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Abstract—Quantization plays a central role in digital com-
munication by mapping continuous-valued signals to a finite set
of levels with minimal distortion. Beyond mean-square error,
mutual information between the channel input and the quantizer
output provides a powerful metric for signal recovery. However,
finding the quantizer that maximizes the mutual information
is NP-complete for non-binary inputs. To that end, while not
optimal, thresholding schemes, whether single-threshold or multi-
threshold, are widely adopted. In this work, we study the par-
allel stochastic single-threshold quantizer architecture, provide
some information-theoretic insights, and introduce a momentum-
accelerated gradient ascent algorithm that efficiently tunes a
single decision threshold to maximize the mutual information. We
demonstrate convergence improvements over exhaustive search
and quantify mutual information gains across binary and non-
binary input distributions. We also validate our theoretical frame-
work with simulations on the MNIST dataset, demonstrating that
increasing the number of parallel quantization branches, i.e., mu-
tual information, significantly improves classification accuracy,
especially when quantization thresholds are learned and training
data is limited.

Quantization, Mutual information, Threshold optimization,
Momentum gradient ascent, Parallel noisy-adder architecture

I. INTRODUCTION

A quantizer maps continuous signals to a finite set of
levels and is therefore fundamental in digital communications.
Traditional metrics use average distortion such as mean-square
error (MSE). From an information-theoretic viewpoint, mutual
information (MI) between the channel input and quantizer
output is a more general metric: it does not assume continuity
of the signals and directly measures the statistical dependence
between original and quantized signals, so higher MI implies
better recoverability. [1]–[7]

Prior work has attacked quantizer design from several
angles. Kurkoski et al. cast quantization as impurity min-
imization using statistical learning ideas [2]. Nguyen and
colleagues derived optimal binary quantizers with multiple
thresholds and characterized capacity-achieving quantizers and
input distributions for binary channels [8], [9], extending the
robust quantization framework of [10]. Dulek used convex and
decision-theoretic tools to show the existence and geometric
structure of optimal quantizers in the continuous-input case
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[6]. Interestingly, additive noise can sometimes improve in-
formation transfer in nonlinear quantizers [11].

Finding the MI-maximizing quantizer is computationally
hard for non-binary inputs (NP-complete). [12] Thus practi-
cal methods usually restrict the search to threshold quantiz-
ers—single thresholds for one-bit designs [9], [13] or multi-
threshold/sequential schemes for larger alphabets [14].

Building on [10], this paper provides information-theoretic
insight and proposes a momentum-accelerated gradient-ascent
heuristic to optimize a single-threshold quantizer for maximum
mutual information. We empirically show that learning thresh-
olds on MNIST improves classifier performance versus non-
optimal thresholds, and we study how classification accuracy
depends on the number of quantization bits (which correlates
with MI).

The paper is organized as follows. Section II gives moti-
vation and the system model. Section III presents theoretical
results on the optimal threshold and MI for a parallel stochastic
quantizer architecture. Because exact optimization is hard,
Section IV develops our momentum-accelerated gradient-
ascent algorithm. Section V evaluates the algorithm across
input distributions and shows gains from adding parallel
quantization branches and from learned thresholds, especially
with limited training data. Section VI concludes and outlines
future work.

II. SYSTEM MODEL AND MOTIVATION

A. Motivation

The system, Fig.1, uses m parallel, identical stochastic
comparators. X is the input (discrete or continuous), Zi are
i.i.d. continuous additive noises, Qθ(·) are identical single-
threshold comparators, and Yi ∈ {0, 1} are the outputs. The
sum Y =

∑
i Yi is a sufficient statistic for X and serves as

the quantized value.
A drawback of this architecture is the larger compara-

tor count compared with conventional ADCs (e.g., flash,
pipelined, sigma–delta). [15], [16] Sigma–delta designs use
fewer comparators but need high oversampling; pipelined
ADCs use moderate comparator counts but are slower because
of sequential approximation. By contrast, the parallel stochas-
tic design uses uniform reference voltages (so it avoids large
resistor loads), which simplifies the circuit and enables faster



operation, and it is inherently robust in harsh environments
(e.g., radiation) where comparator/op-amp failures are more
likely. This architecture is well-suited to low-power sensing
and edge computing. Multiple low-resolution (1-bit) compara-
tors operating in parallel consume little power yet can capture
enough information for downstream tasks. We show that a
neural-network classifier trained on these quantized outputs
can reach high accuracy using only a small number of parallel
quantizers.

