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Abstract—In lossy compression, Wang et al. [1] recently intro-
duced the rate-distortion-perception-classification function, which
supports multi-task learning by jointly optimizing perceptual
quality, classification accuracy, and reconstruction fidelity. Build-
ing on the concept of a universal encoder introduced in [2],
we investigate the universal representations that enable a broad
range of distortion-classification tradeoffs through a single shared
encoder coupled with multiple task-specific decoders. We establish,
through both theoretical analysis and numerical experiment,
that for a Gaussian source under mean-squared error (MSE)
distortion, the distortion-classification tradeoff region can be
achieved using a single universal encoder. For general sources,
we characterize the achievable region and identify conditions
under which a universal encoder can produce a small distortion
penalty. The experimental result on the MNIST dataset further
supports our theoretical findings. We show that universal en-
coders can obtain distortion performance comparable to task-
specific encoders. These results demonstrate the practicality and
effectiveness of the proposed universal framework in multi-task
compression scenarios.

Keywords—Lossy compression, rate-distortion-classification
tradeoff, universal representations.

I. INTRODUCTION

Rate-distortion theory has long served as the foundation
for lossy compression, characterizing the minimum distortion
achievable at a given bit rate [3]. Conventional systems are
typically evaluated using full-reference distortion metrics such
as MSE, PSNR, SSIM, and MS-SSIM [4], [5]. However, recent
research has demonstrated that minimizing distortion alone is
insufficient to yield perceptually convincing reconstructions.
This limitation is particularly evident in deep learning-based
image compression, where empirical evidence suggests that
improvements in perceptual quality often come at the expense
of increased distortion [6], [7].

To address this limitation, Blau and Michaeli [8] intro-
duced the rate-distortion-perception (RDP) framework, which
incorporates perceptual quality, measured via distributional
divergence, as an another metric. The RDP formulation shows a
fundamental tradeoff among rate, distortion fidelity, and percep-
tual realism. Practical implementations, particularly those using
GANs [9], have demonstrated high perceptual quality at low
bit rates [10]–[13]. Common no-reference perceptual metrics
include FID [14], NIQE [15], PIQE [16], and BRISQUE [17].
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Extending this approach, the classification-distortion-
perception (CDP) framework was introduced in [18],
incorporating classification accuracy as an additional
metric. This work showed that the tradeoffs among
distortion, perceptual quality, and classification accuracy
are fundamentally irreconcilable; that is, improving one metric
generally degrades the others.

Recent work has explored integrating classification into
lossy compression frameworks to jointly optimize multiple
downstream objectives. The rate-distortion-classification (RDC)
framework, proposed by Zhang et al. [19], formalized the joint
optimization of rate, distortion, and classification accuracy,
and established desirable properties such as monotonicity and
convexity under multi-distribution source models. Extending
this, Wang et al. [1] introduced the rate-distortion-perception-
classification (RDPC) function, which characterizes the trade-
offs among rate, distortion, perception, and classification. Their
results show that improving classification typically increases
distortion or degrades perceptual quality.

These tradeoffs raise a fundamental question: are they in-
herently tied to the encoder’s representation, or can a single
encoder flexibly support different task objectives by using dif-
ferent decoders? To address this, the universal RDP framework
was introduced in [2], in which a fixed encoder is paired
with multiple decoders to achieve various operating points
in the distortion-perception space, without requiring encoder
retraining.

Motivated by the idea in [2], we investigate the univer-
sal representations that enable a broad range of distortion-
classification tradeoffs through a single shared encoder coupled
with multiple task-specific decoders. We establish, through both
theoretical analysis and numerical experiment, that for Gaus-
sian source under mean-squared error (MSE) distortion, the
distortion-classification tradeoff region can be achieved using a
single universal encoder. For general sources, we characterize
the achievable region and identify conditions under which a
universal encoder can produce a small distortion penalty. The
experimental result on the MNIST dataset further supports our
theoretical findings. We show that universal encoders can obtain
distortion performance comparable to task-specific encoders.
These results demonstrate the practicality and effectiveness of
the proposed universal framework in multi-task compression
scenarios.



