
sion,” [EEE Transactions on image processing, vol. 11, no. 11, pp.
1260-1270, 2002.

[2] Jianing Shi and Stanley Osher, “A nonlinear inverse scale space method
for a convex multiplicative noise model,” SIAM Journal on imaging
sciences, vol. 1, no. 3, pp. 294-321, 2008.

[3] Gilles Aubert and Jean-Francois Aujol, “A variational approach to
removing multiplicative noise,” SIAM journal on applied mathematics,
vol. 68, no. 4, pp. 925-946, 2008.

[4] Kostadin Dabov, Alessandro Foi, Vladimir Katkovnik, and Karen
Egiazarian, “Image denoising by sparse 3-d transform-domain collab-
orative filtering,” IEEE Transactions on image processing, vol. 16, no.
8, pp. 2080-2095, 2007.

[5] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang,
“Beyond a gaussian denoiser: Residual learning of deep cnn for image
denoising,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp.
3142-3155, 2017.

[6] Dazi Li, Wenjie Yu, Kunfeng Wang, Daozhong Jiang, and Qibing
Jin, “Speckle noise removal based on structural convolutional neural
networks with feature fusion for medical image,” Signal Processing:
Image Communication, vol. 99, pp. 116500, 2021.

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Hyunho Choi and Jechang Jeong, “Speckle noise reduction in ultrasound
images using srad and guided filter,” in 2018 International Workshop
on Advanced Image Technology (IWAIT). IEEE, 2018, pp. 1-4.

Danlei Feng, Weichen Wu, Hongfeng Li, and Quanzheng Li, “Speckle
noise removal in ultrasound images using a deep convolutional neural
network and a specially designed loss function,” in Multiscale Mul-
timodal Medical Imaging: First International Workshop, MMMI 2019,
Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13,
2019, Proceedings 1. Springer, 2020, pp. 85-92.

Yochai Blau and Tomer Michaeli, “The perception-distortion tradeoff,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 6228-6237.

Tongda Yang, Weiming Wang, Gary Cheng, Mingqiang Wei, Haoran
Xie, and Fu Lee Wang, “Fddl-net: frequency domain decomposition
learning for speckle reduction in ultrasound images,” Multimedia Tools
and Applications, vol. 81, no. 29, pp. 4276942781, 2022.

Jing Zhang, Wenguang Li, and Yunsong Li, “Sar image despeckling
using multiconnection network incorporating wavelet features,” IEEE
Geoscience and Remote Sensing Letters, vol. 17, no. 8, pp. 1363-1367,
2019.

Gang Liu, Hongzhaoning Kang, Quan Wang, Yumin Tian, and Bo Wan,
“Contourlet-cnn for sar image despeckling,” Remote Sensing, vol. 13,
no. 4, pp. 764, 2021.

Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun, “Simple
baselines for image restoration,” in Computer Vision — ECCV 2022,
2022, pp. 17-33.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat,
Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Shao, “Multi-stage
progressive image restoration,” in CVPR, 2021.

Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat,
Fahad Shahbaz Khan, and Ming-Hsuan Yang, “Restormer: Efficient
transformer for high-resolution image restoration,” in CVPR, 2022.
Soumee Guha and Scott T Acton, “Sddpm: Speckle denoising diffusion
probabilistic models,” arXiv preprint arXiv:2311.10868, 2023.

Malsha V Perera, Nithin Gopalakrishnan Nair, Wele Gedara Chaminda
Bandara, and Vishal M Patel, “Sar despeckling using a denoising
diffusion probabilistic model,” IEEE Geoscience and Remote Sensing
Letters, vol. 20, pp. 1-5, 2023.

Siyao Xiao, Libing Huang, and Shunsheng Zhang, “Unsupervised sar
despeckling based on diffusion model,” in IGARSS 2023-2023 IEEE
International Geoscience and Remote Sensing Symposium. IEEE, 2023,
pp. 810-813.

Naama Pearl, Yaron Brodsky, Dana Berman, Assaf Zomet, Alex Rav
Acha, Daniel Cohen-Or, and Dani Lischinski, “Svnr: Spatially-
variant noise removal with denoising diffusion,”  arXiv preprint
arXiv:2306.16052, 2023.

Simo Sirkkd and Arno Solin, Applied stochastic differential equations,
vol. 10, Cambridge University Press, 2019.

Aapo Hyvirinen and Peter Dayan, “Estimation of non-normalized
statistical models by score matching.,” Journal of Machine Learning
Research, vol. 6, no. 4, 2005.

Jiaming Song, Chenlin Meng, and Stefano Ermon, “Denoising diffusion
implicit models,” in International Conference on Learning Representa-
tions, 2021.

Jonathan Ho, Ajay Jain, and Pieter Abbeel, “Denoising diffusion prob-
abilistic models,” Advances in neural information processing systems,
vol. 33, pp. 6840-6851, 2020.

Pascal Vincent, “A connection between score matching and denoising
autoencoders,” Neural computation, vol. 23, no. 7, pp. 1661-1674, 2011.
HH Arsenault and G April, “Properties of speckle integrated with a
finite aperture and logarithmically transformed,” JOSA, vol. 66, no. 11,
pp- 1160-1163, 1976.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Ku-
mar, Stefano Ermon, and Ben Poole, “Score-based generative modeling
through stochastic differential equations,” in International Conference
on Learning Representations, 2021.

Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych, Dmytro
Mishkin, and Jiri Matas, “ DeblurGAN: Blind Motion Deblurring Using
Conditional Adversarial Networks ,” in 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver
Wang, “The unreasonable effectiveness of deep features as a perceptual
metric,” in CVPR, 2018.



	Introduction
	Related work
	Methods
	Diffusion models
	Noise models
	Loss function in the logarithmic domain
	Sampling techniques

	Experiments
	Experiment settings
	Experiment results

	Conclusion
	References

