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Abstract—In this paper, we consider the problem of one-
bit (two-level) output-quantization maximizing mutual infor-
mation between quantizer-output and channel-input using a
single threshold for a discrete signal that is corrupted by
a continuous additive noise. A necessary condition is con-
structed for which the thresholding quantizer is optimal. In
addition, we show that if the distribution of the additive noise
satisfies a mild condition, then a global optimal threshold can
be found efficiently via a modified fixed-point algorithm.
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I. INTRODUCTION

Quantization aims to map a real value signal to a finite
quantized-set that maximizes or minimizes an objective
function. The mean square error (MSE) between the orig-
inal signal and the quantized signal is the most common
objective function that was used in various communication
systems [1], [2]. Recently, motivated by designing of low-
density parity-check (LDPC) codes and polar codes [3]–[5],
finding the optimal quantizer that maximizes the mutual
information between the input signal and the quantized-
output is of great interest. Consequently, in recent years,
there is a rich literature on finding such quantizers [6]–
[18]. It is worth noting that the problem of designing
quantizer maximizing mutual information is closely related
to the problem of noisy source quantization [19]–[21].
In addition, finding the optimal quantizer that maximizes
mutual information is an extremely hard problem even with
the one-bit (binary) quantization. In a special case where
the input is binary, Kurkoski and Yagi showed that the
optimal quantizer separates the posterior distribution into
the contiguous interval [7], [22]. Thus, a global optimal
quantizer can be found efficiently using dynamic program-
ming technique and its variants [7], [12]. For the larger size
of the input alphabet, the beautiful result in [7], [22] is in-
applicable, and finding a global optimal quantizer requires
a naive exhaustive search with exponential time complexity
[23]. Of course, an exhaustive search approach will quickly
become computationally intractable even for the modest
values of the number of input and the number of data. To
overcome this inconvenience, many works consider a sub-
class quantizer called thresholding quantizer which allows
determining a global optimal quantizer efficiency for non-

binary input channels [9], [15]–[17], [22], [24]–[29]. An
important property of the thresholding quantizer is that it
maps every disjoint interval of input to a distinct quantized-
output using scalar thresholds as the boundaries of these
intervals. The advantage of this thresholding quantizer
is that it has a simple circuit implementation which is
similar to the classic scalar quantizer. This special structure
makes thresholding quantizer is suitable to decode the
Pulse Amplitude Modulation signals (PAM) where the
output symbols are resolved based on the magnitude of the
received signal. However, it is worth noting that thresh-
olding quantizers might not be truly optimal quantizers
for maximizing mutual information, i.e., the real optimal
quantizer that maximizes the mutual information between
the input and the quantized-output might map the output
to the disjoint intervals [22], [29].

Based on the structure of the thresholding quantizer,
many algorithms were proposed to find the optimal quan-
tization. In [25], the author proposed a heuristic near-
optimal quantization algorithm that alternatively maximizes
the mutual information for a given quantizer and minimizes
the probability of error for a given input distribution.
However, this algorithm only works well when the signal-
to-noise ratio of the channel is high. For 1-bit quantization
of general additive channels, Mathar and Dorpinghaus gave
a condition for which the threshold is optimal [16]. They
also pointed out that the optimal threshold must be between
two support points and the optimal threshold might not
be unique. However, the work of Mathar and Dorpinghaus
[16] still requires an exhaustive search between two support
points for determining a global optimal threshold. In [22],
Kurkoski and Yagi considered a single-bit quantization of
binary input continuous-output channel and showed that
the optimal quantizer corresponds to a scalar threshold in
the space of the posterior distribution. Using the result
of Kurkoski and Yagi, one can find the optimal quantizer
by exhaustive search a scalar threshold over the posterior
distribution. The work of Kurkoski and Yagi is further
investigated in [10] and a global optimal quantizer can be
found via a modified fixed-point algorithm. For multiple-
input and multiple-output thresholding quantizer, if the
channel satisfies pre-determined conditions, the global op-
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timal quantizer can be found efficient via the famous
dynamic programming and SMAWK algorithm [15], [27],
[28].