II. RATE-DISTORTION-CLASSIFICATION
REPRESENTATIONS

Consider a source generating observable data X ∼ pX
with multiple latent target labels S1, . . . , SK ∼ pS1,...,SK

.
These labels are correlated with X under the joint distribution
pX,S1,...,SK

. While S1, . . . , SK are not directly observed, they
are often inferable from X . For example, if X is an image,
classification tasks can be object recognition or scene under-
standing.
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Figure 1: Task-oriented lossy compression framework.

As shown in Fig. 1, the lossy compression system consists
of an encoder and a decoder. For a sequence Xn ∼ pnX , the
encoder f : Xn → {1, . . . , 2nR} compresses it to a message
M at rate R, which is then decoded by g : {1, . . . , 2nR} → X̂n

to produce X̂n. The goal is to retain task-relevant information
while compressing efficiently.
Distortion constraint. The reconstructed signal X̂ must sat-
isfy:

E[∆(X, X̂)] ≤ D, (1)

where ∆ is a distortion metric, e.g., Hamming or MSE.
Classification constraint. We impose the following classifi-
cation constraint:

H(Sk|X̂) ≤ Ck, k ∈ [K], (2)

for some Ck > 0. This ensures that the uncertainty of the
classification variable Sk given the reconstructed source X̂ does
not exceed Ck.
Information RDC function. To jointly capture distortion
and classification constraints, the information rate-distortion-
classification function is defined as follows:

Definition 1. [1] For a source X ∼ pX and a single associ-
ated classification variable S, the information rate-distortion-
classification function is defined as:

R(D,C) = min
pX̂|X

I(X; X̂) (3a)

s.t. E[∆(X, X̂)] ≤ D, (3b)

H(S|X̂) ≤ C. (3c)

III. GAUSSIAN SOURCE

This section analyzes the RDC tradeoff for a scalar Gaussian
source, deriving closed-form expressions that highlight the
relationship between compression, distortion, and classification.

For a scalar Gaussian source, the closed-form expression of
R(D,C) is given in the following theorem by Wang et al. [1].

Theorem 1. [1] Let X ∼ N (µX , σ2
X) be a Gaussian source

and S ∼ N (µS , σ
2
S) be an associated classification variable,

with a covariance of Cov(X,S) = θ1. The problem (3) is
feasible if C ≥ 1

2 log
(
1− θ2

1

σ2
Sσ2

X

)
+ h(S). For the MSE

distortion (i.e., E[∆(X, X̂)] = E[(X − X̂)2]), the information
rate-distortion-classification function is achieved by a jointly
Gaussian estimator X̂ and given by
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where ρ = θ1
σSσX

represents the correlation coefficient between
X and S, while h(·) denotes the differential entropy.

It is noted that R(D,C) is both convex and monotonically
non-increasing in D and C, as established in [1]. Furthermore,
we characterize the minimum achievable distortion as a func-
tion of C and R by the following definition.

Definition 2. For a source X ∼ pX and classification variable
S, the information distortion-classification-rate (DCR) function
is defined as:

D(C,R) = min
pX̂|X

E[(X − X̂)2] (5a)

s.t. I(X; X̂) ≤ R, (5b)

H(S|X̂) ≤ C. (5c)

Our first contribution is the derivation of a closed-form
expression for D(C,R) in the Gaussian source setting, as
formally stated in Theorem 2.

Theorem 2. Consider a Gaussian source X ∼ N (µX , σ2
X)

and an associated classification variable S ∼ N (µS , σ
2
S) with

covariance Cov(X,S) = θ1. The problem (5) is feasible
if the classification loss satisfies C ≥ 1

2 log
(
1− θ2

1

σ2
Sσ2

X

)
+

h(S). Under the MSE distortion, the information distortion-
classification-rate function is achieved by a jointly Gaussian
estimator X̂ and is given by (4).

Proof. The proof is provided in [20, Appendix A].

Following the results in [1], it can also be shown that
the distortion-classification-rate function D(C,R) is convex
and monotonically non-increasing in both C and R. For any
fixed R, as C increases from 1

2 log
(
1− θ2

1

σ2
Sσ2

X

)
+ h(S) to

1
2 log

(
1− θ2

1(σ
2
X−σ2

Xe−2R)

σ2
Sσ4

X

)
+ h(S), the distortion D(C,R)

decreases monotonically from σ2
X − σ2

Sσ4
X

θ2
1

(
1− e−2h(S)+2C

)
to the optimal value σ2

Xe−2R. Increasing C beyond this point
does not yield further improvements in distortion.



