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ABSTRACT

Set partitioning is a key component of many algorithms in ma-
chine learning, signal processing and communications. In gen-
eral, the problem of finding a partition that minimizes a given
impurity (loss function) is NP-hard. As such, there exists a
wealth of literature on approximate algorithms and theoretical
analysis for the partitioning problem under different settings.
In this paper, we formulate and solve a variant of the partition
problem called the minimum weighted concave impurity parti-
tion under constraint (MIPUC). MIPUC finds an optimal parti-
tion that minimizes a given weighted concave loss function un-
der a given concave constraint. MIPUC generalizes the recently
proposed Deterministic Information Bottleneck problem which
finds an optimal partition that maximizes the mutual information
between the input and partitioned output while minimizing the
partitioned output entropy. Our proposed algorithm is based on
an optimality condition, which allows us to find a locally optimal
solution efficiently. We also show that the optimal partitions are
separated by some hyperplanes in the space of posterior proba-
bility mass functions.

Index Terms— Partition, quantization, impurity, constraint.

1. INTRODUCTION

Partitioning algorithms play a key role in machine learning, sig-
nal processing and communications. Given a set Y consisting of
M N -dimensional elements and a loss function over the subsets
of Y, a K-optimal partition algorithm splits Y into K disjoint
subsets such that the total loss over all K subsets is minimized.
The loss function has also been termed the impurity which mea-
sures the average of a specified non-homogeneity property of
the elements in each subset. Popular impurity functions include
Gini index and the Shannon entropy [1–4]. From a communica-
tion and coding theory perspective, the problem of finding an op-
timal quantizer that maximizes the mutual information between
the input and the quantized output is an important instance of
the partition problem [5–14]. In this setting, the transmitted sig-
nal, modeled as the random variable X , is distorted by a chan-
nel, resulting in a received signal modeled as the random vari-
able Y . A primary goal is to recover the transmitted signal X
from the received signal Y accurately. To that end, one wants
to design a quantizer, i.e., a mapping Q(Y ) → Z such that Z
and X share the most information. Since mutual information is
the right metric for measuring the shared information between
two random variables, designing Q(Y ) that maximizes the mu-
tual information between Z and X is an important objective for
many settings [15–18].

Fig. 1: Q(Y )→ Z for a given joint distribution px,yi

In this paper, we study a new partition problem called min-
imum weighted concave impurity partition under constraint
(MIPUC) [19]. MIPUC is the minimum weighted concave
impurity partition with an additional constraint on the distribu-
tion of the resulted partitions. MIPUC is motivated by many
real-world problems. Specifically, our problem generalizes the
recently proposed Deterministic Information Bottleneck prob-
lem (DIB) [15]. DIB finds an optimal partition that maximizes
the mutual information between the input and the partitioned
output while keeping the partitioned output entropy smaller
than a certain threshold. For a given input distribution, maxi-
mizing mutual information is equivalent to minimizing entropy
impurity [5], [6], thus, DIB can be viewed as a sub-problem
of MIPUC. However, it is worth noting that the technique used
in [15] is specific to an objective and constraint function, and
is hard to extend to other impurity and constraint functions.
In contrast, motivated by the approach in [20], our proposed
algorithm is based on a optimality condition, which allows us
to find a locally optimal solution efficiently for an arbitrary fre-
quency weighted concave impurity function under an arbitrary
concave constraint. In addition, by theoretically proving that
the hard partition is optimal, we show that the optimal partitions
are separated by hyperplane cuts in the space of the posterior
distribution. Based on this optimality condition, we can find the
true global optimal solution efficiently for small sized problems.

2. PROBLEM FORMULATION

It is convenient to use Fig. 1 to illustrate the proposed MIPUC
problem in the context of quantizer design for communication
systems. Let the transmitted signal be modeled as a discrete
random variable X taking on N possible values x1, x2, . . . , xN ,
with the probability mass vector p = [p1, p2, . . . , pN ]. X
is transmitted over a channel that distorts the signal, result-
ing in the received signal modeled as a random variable Y
taking on discrete values y1, y2, . . . , yM with the probability
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mass vector q = [q1, q2, . . . , qM ]. The communication chan-
nel is modeled using a given channel matrix P ∈ RN×M

whose entries Pij = p(yj |xi) denotes the conditional proba-
bility that yj is received given xi is transmitted. From p and
P , each received signal yi is specified by a joint distribution
px,yi

= [p(x1, yi), p(x2, yi), . . . , p(xN , yi)]. Next, a quantizer
Q (possibly stochastic) is used to quantize Y into K discrete
values z1, z2, . . . , zK , modeled as a discrete random variable Z
with the probability mass vector r = [r1, r2, . . . , rK ].