Although existing efficient algorithms to determine the
optimal thresholding quantizer in some special cases, the
most important case of discrete multiple-input continu-
ous one-bit single threshold quantization still requires the
exhaustive search [16] which fundamentally limits the
performance of designing the optimal quantizer for one-
bit quantization. In this paper, we investigate the problem
of finding the optimal quantizer for discrete multiple-input
continuous one-bit output single-threshold quantization that
maximizes the mutual information between the input and
the quantized-output. A necessary condition for optimal
thresholds is constructed. Based on this optimality con-
dition, if the additive noise distribution satisfies a mild
condition, an efficient algorithm is proposed to determine
the optimal quantizers. To that end, the most related works
of this paper are that of Mathar and Dorpinghaus [16]
and Nguyen [10]. Particularly, our setting in this paper
is similar to one in [16], however, we assume that the
input distribution is given which allows a global optimal
quantizer can be found efficient via a modified fixed-point
algorithm. On the other hand, the modified fixed-point
algorithm has been successfully used in [10] for finding
a global optimal quantizer of discrete binary-input con-
tinuous binary-output channels. Although the algorithmic
approach is similar, the established results in this paper are
not straightforwardly constructed from [10]. Indeed, due
to the larger size of the input alphabet, all the proofs and
results require a deeper investigation which contributes to
the novelty of this paper.

II. PROBLEM FORMULATION

Consider a channel having the input alphabet set X con-
sisting of N transmitted symbols X = {x1, x2, . . . , xN}
with a given input p.m.f pX = {p1, p2 . . . , pN}, xi ∈ R
and xi−1 < xi, ∀i. X is transmitted over a noisy channel
having a continuous additive noise W to produce a contin-
uous received-output Y = X +W . Due to the continuous
additive noise, the received signal y ∈ Y = R is modeled
via the conditional density function pY |X(y|xi) = φi(y),
i = 1, 2, . . . , N . From the additive property, φi(y) =
pY |X(y|xi) and φj(y) = pY |X(y|xj), i 6= j, are the
shifting versions of each other. A quantizer Q : Y → Z
is used to quantize the continuous output y ∈ Y to a
binary discrete quantized-output Z = {z0, z1}. Since the
thresholding quantizer is used, quantizer Q is equivalent to
a single threshold h such that:

Q(y) =

{
z0 if y < h,

z1 otherwise.

One wants to design an optimal quantizer Q∗ which in
turn corresponds to an optimal threshold h∗ that maxi-
mizes the mutual information between the input and the
quantized-output I(X;Z):

h∗ = argmax
h

I(X;Z). (1)

III. OPTIMALITY CONDITION AND ALGORITHM

In this section, an optimality condition for the optimal
threshold is constructed. Based on this optimality condi-
tion, a fast algorithm is proposed to find a global optimal
quantizer. All the results in this paper assume that the
conditional density function φi(y), i = 1, 2, . . . , N , is
continuous, positive, and differentiable everywhere. Many
well-known distributions such as normal distribution, ex-
ponential distribution, satisfy these requirements. We first
begin with some notations and definitions.

A. Notations and definitions

1) For a given threshold h, let p(z0|xi) and p(z1|xi)
denote the conditional distribution of the quantized-
output z0 and z1 given the input xi, respectively.
Specifically,

p(z0|xi) =

∫ h

−∞
φi(y)dy, (2)

p(z1|xi) =

∫ +∞

h

φi(y)dy = 1− p(z0|xi). (3)

2) For a given threshold h, the channel matrix is defined
by:

A =

 p(z0|x1) p(z1|x1)
...