D(C,R) =
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Figure 2: The universal representation framework.

IV. UNIVERSAL REPRESENTATIONS

Designing separate encoders for each distortion-classification
constraint is often not desirable. This motivates the use of
universal representations, where a single encoder supports mul-
tiple decoding constraints, each for a distinct task, as shown in
Figure 2. This section introduces the universal RDC framework,
quantifies the rate penalty, and presents theoretical results for
both Gaussian and general sources.

A. Definitions

In the standard RDC setting, the minimum rate to satisfy
a distortion-classification pair (D,C) is achieved by jointly
optimizing the encoder and decoder. The proposed universal
RDC framework extends this by fixing the encoder and allow-
ing the decoder to adapt, thereby supporting all constraint pairs
(D,C) ∈ Θ, where Θ is a given set of multiple (D,C) pairs.

This raises a key question: What is the minimal additional
rate required to satisfy all constraints in Θ with a single
encoder? Ideally, this rate penalty is small, indicating near-
optimal performance across tasks. We formalize this notion
using the information universal rate-distortion-classification
function, adapting the definition from [2], as follows.

Definition 3. Let Z ∼ pZ|X be a representation of X . Define
PZ|X(Θ) as the set of encoders such that for every (D,C) ∈ Θ,
there exists a decoder pX̂D,C |Z satisfying E[∆(X, X̂D,C)] ≤
D, H(S|X̂D,C) ≤ C, with X ↔ Z ↔ X̂D,C . The universal
RDC function is defined as

R(Θ) = inf
pZ|X∈PZ|X(Θ)

I(X;Z). (6)

A representation Z is Θ-universal if it satisfies all constraints
in Θ via appropriate decoders.

Similarly, we adapt the definition from [2] to quantify the
rate penalty under the classification constraint as follows:

Definition 4. The rate penalty is

A(Θ) = R(Θ)− sup
(D,C)∈Θ

R(D,C), (7)

which quantifies the extra rate required for universality.

Let Ω(R) = {(D,C) : R(D,C) ≤ R} denote the set of
achievable distortion-classification pairs at rate R, and define

Ω(pZ|X) =

{
(D,C) : ∃ pX̂D,C |Z s.t.

E[∆(X, X̂D,C)] ≤ D,

H(S|X̂D,C) ≤ C

}
.

If I(X;Z) = R and Ω(pZ|X) = Ω(R), then Z achieves the
maximal distortion-classification region at rate R.

B. Main Results

Theorem 3. Let X ∼ N (µX , σ2
X) be a scalar Gaussian

source and S ∼ N (µS , σ
2
S) a classification variable with

Cov(X,S) = θ1. Assume MSE distortion and classification
loss measured by H(S|X̂). Then, for any non-empty set Θ of
distortion-classification pairs (D,C), the rate penalty is zero:

A(Θ) = 0. (8)

Moreover, any jointly Gaussian representation Z of X sat-
isfying

I(X;Z) = sup
(D,C)∈Θ

R(D,C), (9)

achieves the maximal distortion-classification region:

Θ ⊆ Ω(pZ|X) = Ω(I(X;Z)). (10)

Proof. The detailed proof is presented in [20, Appendix B].

In addition, we consider a general source X ∼ pX and
characterize the distortion-classification region induced by an
arbitrary representation Z under MSE distortion.

Theorem 4. Let X ∼ pX be a general source and S a
classification variable with Cov(X,S) = θ1. Assume distortion
is measured by MSE and classification loss by H(S|X̂). Let
Z be any representation of X , and define X̃ = E[X|Z] as
the minimum mean square estimator. Then the closure of the
achievable region, cl(Ω(pZ|X)), satisfies

Ω(pZ|X)⊆

(D,C) : D ≥ E∥X − X̃∥2+
inf
pX̂

W 2
2 (pX̃ , pX̂)

s.t. H(S|X̂) ≤ C


⊆cl(Ω(pZ|X)),



where the squared 2-Wasserstein distance is W 2
2 (pX , pX̂) =

infpX,X̂
E[∥X − X̂∥2] with the infimum taken over all joint

distributions with marginals pX and pX̂ .
Moreover, cl(Ω(pZ|X)) contains the extreme points:

(D(a), C(a)) =

(
E[∥X − X̃∥2],

∑
s

∑
x̃

pX̃pS|X̃ log
1

pS|X̃

)
,

(D(b), C(b)) =
(
E[∥X − X̃∥2] +W 2

2 (pX̃ , pX̂Cmin ), Cmin

)
,

where

pX̂Cmin = arg min
pX̂

H(S|X̂) (11a)

s.t. E[∥X − X̂∥2] ≤ D. (11b)

The minimum classification loss is: Cmin =∑
s

∑
x̂Cmin pX̂CminpS|X̂Cmin log 1

p
S|X̂Cmin

.