For a given K, the quantization should be done to minimize
the impurity function or the cost function F (X;Z) between X
and Z. On the other hand, often times, it is useful to be able
to impose some constraints on the partitioned output Z. For ex-
ample, if Z needs to be transmitted over a limited bandwidth
channel, or needs to be stored in a small-capacity disk, then
it makes sense to ensure the entropy H(Z) less than a certain
number of bits. In this case, the objective of a quantizer is not
only to minimize the entropy impurity function H(X|Z) but
also to keep H(Z) small as the setting in the Deterministic In-
formation Bottleneck problem (DIB) [15]. To that end, we study
a generalized DIB problem called minimum weighted concave
impurity partition under constraint (MIPUC) which allows for
a broader class of objective functions and constraints. Specif-
ically, MIPUC finds an optimal partition/quantizer that mini-
mizes a given weighted concave impurity function under a given
concave constraint. To formulate the problem precisely, we use
the following notations.

• px,yi = [p(x1, yi), p(x2, yi), . . . , p(xN , yi)] denotes the
N -dimensional joint pmf of X and Y = yi.

• px,zi = [p(x1, zi), p(x2, zi), . . . , p(xN , zi)] denotes the
N -dimensional joint pmf of X and Z = zi.

• px|yi
= [p(x1|yi), p(x2|yi), . . . , p(xN |yi)] denotes the

N -dimensional conditional pmf of X given Y = yi.
• px|zi = [p(x1|zi), p(x2|zi), . . . , p(xN |zi)] denotes the
N -dimensional conditional pmf of X given Z = zi.

• px,z denotes the N ×K matrix representing the joint pmf
of X and Z.

Given p, q, px,yi
, and a quantizer Q(Y ) → Z, Y is par-

titioned into K distinct partitions corresponding to K distinct
values zi’s such that the weighted concave impurity over all par-
titions is minimized.

Specifically, the impurity function due to partition zi is de-
noted by:

F (px,zi) = rif(px|zi) = pT
x,zi1f(

px,zi

pT
x,zi1

), (1)

where T denotes the tranpose operation and f : RN → R is
concave.

The weighted concave impurity function over all partitions
is defined as:

F (px,z) =
K∑
i=1

F (px,zi) =
K∑
i=1

pT
x,zi1f(

px,zi

pT
x,zi1

). (2)

The definition of weighted concave impurity function was
previously proposed in [20], [21], [22]. Many popular impurity
functions such as entropy and Gini index [20], [21], [22] satisfy
the weighted concave impurity property.

As mentioned earlier, for many real-world problems, it is of-
ten required to have a pre-specified constraint on the partitioned
output Z [15], [23], [24]. Since Z is a random variable, we
consider the concave constraint on r, the pmf of Z, having the
following form:

G(r) = g1(r1) + g2(r2) + · · ·+ gK(rK) ≤ D, (3)

where gi(.) is a concave function ∀i = 1, 2, . . . ,K, and D is
a given constant. Examples of some useful concave constraints
include entropy and linear functions. For instance, entropy con-
straint is useful when Z acts as the intermediate representation
of Y that needs to be transmitted over a limited bandwidth chan-
nel or stored in a small storage capacity disk [23], [24]. In this
scenario, the entropy of Z is the theoretical maximum informa-
tion/compression rate which adjusts the number of bits repre-
senting Z to fit the channel bandwidth or the storage capability.
A smaller H(r) theoretically implies a smaller number of bits to
represent Z [25].

The MIPUC can be formulated as finding an optimal quan-
tizer Q∗ by finding an induced optimal p∗x,z via the following
unconstrained problem:

p∗x,z = argmin
px,z

βF (px,z) +G(r), (4)

where β is a pre-specified parameter to control a given trade-
off between minimizing the impurity F (px,z) or minimizing the
constraint function G(r).

3. SOLUTION APPROACH

Our approach to solving the MIPUC problem is based on the
method in [20]. First, a necessary condition for an optimal p∗x,z,
specifically the joint pmf of X with each zi, i.e., p∗x,zi , for i =
1, 2, . . . ,K, is characterized. Then, based on this condition, we
describe an algorithm that finds a locally optimal solution. In
addition, we also propose a method that can find the globally
optimal solution in some special cases.