...
p(z0|xN ) p(z1|xN )


3) Let q0 and q1 denote the probability of the quantized-

output z0 and z1, respectively. Specifically,

q0 =

N∑
i=1

pip(z0|xi), (4)

q1 =
N∑
i=1

pip(z1|xi) = 1− q0. (5)

4) Let p(xi|z0) and p(xi|z1) denote the conditional dis-
tribution of xi given z0 and z1, respectively. Specifi-
cally,

p(xi|z0) =
pip(z0|xi)∑N
i=1 pip(z0|xi)

, (6)

p(xi|z1) =
pip(z1|xi)∑N
i=1 pip(z1|xi)

. (7)

5) Let v(x|y) denote the conditional distribution vector
of the input x1, x2, . . . , xN given y. Specifically,

v(x|y) = [p(x1|y), p(x2|y), . . . , p(xN |y)], (8)

p(xi|y) =
piφi(y)∑N
i=1 piφi(y)

. (9)

6) Let v(x|z0) and v(x|z1) denote the conditional dis-
tribution vector of the input x1, x2, . . . , xN given the
quantized-output z0 and z1, respectively. Specifically,

v(x|z0) = [p(x1|z0), p(x2|z0),. . ., p(xN |z0)],(10)
v(x|z1) = [p(x1|z1), p(x2|z1),. . ., p(xN |z1)].(11)

Definition 1. (KL-divergence.) The Kullback-Leibler
(KL) divergence of two probability vectors a =

647
Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on January 06,2023 at 18:04:33 UTC from IEEE Xplore.  Restrictions apply. 



[a1, a2, . . . , aN ] and b = [b1, b2, . . . , bN ] of the same
outcome set N is defined by:

D(a||b) =
N∑
i=1

ai log(
ai
bi

). (12)

Definition 2. (Dominated conditional distribution chan-
nel.) A channel is dominated conditional distribution chan-
nel if all the distributions φi(y) satisfy:

φi(y)

φj(y)
>
φi(y

′)

φj(y′)
, (13)

for ∀ i ≤ j and y ≤ y′.

In practice, the inequality (13) is not too restricted.
Indeed, the inequality (13) holds for a variety of common
noise distributions such as normal distribution, exponential
distribution, gamma distribution, and more generally, all
log-concave distributions (please see Corollary 1 and 2
[10]).

B. Optimality conditions

Theorem 1. (Optimality condition.) Each optimal quan-
tizer Q∗ (local or global) corresponds to an optimal thresh-
old h∗ such that:

D(v(x|h∗)||v(x|z0)) = D(v(x|h∗)||v(x|z1)). (14)

Proof: Please see the proof in Theorem 1 [28].
Theorem 1 confirms the result in [6] which stated that

designing optimal quantizers maximizing mutual informa-
tion is equivalent to finding optimal clusters minimizing
KL-divergence distortion. Since the optimal threshold h∗

acts as an optimal boundary between z0 and z1, the KL-
divergences from h∗ to the "centroids" of z0 and z1 must
be equal. Unluckily, Theorem 1 is not a sufficient condition
and the iterative algorithm in [6] is only possible to find the
locally optimal thresholds. To guarantee a globally optimal
solution, one still needs to perform an exhaustive search
over h ∈ Y = R.

Theorem 2. (Existence of the optimal threshold.) There
exists an optimal threshold h∗ that maximizes the mutual
information I(X;Z). Moreover, h∗ is finite.

Proof: Please see the proof in Appendix A.

Definition 3. For given v(x|z0) and v(x|z1) which corre-
spond to a threshold h, let f(h) be a mapping f(h) : R→
R such that:

D(v(x|f(h))||v(x|z0)) = D(v(x|f(h))||v(x|z1)). (15)

Noting that for a given h and therefore, given z0 and
z1, f(h) acts as an optimal separating threshold between
z0 and z1.

Theorem 3. Consider a dominated conditional distribution
channel, for given v(x|z0) and v(x|z1) which correspond
to a threshold h, then:

1) There exists a finite and unique f(h) satisfies (15).
2) f(h) is a non-decreasing function of h.

Proof: Please see the proof in Appendix B.