Proof. A complete proof is provided in [20, Appendix C].

Universal Encoder 
trained for (𝐷1, 𝐶1) 

Universal Encoder 
trained for (𝐷3, 𝐶3) 

(ഥ𝐷 𝑎 , ҧ𝐶 𝑎 )

(ഥ𝐷 𝑏 , ҧ𝐶 b )

(𝐷3, 𝐶3)

Figure 3: Universality for a general source. Shown are the
boundaries of achievable distortion-classification regions for
three representations: the minimal distortion point (D1, C1),
where R(D1, C1) = R(D1,∞); the midpoint (D2, C2); and
the minimal classification loss point (D3, C3).

To further analyze the structure of the achievable region,
consider a point (D,C) on the distortion-classification trade-
off curve at a fixed rate R, with an associated optimal
reconstruction Z = X̂D,C satisfying I(X; X̂D,C) = R,
E[∥X − X̂D,C∥2] = D, and H(S|X̂D,C) = C. Assuming that
such an optimal reconstruction exists for every point on the
trade-off curve and that any further reduction in either D or
C would violate the rate constraint, it follows that the point
(D,C) lies on the boundary of the closure cl(Ω(pX̂D,C |X)).

By Theorem 4, the closure of the achievable region includes
two extreme points: the upper-left point (D(a), C(a)), which
minimizes distortion, and the lower-right point (D(b), C(b)),
which minimizes classification loss. Both points are realized by
the universal encoder trained at the operating point (D1, C1).
The region is convex and contains all intermediate pairs.
Figure 3 illustrates both Ω(R) and the achievable region
Ω(pX̂D,C |X) for representative points on the trade-off curve.
The following theorem quantifies this structure.

Theorem 5. Let X̂D1,C1
denote the optimal reconstruction at

point (D1, C1) on the conventional RDC trade-off curve, satis-
fying I(X; X̂D1,C1

) = R(D1, C1). Then the upper-left extreme
point of Ω(pX̂D1,C1

|X) satisfies (D(a), C(a)) = (D1, C1).
Now consider the lower-right extreme points: (D(b), C(b)) ∈
Ω(pX̂D1,C1

|X) and (D3, C3) ∈ Ω(R), where C3 = Cmin and
R(D3, C3) = R(D1,∞). The distortion gap between these
points is bounded below by:

D3−D(b)≥σ2
X+σ2

X̂D3,C3

−2σX̂D3,C3

√
σ2
X −D1−2D1, (12)

and the corresponding distortion ratio satisfies:

D3

D(b)
≥

σ2
X + σ2

X̂D3,C3

− 2σX̂D3,C3

√
σ2
X −D1

2D1
. (13)

In the case where W 2
2 (pX , pX̂D3,C3

) = 0, i.e., σ2
X =

σ2
X̂D3,C3

, the distortion gap becomes small under:

D3 −D(b) ≈ 0 if D1 ≈ 0 or D1 ≈ σ2
X , (14)

D3

D(b)
≈ 1 if D1 ≈ σ2

X . (15)

Proof. The proof is provided in [20, Appendix D].

V. EXPERIMENTAL RESULTS

A. Gaussian Zero-Rate Penalty

Figure 4: CDR functions for a Gaussian source.

This section verifies that no rate penalty arises when re-
placing multiple distortion-classification specific Gaussian en-
coders (i.e. conventional model) with a single universal encoder
(i.e., universal model). We consider a scalar Gaussian source
X ∼ N (0, 1) and classification variable S ∼ N (0, 1) with
correlation ρ = 0.7, yielding a maximum rate of Rmax = 0.34.

The conventional model is evaluated at rates
[0.05, 0.1, 0.15, 0.2, 0.34], with each rate generating a
distinct set of (C,D) tradeoffs via Theorem 2. In contrast, the
universal model uses a fixed encoder at Rmax (by Theorem 3)
and varies the decoder to explore achievable (C,D) pairs.