3.1. Optimality Condition

Let Q be a deterministic quantizer that assigns yj to zk deter-
ministically, i.e., for any j, if Q(yj) = zk then p(zk|yj) = 1
and p(zl|yj) = 0 for k 6= l. Let us consider two partitions zu,
zv , and a sample ym such that Q(ym) = zu. Let Q(u,v,m,t) be
a stochastic quantizer, a slightly perturbed version of the quan-
tizer Q. Q(u,v,m,t) is constructed as follows. Q(u,v,m,t) is the
quantizer that assigns ym to zu with probability 1 − t and to zv
with probability t. For any other yj , j 6= m, Q(u,v,m,t)(yj) =
Q(yj). Hence, if t = 0, then Q(u,v,m,t) = Q. If t = 1,
then Q(u,v,m,t) quantizes ym to zv instead of zu, and for every
j 6= m, Q(u,v,m,t)(yj) = Q(yj).

Let p′x,z(t) be the new joint pmf of X and Z induced by the
quantizer Q(u,v,m,t), then:

p′
x,zu(t) =

( ∑
yi:Q(yi)=zu

i 6=m

px,yi

)
+ (1− t)px,ym

=
( ∑

yi:Q(yi)=zu

px,yi

)
− tpx,ym = px,zu − tpx,ym . (5)
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Similarly, we have:

p′x,zv (t) = px,zv + tpx,ym . (6)

p′x,zk(t) = px,zk ,∀k 6= u, v. (7)

The new weighted impurity produced by Q(u,v,m,t) is there-
fore:

F (p′
x,z(t)) =

K∑
i=1

F (p′
x,zi(t)) =

∑
i 6=u,v

F (px,zi)

+ F (px,zv + tpx,ym) + F (px,zu − tpx,ym). (8)

Similarly, let r′(t) = [r′1(t), r
′
2(t), . . . , r

′
K(t)] be the new

pmf of Z induced by Q(u,v,m,t), by marginalizing (5) and (6)
over X , we have:

r′u(t) = ru − tqm,
r′v(t) = rv + tqm,

r′l(t) = rl,∀l 6= u, v.

Consequently, the new constraint function forQ(u,v,m,t) can
be written as:

G(r′(t)) =
( ∑

i 6=u,v

gi(ri)
)
+gu(ru−tqm)+gv(rv+tqm). (9)

Define:

C(u,v,m)(t)=β
(
F (p′

x,zv (t))+F (p′
x,zu(t))

)
+gv(r

′
v(t))+gu(r

′
u(t))

=β
(
F (px,zv + tpx,ym) + F (px,zu − tpx,ym)

)
+gv(rv + tqm) + gu(ru − tqm). (10)

C(u,v,m)(t) represents the contributions to the objective
function from two partitions zu and zv , which is a function
of t as Q(u,v,m,t) quantizes ym to zu with probability 1 − t
and to zv with probability t. As t increases from 0 to 1,
there is an increasing chance that ym will be moved from
zu to zv . If C(u,v,m)(0) > C(u,v,m)(1), then the objective
using the quantizer Q is larger than that of using Q(u,v,m,1)

which moves ym to the partition zv completely. Similarly, if
C(u,v,m)(0) < C(u,v,m)(1), then Q is better than Q(u,v,m,1).
We have the following proposition about C(u,v,m)(t).

Proposition 1. For any u, v, Q(ym) = zu, and 0 ≤ t ≤ a ≤ 1,
we have:

C(u,v,m)(t) ≥ (1− t

a
)C(u,v,m)(0) +

t

a
C(u,v,m)(a). (11)

Equivalently,

C(u,v,m)(t)− C(u,v,m)(0)

t
≥ C(u,v,m)(a)− C(u,v,m)(0)

a
. (12)

Proof. (outline) From the concavity of f(.), gu(.) and gv(.), one
can verify that C(u,v,m)(t) as defined in (10), is concave. Thus,
(11) follows.

Now, we are ready to prove the main result which character-
izes the condition for an optimal quantizer Q∗.