The results in Theorem 3 play a key role in the construc-
tion of our modified fixed-point algorithm. Next, Theorem
4, Lemma 1, and Theorem 5 can be constructed based on
Theorem 3. Noting that the proofs of Theorem 4, Lemma
1, and Theorem 5 in this paper are similar to the proofs of
Theorem 3, Lemma 5, and Theorem 5 in [10], respectively.
However, for the convenience of the reader, we still sketch
the proofs of these theorems.

Theorem 4. For any dominated conditional distribution
channel, if h∗ is an optimal threshold, then f(h∗) = h∗.

Proof: From (14), (15), both h∗ and f(h∗) satisfy (15).
From Theorem 3, (15) has a unique solution. Thus, h∗ =
f(h∗).

Theorem 4 states that the optimal threshold h∗ must
be a fixed point of f(h). Therefore, h∗ can be found via
an iterative fixed-point algorithm with an initial threshold
h0. The iterative fixed-point algorithm then will update
hi+1 from hi using hi+1 = f(hi). Next, we show some
interesting properties of f(h).

Lemma 1. If hi+1 = f(hi), then the sequence hi must
converge to a fixed point h∗ from any initial point h0.

Proof: From Theorem 3, f(h) is a non-decreasing
function. Thus, the sequence produced by hi+1 = f(hi),
starting from any h0 must be monotone, i.e., hi+1 ≥ hi

∀i, or hi+1 ≤ hi ∀i. Particularly, if h1 ≤ h0, then
h2 = f(h1) ≤ f(h0) = h1, thus, h2 ≤ h1. By induction
method, if h1 ≤ h0 then hi+1 ≤ hi, ∀i. Symmetrically,
if h1 ≥ h0, then hi+1 ≥ hi, ∀i. Thus, the sequence
hi is monotone. From Theorem 3, f(hi) generates a
finite sequence or hi is bounded. Thus, sequence hi must
convergence to a limit h∗ such that h∗ = f(h∗).

Theorem 5. For any initial point h0, if hi+1 = f(hi) and
limi→+∞ hi = h∗, then there is no other solution h′ such
that h′ = f(h′) between h0 and h∗.

Proof: Let consider the case where h0 ≤ h∗ and
suppose that there is a h′ such that h′ = f(h′) and
h0 < h′ < h∗. Due to the sequence hi is monotone,
there exists an i such that hi < h′ < hi+1. Now, since
f(h) is non-decreasing (Theorem 3), we have hi+1 =
f(hi) ≤ f(h′) = h′ which contradicts the assumption that
h′ < hi+1. Thus, there is no other solution h′ between h0
and h∗ if h0 ≤ h∗. Similarly, one can verify that there is
no other solution h′ in the interval (h∗, h0) if h0 > h∗.

C. Outline of algorithm

From Theorem 2 and Theorem 3, it is possible to limit
the searching range of h∗ in a finite range [−A,A], where
A is a positive finite number. Next, based on the Theorem 4
and Lemma 1, an iterative fixed-point algorithm [30] can be
used for finding the optimal threshold h∗ by starting with
a random number h0 ∈ [−A,A]. However, this iterative
algorithm only leads to a locally optimal solution. That
said, if the equation h = f(h) has more than one solution,
we need a procedure capable of finding all the solutions of
h = f(h). Fortunately, Theorem 5 can help to find all the
solutions of h = f(h). A global optimal solution then can
be chosen among these solutions.
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Our procedure initiates using two starting points h0l =
−A and h0r = A. Suppose that the first starting point
converges to h∗l , and the second point converges to h∗r .
If h∗l = h∗r , then the procedure stops with h∗ = h∗r = h∗l
being the optimal point due to Theorem 5 states that there
is no solution of h = f(h) in either [−A, h∗] or [h∗, A].
Otherwise, if h∗l < h∗r , we need to search if existing other
solutions in the interval (h∗l , h

∗
r). Therefore, the procedure

initiates using another starting point h0 = (h∗l + h∗r)/2.
After this starting point converges to h∗c , one needs to
run the iterations over two intervals (h∗l ,min(h0, h∗c)) and
(max(h0, h∗c), h∗r). If any of these intervals is nonempty,
then the procedure must recursively repeat the previous
steps until the whole interval [−A,A] has been completely
scanned. When all h∗’s are found, we pick the one that
maximizes the mutual information.