B. System Model

Let X be a random variable denoting the input signals.
X can be a discrete or continuous random variable. How-
ever, to simplify the discussion, let X be a discrete random
variable, taking values {x1, x2, . . . , xN} with probability of
Pr(X = xi) = qi. Let Zk, k = 0, 1, . . .m be independent
identical random noise generated by the system. In each
branch, the input X is corrupted by an additive noise Zk.
The m resulting signals X + Zk is then passed through a
comparator Qθ(·), parameterized by a tunable threshold θ, to
produce Yk ∈ {0, 1}. Specifically,

Yk =

{
1, if X + Zk ≥ θ

0, if X + Zk < θ
(1)

Thus, the probability of Yk = 1 is when Zk ≥ θ − xi, :

q(xi) = Pr(Yk = 1|X = xi) = 1− FZ(θ − xi), (2)

where FZ(.) denotes the cumulative distribution of the gener-
ated noise.

These outputs are then aggregated through a final summa-
tion block to yield the overall system output Y =

∑m
j=1 Yj .

Thus, the conditional probability of Y = j given X = xi is:

Pr(Y = j | X = xi) =

(
m

j

)
(q(xi))

j
(1− q(xi))

m−j
. (3)

The mutual information between the input signals X and the
quantized signals Y is given as:

I(X;Y ) =

m∑
i=1

n∑
j=1

Pr(X = xi, Y = j)

× log

(
Pr(X = xi, Y = j)

Pr(X = xi) Pr(Y = j)

)
(4)

where Pr(Y = j) =
∑n

i=1 Pr(X = xi, Y = j) and log
denotes log2.

III. MUTUAL INFORMATION AND OPTIMAL THRESHOLD

A parallel stochastic quantizer is a discrete memoryless
channel with input X and output Y ; each threshold θ induces
a specific channel p(y | x; θ). The design task is to choose θ
to maximize the mutual information I(X;Y ). Recall that for
fixed p(x), I(X;Y ) is convex in the channel transition matrix
p(y | x), while for fixed p(y | x) it is concave in p(x). But
since θ only indirectly determines p(y | x), I(X;Y ) need not
be concave (or otherwise well-behaved) as a function of θ.

+

+

+
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Fig. 1. Parallel stochastic quantizer architecture

This non-concavity makes direct optimization over θ difficult,
as formalized in the following proposition.

Proposition 1 (Mutual Information is not concave in θ:): For
any fixed branch count m, the mutual information I(X;Y ) is
not a concave function of the threshold parameter θ.

Proof: See Appendix.
On the other hand, in certain special cases, we can find the

optimal threshold θ∗ analytically as stated in the proposition
below.

Proposition 2 (Symmetric Threshold Optimality): If the
input alphabet X is symmetric about zero and Zk are i.i.d.
zero-mean symmetric noise, then the unique maximizer of
I(X;Y ) is θ∗ = 0.

Proof: See Appendix.
Theorem 1: Let Y =

∑m
k=1 Yk, where each Yk | X =

xi ∼ Bernoulli(q(xi)). As m → ∞, the distribution of Y
conditioned on X = xi converges in distribution to a normal
distribution:

Y
d−→ N

(
mq(xi), mq(xi)(1− q(xi))

)
.

In the special case where X ∼ U [−α, α] and each Zi ∼
U [−α, α] is drawn independently, and with θ = 0, consider
the estimator

X̂m =
1

m

m∑
k=1

Yk

used to estimate X . Then the following results hold:

X̂m
m.s.−→ X on the order O

(
1

m

)
I(X; X̂m)

p−→ H(X)

Proof: See Appendix.



Theorem 1 shows that, in the special case described
above, the mean-square error estimation of X by using
Y1, Y2, . . . , Ym is reduced to zero as m approaches infinity on
the order of 1

m . As a result, the mutual information between
Y and X achieves the maximum, i.e., equals to H(X).

IV. PROPOSED ALGORITHM

Because the exact problem is generally intractable, we use
a momentum-accelerated gradient-ascent heuristic to approx-
imate the optimal threshold. This method does not guar-
antee the global optimum, but empirically, it often finds
near-optimal solutions. We compare two strategies: Gradient
Ascent without momentum (GA) and Gradient Ascent with
Momentum (GAM). Momentum is motivated by the noncon-
vex/nonconcave shape of Iθ(X;Y ) in θ; empirically it helps
escape poor local maxima and improves convergence.