Theorem 1. (Necessary optimality condition) Let Q be a quan-
tizer with an induced joint pmf px,z. For each partition zk,
k = 1, 2, . . . ,K, define:

ck =
dF (px,zk)

dpx,zk

, bk =
dgk(rk)

drk
. (13)

Define the "distance" from a data point yj to a partition zk as:

d(yj , zk) = βcTk px,yj + bkqj , (14)

then an optimal quantizer Q∗ that quantizes yj to zk must have
d(yj , zk) ≤ d(yj , zl), l 6= k.

Proof. Our proof follows the method in [20] with the difference
being the incorporation of the concave constraint. Let Q∗ be an
optimal quantizer with an optimal induced joint pmf of X and
Z, p∗x,z, a marginal pmf of Z, r∗, and the distance d∗(yj , zk).
For any arbitrary partition zu, suppose that existing ym such that
Q∗(ym) = zu, however, d(ym, zu) > d(ym, zv) for some v 6=
u. Let Q(u,v,m,t) be a perturbed version of Q∗. Now, from (10),

dC(u,v,m)(t)

dt
= β

dF (p′x,zu(t))

dt
+ β

dF (p′x,zv (t))

dt

+
dgu(r

′
u(t))

dt
+

dgv(r
′
v(t))

dt
. (15)

Using the chain rule, the derivative of the first term on the
right hand side above is:

β
dF (p′x,zu(t))

dt
= β

(dF (p′x,zu(t))
dp′x,zu

)T dp′x,zu
dt

.

Since p′x,zu(t) = px,zu − tpx,ym , we have:

dF (p′x,zu(t))

dp′x,zu

∣∣∣
t=0

=
dF (px,zu)

dpx,zu

= cu,

dp′x,zu
dt

= −px,ym .

Thus,

β
dF (p′x,zu(t))

dt

∣∣∣
t=0

= −βcTupx,ym . (16)

Using the same chain rule for other terms in (15), we have:

β
dF (p′x,zv (t))

dt

∣∣∣
t=0

= βcTv px,ym
, (17)

dgu(r
′
u(t))

dt

∣∣∣
t=0

= −dgu(ru)

dru
qm = −buqm, (18)

dgv(r
′
v(t))

dt

∣∣∣
t=0

=
dgv(rv)

drv
qm = bvqm. (19)

Summing (16), (17), (18), and (19), we have:

dC(u,v,m)(t)

dt

∣∣∣
t=0

= (βcTv px,ym + bvqm)− (βcTupx,ym + buqm)

= d(ym, zv)− d(ym, zu). (20)

Since we assume that d(ym, zv) < d(ym, zu), we have:

dC(u,v,m)(t)

dt

∣∣∣
t=0

< 0. (21)
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Now, from (12) in Proposition 1, using a = 1, and let t→ 0,
we have:

dC(u,v,m)(t)

dt

∣∣∣
t=0

= lim
t→0

C(u,v,m)(t)− C(u,v,m)(0)

t

≥ C(u,v,m)(1)− C(u,v,m)(0)

1
. (22)

Since we assume that Q∗ is optimal which corresponds to
C(u,v,m)(0), then C(u,v,m)(0) ≤ C(u,v,m)(1). Combine with
(22), we have:

dC(u,v,m)(t)

dt

∣∣∣
t=0
≥ 0,

which contradicts (21). Hence, ifQ∗(ym) = zu then d(ym, zu) ≤
d(ym, zv), ∀ v 6= u.

Proposition 2. (Deterministic quantizer is optimal) There exists
an optimal deterministic quantizer.

Proof. Using (11) in Proposition 1, C(u,v,m)(t) is a concave
function in 0 ≤ t ≤ 1 by definition. Thus, the minimum of
C(u,v,m)(t) must occur either at t = 0 or t = 1. Both t = 0 or
t = 1 requires Q(ym) = zu with probability 1, or Q(ym) = zv
with probability 1. Since the results hold for arbitrary zu and zv ,
there exists an optimal deterministic quantizer.

3.2. Algorithm

Based on the optimality condition in Theorem 1, we describe an
iterative algorithm which is similar to a k-means algorithm for
finding a locally optimal solution for any weighted concave ob-
jective and constraint function. In the initial step, the algorithm
randomly selects a quantizer Q to assigns yj to zk. Next, based
on the initial random clustering, px,z, ck, rk, bk, and d(yj , zk)
are computed. Based on d(yj , zk), the membership of yj to each
zk is updated such that Q(yj) = zk if d(yj , zk) is the smallest
over all zk. The algorithm repeats untilQ stops changing (mem-
bership of all partitions zk’s do not change), or the maximum
number of iterations has been reached. For a special case of en-
tropy impurity and entropy constraint, the proposed algorithm is
identical to the Algorithm 2 in [15]. The pseudo code for the
proposed algorithm can be found in [19].