It is worth noting that our procedure is based on the
algorithm proposed in [10], [31]. Obviously that the modi-
fied fixed-point algorithm is much faster than an exhaustive
search through all the values of h ∈ [−A,A], however,
it is still questionable to extend the modified fixed-point
algorithm to more than one threshold quantizers even for
scalar quantizers [31]. On the other hand, we believe that it
is possible to recursive approximation the optimal multiple-
threshold quantizers by a tree-structured of the optimal
single-threshold quantizers [31].

IV. CONCLUSION

In this paper, the problem of finding the optimal single
threshold for multiple-input one-bit output quantization
maximizing mutual information is investigated. A nec-
essary optimality condition is constructed for which the
thresholding quantizer is optimal. In addition, we show
that if the additive noise distribution satisfies a mild pre-
determined condition, then the optimal threshold can be
found efficiently via a modified fixed-point algorithm.

APPENDIX

Due to the limited space, we either omit or only sketch
the proofs. Please see the detailed proofs in our extension
version.

A. Proof of Theorem 2

Existence of the optimal threshold: Each threshold
h induces a channel matrix A which in turn produces
the mutual information I(X;Z). Since φi(y) is continu-
ous, strictly positive and differentiable, mutual information
I(X;Z) is a continuous function of h i.e., I(X;Z)h. Now,
by using h → −∞ and h → +∞, it is obviously to
show that one column of A must to reach to zero. Thus,
if h → −∞ or h → +∞, I(X;Z)h → 0. By Rolle’s
theorem, there exist an optimal threshold h∗ such that
∂I(X;Z)

∂h∗ = 0.
The finite of h∗: Let pick a finite h′ that gener-

ates a channel matrix A having the mutual information
I(X;Z)h′ = ε where ε > 0. Obviously that any threshold
h that induces I(X;Z)h < ε is not a global optimal
threshold. By contradiction method, assuming that existing
an optimal threshold h∗ which is infinite. Similar to the
derivation in the previous proof, I(X;Z)h∗ → 0 if h→∞,

thus I(X;Z)h∗ < ε. Therefore, h→∞ is not the optimal
threshold. By contradiction, the optimal threshold is finite.

B. Proof of Theorem 3

Firstly, we begin with some definitions and supplemental
results that will be used in proving Theorem 3. Noting that
to prove all these results, we assume that the channel is
dominated conditional distribution as stated in Definition
2.

Definition 4. We call a vector a = [a1, . . . , aN ] majorizes
a vector b = [b1, . . . , bN ], denoted as a � b, if and only if∑N

i=1 ai =
∑N

i=1 bi, and
∑n

i=1 ai >
∑n

i=1 bi, ∀1 ≤ n <
N .

For more information about majorization, please see
[32].

Definition 5. Let p and q to be two N -dimensional vectors
and:

p

q
:=
[p1
q1
,
p2
q2
, . . . ,

pN
qN

]
.

p

q
is an increasing N -vector if and only if

pi
qi
<
pi+1

qi+1
, ∀i.

The relationship between majorization, increasing vector,
and KL-divergence can be viewed in [32], Corollary 3 and
4.

Proposition 1. Let v1(x|z0), v1(x|z1) and v2(x|z0),
v2(x|z1) are the conditional distribution vectors of the
input given the quantized-output {z0, z1} corresponding
to thresholds h1 and h2, respectively. If the channel is
dominated conditional distribution and h1 < h2, then:

1) v(x|h1) � v(x|h2).
2) v1(x|z0) � v(x|h1) � v1(x|z1).
3) v2(x|z0) � v(x|h2) � v2(x|z1).