Algorithm 1 Threshold Optimizer Algorithm: TOA(η)
Require: Discrete support X = (xi)

n
i=1, probabilities PX =(

PX(xi)
)n
i=1

with
∑

i PX(xi) = 1; Gaussian noise Z ∼
N (E(Z), σ2); Initial threshold θ0 = E(X), binomial trials
m; Learning rate µ, momentum η; Maximum iterations
Kmax, tolerance ε

1: Initialize γ0 ← 0, θ ← θ0

2: for k = 0 to Kmax − 1 do
3: // Step 1: Compute qi for current θ
4: for i = 1 to n do
5: qi ← 1− Φ

(
θ − xi − E(Z)

σ

)
6: end for
7: // Step 2: Compute P (Y | X) and marginalize to PY

8: for i = 1 to n do
9: for j = 0 to m do

10: P (Y = j | X = xi)←
(
m
j

)
qji (1− qi)

m−j

11: end for
12: end for
13: for j = 0 to m do
14: PY (j)←

∑n
i=1 PX(xi) · P (Y = j | X = xi)

15: end for
16: // Step 3: Compute mutual information I(θ)
17: I(θ) ←

∑n
i=1

∑m
j=0 PX(xi) · P (Y = j | X = xi) ·

log

(
P (Y = j | X = xi)

PY (j)

)
18: // Step 4: Using gradient

19: Compute
∂Iθ(X;Y )

∂θ
using Eq. (6)

20: // Step 5: Momentum update

21: γk ← η · γk−1 + µ · ∂Iθ(X;Y )

∂θ
22: θ ← θ + γk
23: if |γk| < ε then
24: break
25: end if
26: end for
27: return θ∗ = θ, I∗ = I(θ∗)

We package the approach as the Threshold Optimizer Al-
gorithm with momentum η, denoted TOA(η). When η = 0,
TOA reduces to GA; when η ̸= 0 it becomes GAM, so
a single parameter unifies both methods. The TOA seeks θ
that maximizes the mutual information between a discrete
input X (with mass function PX(i)) and a binomial output
Y . For each candidate θ we compute q via Eq. (2) (using
Z ∼ N (E(Z), σ2

Z)), then the transition probabilities from Eq.
(3), the marginals Pr(Y = j), and the mutual information
in Eq.(4). If the stopping condition is not met, we estimate
the derivative ∂I/∂θ using Eq.(6) and update θ with the
momentum update rule.

γk = η γk−1 + µ
∂Iθ(X;Y )

∂θ
, θ(k+1) = θ(k) + γk.

(5)

Iteration continues until |γk| < ε or a maximum number of
iterations is reached, yielding the optimized θ∗ and its mutual
information I(θ∗).

Fig. 2. a) Mutual information vs. threshold θ b) Mutual information vs.
iteration, and c) θ vs. iterations for the second setting.

V. SIMULATION RESULTS

A. Performance Evaluation of TOA ( η )

In the simulation results section, we present two different
setups based on the proposed Algorithm 1, TOA ( η ). In both
cases, the parameters are set as follows: m = 10, µ = 0.5,
momentum η = 0.5, maximum number of iterations Kmax =
50, and tolerance ε = 10−3.

In the first setting, we set xi to be n = 50 values in
the interval [−10, 10] uniformly. Noise Z ∼ N (1, 1). In the



Fig. 3. Convergence comparing of TOA(η) for η ∈ {0, 0.3, 0.7, 0.8}.

second setting, xi are now shifted by 10, i.e., xi ∈ [0, 20], and
the noise Z is shifted by one, i.e., Z ∼ N (0, 1). Similarly
to setting one, Fig. 2(a), (b), and (c) show that the proposed
algorithm converges quickly to the optimal θ∗.

As shown in Fig. 3, by using first setting parameters,
increasing the momentum coefficient η in TOA(η) signifi-
cantly accelerates convergence. We evaluated four settings:
η ∈ {0, 0.3, 0.7, 0.8}. The case η = 0 (i.e., standard Gradient
Ascent) exhibits the slowest convergence, while the fastest
convergence is obtained for η = 0.8. These results confirm
that adding momentum substantially improves the optimizer’s
speed and robustness.