Figure 4 illustrates that the universal model closely traces the
boundary of the conventional model, thereby confirming that a



single encoder is sufficient to achieve the entire classification-
distortion tradeoff for Gaussian sources without incurring any
rate penalty.

B. Universal Representation for Lossy Compression
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Figure 5: An illustration of the universal RDC scheme.

We empirically validate our theory using a deep learning-
based image compression framework on the MNIST dataset,
showing that the distortion gap between conventional and
universal models aligns with our theoretical predictions.

1) Training: We use a stochastic autoencoder with a pre-
trained classifier and GAN-based discriminator, consisting of
an encoder f , decoder g, classifier c, and discriminator d, as
shown in Figure 5. In the conventional setup, f , g, and d are
trainable. The distortion loss is measured by MSE. The output
X̂ is passed through the classifier c to produce the predicted
label distribution Ŝ, with classification loss computed via cross-
entropy CE(S, Ŝ), an upper bound on conditional entropy [21].
The compression rate is upper bounded by h× log2(L), where
h is the encoder output size and L the quantization level.

To ensure that the condition W 2
2 (pX , pX̂D3,C3

) = 0 in
Theorem 5 is satisfied, we augment the training loss with a
squared 2-Wasserstein distance regularization term, rather than
relying solely on MSE and cross-entropy losses. Following the
approach in [2] and the fact that Wasserstein-2 loss can be
bounded by Wasserstein-1 up to a factor (see Appendix B in
[22]), we estimate the 2-Wasserstein distance using a discrim-
inator d that takes both X and X̂ as inputs and employs the
Wasserstein-1 loss in a GAN-based framework. The complete
formulation of the loss function is provided below.

L = λd E[∥X − X̂∥2] + λc CE(S, Ŝ) + λp W1(pX , pX̂), (16)

where λd, λc, and λp controlling the trade-off.
To construct the universal model, the trained encoder f is

frozen, and a new decoder g1 and discriminator d1 are trained
using:

L1 = λ1
d E[∥X−X̂1∥2]+λ1

c CE(S, Ŝ)+λ1
p W1(pX , pX̂), (17)

where λ1
d, λ1

c , and λ1
p adjust the task-specific trade-offs.

Figure 6: RDC function at R = 4.75 on MNIST dataset.

Figure 6 shows the RDC tradeoff on the MNIST dataset at a
fixed rate R = 4.75, obtained by varying loss coefficients. The
black outlined points represent the conventional model trained
jointly for specific classification-distortion objectives. Other
points correspond to the universal model with decoders trained
on a fixed encoder optimized for low classification loss C. The
result corresponding to the fixed encoder trained at high C can
be analyzed in a similar manner. As expected, in conventional
models under a fixed rate constraint, reducing the cross-entropy
loss (equivalently, improving classification accuracy) results in
increased distortion. This observation highlights the inherent
tradeoff between classification performance and reconstruction
fidelity. In addition, despite using a fixed encoder, the universal
model achieves distortion levels comparable to the conventional
model, confirming that an encoder trained for low C can still
support diverse tradeoffs through decoder retraining. The sub-
figure illustrates the benefits of incorporating the regularization
term. These observations support the validity of Theorem 5.

However, a noticeable classification gap remains: universal
decoders cannot recover low classification performance if the
encoder is trained only for high-distortion objectives. This
highlights the decoder’s limited generative capacity when the
encoder fails to preserve classification-task information.

VI. CONCLUSION

We proposed a universal RDC framework that enables a
single encoder to support multiple task objectives through
specialized decoders, removing the need for separate encoders
per distortion-classification tradeoff. For the Gaussian source
with MSE distortion, we proved that the full RDC region is
achievable with zero rate penalty using a fixed encoder. For
general source, we characterized the achievable region using
MMSE estimation and the 2-Wasserstein distance, identifying
conditions under which encoder reuse incurs negligible dis-
tortion penalty. Empirical results on the MNIST dataset sup-
port our theory, showing that universal encoders, trained with
Wasserstein loss regularization, achieve distortion performance
comparable to task-specific models. These findings highlight
the practicality and effectiveness of universal representations
for multi-task lossy compression.
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