4)
v1(x|z1)

v1(x|z0)
and

v2(x|z1)

v2(x|z0)
are increasing N -vectors.

5)
v2(x|z0)

v1(x|z0)
and

v2(x|z1)

v1(x|z1)
are increasing N -vectors.

Proposition 2. Given two vectors x = [x1, x2, . . . , xN ],
y = [y1, y2, . . . , yN ], x � y, let a = [a1, a2, . . . , aN ] is an
increasing N -vector, and there is at least ai ≤ 0, we have:

N∑
j=1

xjaj <

N∑
j=1

yjaj . (16)

Proof: The proof is constructed by using the induction
method. Of course, it is correct for N = 1 since x1 ≥ y1
and a1 is non-positive. Suppose that the inequality holds
for N = n− 1,

i=n−1∑
i=1

(xi − yi)ai ≤ 0. (17)

Next, we show that it holds for N = n. Indeed, since∑n
j=1 xj =

∑n
j=1 yj , xn−yn =

∑i=n−1
i=1 (yi−xi). Thus,

i=n∑
i=1

(xi − yi)ai =

i=n−1∑
i=1

(xi − yi)ai + (xn − yn)an

=

i=n−1∑
i=1

(xi−yi)ai+
i=n−1∑
i=1

(yi−xi)an=
i=n−1∑
i=1

(xi−yi)(ai−an).

(18)
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Now, due to a is an increasing vector such that
ai ≤ ai+1, [a1 − an, a2 − an, . . . , an−1 − an] is a
negative increasing vector having n − 1 elements. From∑n−1

i=1 xi ≥
∑n−1

i=1 yi, we always can transform vector x =
[x1, x2, . . . , xn−2, xn−1] to x′ = [x1, x2, . . . , xn−2, x

′
n−1]

by reducing xn−1 to x′n−1 where x′n−1 = xn−1−δ, δ ≥ 0,
such that

∑n−1
i=1 x

′
i =

∑n−1
i=1 yi. From Definition 4, x′ < y.

Thus, from assumption in (17), we have:
i=n−1∑
i=1

(xi − yi)(ai − an)

=

i=n−2∑
i=1

(xi − yi)(ai − an) + (xn−1 − yn−1)(an−1 − an)

=

i=n−2∑
i=1

(xi−yi)(ai − an)+(x′n−1+δ−yn−1)(an−1−an)(19)

=

i=n−1∑
i=1

(x′i − yi)(ai − an) + δ(an−1 − an) (20)

≤
i=n−1∑
i=1

(x′i − yi)(ai − an) ≤ 0. (21)

with (19) due to xn−1 = x′n−1 + δ, (20) due to x′ =
[x1, x2, . . . , xn−2, x

′
n−1], (21) due to δ ≥ 0, an−1 − an ≤

0, and the assumption in (17) and x′ < y. Combining (18)
and (21),

∑i=n
i=1 (xi− yi)ai ≤ 0 or the inequality holds for

N = n. The proof is complete.

Proposition 3. If the channel is dominated conditional dis-
tribution, for a given h (then given v(x|z0) and v(x|z1)),
F (y) = 0 has a unique finite solution, where:

F (y) = D(v(x|y)||v(x|z0))−D(v(x|y)||v(x|z1)). (22)

Proof:

F (y) = D(v(x|y)||v(x|z0))−D(v(x|y)||v(x|z1))

=
N∑
i=1

p(xi|y) log
p(xi|z1)

p(xi|z0)
. (23)

We show that F (y) is a strictly increasing function
i.e., for any y1 < y2, F (y1) < F (y2). Indeed, let
consider two real number y1 and y2 such that y1 < y2,

from Proposition 1, v(x|y1) � v(x|y2) and
v(x|z1)

v(x|z0)
is

an increasing N -vector. However, log is a monotonically

increasing function, log
v(x|z1)

v(x|z0)
must be an increasing N -

vector. Next, suppose that log
v(x|z1)

v(x|z0)
is a positive vector

or p(xi|z1) < p(xi|z0), ∀i. Thus, 1 =
∑N

i=1 p(xi|z1) <∑N
i=1 p(xi|z0) = 1. By contradiction method, existing at

least a i such that log
p(xi|z1)

p(xi|z0)
< 0.