B. Classifier vs. Mutual Information

In this section, we evaluate the proposed parallel quantiza-
tion model using the MNIST dataset of handwritten digits. In
Fig. 4, each image, originally 28× 28 pixels, is first flattened
into a 784-dimensional vector. The image is then processed
through a bank of m parallel quantization branches. In each
branch, i.i.d. uniform noise Zi ∼ U(−128, 128) is added
independently, and a quantizer Qθ is applied. The outputs
from all quantizers, Y1, . . . , Ym, are concatenated and used
as input to a convolutional neural network (CNN) for digit
classification. The architecture and other setups of the neural
network, which consists of two hidden layers with 80 and
60 neurons respectively, are such that it achieves an accuracy
of approximately 97 % when trained on the 60,000-sample
MNIST training set and evaluated on the 10,000-sample test
set.

To examine the effects of both redundancy (m) and training
data size (TSS), we vary the number of parallel quantization
branches m from 1 to 10 and the training sample size between
1,000 and 60,000. Figure 5 shows the configuration with
learned thresholds via our TOA (η = 0.7), while Figure 6
uses fixed thresholds (θ = 128) for comparison. In both
cases, classification accuracy improves as m increases, con-
firming Theorem 1’s prediction that more branches raise the
mutual-information bound and thus enrich the representation
available to the classifier. Moreover, when thresholds are
learned, increasing the training set size further amplifies this

benefit: not only does a larger m yield bigger gains, but
each doubling of data produces a noticeable lift in accuracy.
By contrast, the fixed-threshold system appears to plateau
quickly and even degrade slightly with more data, suggesting
overfitting to suboptimal thresholds. These results underscore
that optimizing thresholds based on mutual information both
magnifies the impact of redundancy and unlocks the full value
of additional training samples.

VI. CONCLUSION

We have provided some information-theoretic insights and
proposed a fast algorithm for maximizing mutual information
in a parallel stochastic quantizer architecture. The algorithm
optimizes a single threshold using a momentum-accelerated
gradient ascent method. Simulation results confirm that the
proposed algorithm achieves faster convergence and higher
I(X;Y ) compared to brute-force grid search. Future research
will expand this methodology to multi-threshold arrays and in-
corporate adaptive learning of input distributions, with the ulti-
mate aim of bridging the gap to capacity-achieving quantizers
[6], [7], [9]. Our simulation results confirm that increasing the
number of quantization branches and learning the quantization
thresholds both contribute to better performance, in line with
our information-theoretic analysis, particularly under limited
data conditions.
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VII. APPENDIX

A. Appendix A: Proof of Proposition 1

Proof: Let us get start with Eq. 4, and write it as: I(X;Y ) =∑n
j=1 EX(P (Y = j | X = xi) × logP (Y = j | X =



xi)) −
∑n

j=1 P (Y = j) log (P (Y = j)) . Now, consider that
for random variables of a(θ) and b(θ) we have Ik(θ) =
EX(a(θ) log a(θ)) − b(θ) log b(θ), where EX(a(θ)) = b(θ),
which gives us:

dIk(θ)

dθ
= EX(a

′(θ) log a(θ))− b′(θ) log b(θ), (6)

d2Ik(θ)

dθ2
= EX

[
a′′(θ) log

(
a(θ)

b(θ)

)]

− 1

ln(2)
EX

[(
a′(θ)

)2
a(θ)

]
− 1

ln(2)

[
EX

(
a′(θ)

)]2
b(θ)

.

(7)

So, we have:

d2Iθ(X;Y )

dθ2
=

m∑
j=0

{
EX

[
d2Pθ(Y = j | X)

dθ2

× log

(
Pθ(Y = j | X)

Pθ(Y = j)

)

− 1

ln 2
EX


(

dPθ(Y=j|X)
dθ

)2

Pθ(Y = j | X)

− 1

ln 2

[
EX

(
dPθ(Y=j|X)

dθ

)]2
Pθ(Y = j)

}
.

(8)

Moreover, Eq. (3) shows that Pθ(Y = j | X) follows
a binomial distribution parameterized by q, where q is a
decreasing function of θ. Consequently, the second derivative
d2Iθ(X;Y )

dθ2 can take positive or negative values depending on
the value of θ. ■

B. Appendix B: Proof of Proposition 2

Proof: Because the input distribution is symmetric about
zero, PX(x) = PX(−x) for all x. Likewise, zero-mean sym-
metric noise implies fZ(z) = fZ(−z), so for any threshold
θ, we have: P