3.3. Hyperplane Separation of Optimal Partitions

Our result agrees with the well-known result in [21] for the prob-
lem of minimizing impurity without constraints which states that
the optimal partitions are separated by hyperplane cuts in a N −
1 dimensional space of the posterior distributions px|yj

. In-
deed, consider an optimal quantizer Q∗ that induces conditional
pmf px|zk , k = 1, 2, . . . ,K. Suppose that Q∗(yj) = zk and
Q∗(yi) = zl, j 6= i, k 6= l. From Theorem 1, we have:

d(yj , zk) = βcTk px,yj + bkqj = qj(βc
T
k px|yj

+ bk)

≤ d(yj , zl) = βcTl px,yj
+ blqj = qj(βc

T
l px|yj

+ bl).

Thus, βcTk px|yj
+ bk ≤ βcTl px|yj

+ bl. Equivalently,

(cTk − cTl )px|yj
≤ 1

β
(bl − bk). (23)

Using a similar derivation for d(yi, zl) ≤ d(yi, zk), we have:

(cTk − cTl )px|yi
≥ 1

β
(bl − bk). (24)

From (23) and (24), we conclude that px|yi
and px|yj

are sepa-
rated by a hyperplane with the orthogonal vector (cTk − cTl ) and
offset (bl−bk)/β. In addition, because px|yj

is a pmf, the sum of
its components is 1, the separating hyperplanes lies in N − 1 di-
mensional space. An interesting result of this separation is that a
naive exhaustive search over all the possible hyperplanes which
requires the complexity of O(MN−1) [21], can be practical.

4. APPLICATIONS AND NUMERICAL RESULTS

We now provide a small example to validate the theoretical re-
sults and the proposed algorithms. Consider an input source
X ∈ {x1 = −1, x2 = 1} having p = (0.2, 0.8)T is trans-
mitted over an AWGN channel with: Y = X + N, where
N ∼ N (µ = 0, σ = 1). Consequently, py|x1

= N (1, 1) and
py|x2

= N (−1, 1). We first quantize Y in the range [−10, 10]
into M = 200 discrete values Y = [y1, y2, . . . , yM ] with equal
spacing of ε = 0.1. The discrete Y is then quantized into
Z ∈ {z1 = −1, z2 = 1} using a quantizer Q. The joint pmf
px,y can be determined using two given conditional pmfs py|x1

and py|x2
above. To study the trade-off between maximizing

I(X;Z) and minimizing H(Z), the proposed algorithm is used
with multiple random starting points to determine the minimum
values of −βI(X;Z) + H(Z). Fig. 2 shows the Pareto curve
for I(X;Z) vs. H(Z) at various values of β. If we want to de-
sign an quantizer having H(Z) ≤ 0.5, we can choose β∗ = 6
which produces I(X;Z)∗ = 0.18623 and H(Z)∗ = 0.48873.

In addition, since px1|y =
p1py|x1

p1py|x1
+ p2py|x2

is a strictly de-

creasing function of y, it is possible to show that an exhaus-
tive search over all the hyperplanes in a 1-dimensional space of
the posterior distribution is equivalent to an exhaustive search
in y [19]. Now, by exhaustive searching for y ∈ [−10, 10]
with the resolution ε = 0.1 and using β = 6, the optimal mu-
tual information I(X;Z)∗ = 0.18623 and the optimal entropy
H(Z)∗ = 0.48873 are achieved at y = −1.1 which confirms
the result of the proposed algorithm.

H(Z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

I(
X

;Z
)

0

0.05

0.1

0.15

0.2

β=1,2,3

β=15,20,30,50,100

β=4,5,6

β=8
β=10

Fig. 2: I(X;Z) vs. H(Z) at various values of β.

5. CONCLUSION

In this paper, we introduced framework for determining the opti-
mal partition that minimizes a given weighted concave impurity
function under a given concave constraint on the partitioned out-
puts. Based on the optimality condition, we provide a low com-
plexity algorithm to find the locally optimal solution. We also
showed that there exists a deterministic optimal partition which
corresponds to the regions separated by some hyperplane cuts in
the probability space of the posterior distribution.
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