(
Y = j | X = x, θ

)
= P

(
Qθ(x + Z) = j

)
=

P
(
Q−θ(−x + Z) = j

)
= P

(
Y = j | X = −x,−θ

)
. Hence

the joint distribution satisfies PX,Y (x, j; θ) = PX(x)P (Y =
j | X = x, θ) = PX(−x)P (Y = j | X = −x,−θ) =
PX,Y (−x, j;−θ),

so it is invariant under θ 7→ −θ. Consequently, the mutual
information obeys I(θ) = I(−θ), i.e. it is an even function
of θ. In particular, its derivative vanishes at θ = 0. ■

C. Appendix C: Proof of Theorem 1

Proof: For each input symbol xi, the conditional output(
Y =

∑m
k=1 Yk

∣∣ X = xi

)
∼ Binomial

(
m, q(xi)

)
, where

q(xi) = P (Yk = 1 | X = xi). By the Central Limit Theorem
(CLT),

Y −mq(xi)√
mq(xi)

(
1− q(xi)

) → N (0, 1) (m→∞), (9)

and hence

Y → N
(
mq(xi), m q(xi)(1− q(xi))

)
(m→∞). (10)

Convergence in distribution of the channel law PY |X=xi
to

the Gaussian density, together with the Continuous Mapping
Theorem, ensures that any continuous functional of the law,
such as the entropy terms in the mutual information, also
converges appropriately. It is known that mutual information
is a continuous functional of the conditional law P (Y | X)
under standard DMC topologies, and in particular under the
one induced by convergence in distribution of each PY |X=xi

.
Based on Proposition 2, since the input alphabet X is

symmetric about zero and the noise samples Zk are i.i.d. with
zero-mean and symmetric distribution, the mutual informa-
tion I(X;Y ) is uniquely maximized when the quantization
threshold is set to θ∗ = 0. The rest of the proof follows the
approach in [10]. Without loss of generality, we assume that
the value 0 is mapped to −1, while 1 remains mapped to
+1. Under this optimal threshold, the quantization estimator
is given by X̂ = α

m

∑m
k=1 sign(X + Zk), where ’sign’ is −1

for negative values and 1 for positive values. The quantization
error is: e = X − X̂ = X − α

m

∑m
k=1 sign(X + Zk). Let s =∑m

k=1 sign(X + Zk) be the quantized sum. Then the quanti-
zation error power is E =

∫ α

−α

∑m
s=−m

(
x− αs

m

)2
p(x, s) dx,

where p(x, s) is the joint distribution of x and s. Note that
s only takes even values: −m,−m+2, . . . ,m. Using Bayes’
rule and expanding the square:

E =

∫ α

−α

m∑
s=−m

(
x2 − 2αxs

m
+

α2s2

m2

)
p(s|x)p(x)dx. (11)

Let i be the number of +1 outputs; then the number of −1
outputs is j = m− i. Since s = i− j = 2i−m, we can write
the conditional distribution of i as: p(i|x) =

(
m
i

)
p(1|x)i(1 −

p(1|x))m−i, where p(1|x) = P[sign(x+ n) = 1] = x+α
2α , due

to uniform noise over [−α, α]. Substituting s = 2i −m and
using the above probability and for term

∑m
i=0 p(i|x) = 1,∫ α

−α
x2p(x) dx = α2

3 . For the second term, using E[i|x] =

mp(1|x), we obtain: 2α
m

∫ α

−α
x(2E[i|x]−m)p(x)dx =

2α
∫ α

−α
x (2p(1|x)− 1) p(x)dx. Using p(1|x) = x+α

2α and
p(x) = 1

2α , we evaluate: 2α
∫ α

−α
x · x

α ·
1
2α dx = 2α3

3α2 = 2α
3 .

For the last term, we use:

E[s2 | x] = Var[s | x] + (E[s | x])2

= 4mp(1 | x)
(
1− p(1 | x)

)
+

(
2mp(1 | x)−m

)2
.

and integrate to obtain: (m−1)α4

3mα2 + α2

m . Putting all together,
the total quantization error power is:

E =
α2

3
− 2α2

3
+

(m− 1)α2

3m
+

α2

m
. (12)

Finally, observe that as m → ∞, the mean-squared error
tends to zero, i.e., E → 0. This implies that the recon-
struction X̂(Y1, . . . , Ym) becomes asymptotically accurate,
and hence the quantized outputs (Y1, . . . , Ym) determine X
with vanishing uncertainty. Therefore, the conditional entropy
converges to zero: limm→∞ H(X | Y1, . . . , Ym) = 0, (via
Fano’ inequality) which completes the proof. ■
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