Now, using Proposition 2 for a = log
v(x|z1)

v(x|z0)
, x =

v(x|y1) and y = v(x|y2), F (y1) < F (y2) if y1 < y2.
Thus, F (y) is a strictly increasing function. Next, we show
that F (y) = 0 has at least one solution and it is finite.

Indeed, from (13),
φi(y)

φ1(y)
is a monotonic strictly increasing

function ∀ i 6= 1, thus, if y → −∞ then
φi(y)

φ1(y)
→ 0.

Therefore, if y → −∞, p(x1|y) → 1 and p(xi|y) → 0,

i 6= 1. Moreover, log
v(x|z1)

v(x|z0)
is an increasing vector

which containing at least one negative entry,
p(x1|z1)

p(x1|z0)
< 0.

Therefore, if y → +∞:

F (y) =
N∑
i=1

p(xi|y) log
p(xi|z1)

p(xi|z0)
= 1

p(x1|z1)

p(x1|z0)
< 0. (24)

A similar proof can be constructed to show that if y →
+∞, F (y) > 0. From Rolle’s theorem, F (y) = 0 has at
least one solution and it must be finite. Finally, since F (y)
is a strictly increasing function, F (y) = 0 has a unique
finite solution.

1. Finite and unique f(h): We are now ready to
prove the first conclusion in Theorem 3 which states that
for a given h, there exits a unique finite f(h) satisfies
(15). Indeed, due to the similarity of (22) and (15), the
first conclusion in Theorem 3 is a directly subsequent of
Proposition 3.

2. f(h) is a non-decreasing function: Next, we show
that f(h) is a non-decreasing function by contradiction.
Indeed, suppose that existing h1 < h2 such that f(h1) =
h′1, f(h2) = h′2 and h′1 > h′2.

Proposition 4. Consider a dominated conditional distribu-
tion channel and two real numbers h1 and h2 such that
h2 − h1 = ∆ where ∆ is an arbitrary small positive
number (∆ → 0+), suppose that h1 and h2 induce
v1(x|z0), v1(x|z1), v2(x|z0), v2(x|z1), respectively, and
f(h1) = h′1 > f(h2) = h′2, then:

1) v1(x|z0) � v2(x|z0) � v(x|h′2) � v(x|h′1).
2) v(x|h′2) � v(x|h′1) � v1(x|z1) � v2(x|z1).

Now, from Proposition 1,
v2(x|z0)

v1(x|z0)
is an increasing N -

vector, from Proposition 4-1, v2(x|z0) � v(x|h′1). Thus,
using Corollary 4 in [32] for p = v2(x|z0), q = v1(x|z0),
and r = v(x|h′1), it is possible to show that:

D(v(x|h′1)||v1(x|z0)) > D(v(x|h′1)||v2(x|z0)). (25)

Symmetrically, one can verify that:

D(v(x|h′1)||v2(x|z0)) > D(v(x|h′2)||v2(x|z0)). (26)

Combining (25) and (26), we have:

D(v(x|h′1)||v1(x|z0)) > D(v(x|h′2)||v2(x|z0)). (27)

Similarly, using Proposition 1, Proposition 4-2, and
Corollary 4 in [32], we have:

D(v(x|h′1)||v1(x|z1)) < D(v(x|h′2)||v2(x|z1)). (28)

However, from the definition of f(h) (Definition 3),

D(v(x|h′1)||v1(x|z0)) = D(v(x|h′1)||v1(x|z1)),(29)
D(v(x|h′2)||v2(x|z0)) = D(v(x|h′2)||v2(x|z1)).(30)

From (27), (28) and (30),

D(v(x|h′1)||v1(x|z0)) > D(v(x|h′1)||v1(x|z1)), (31)

that contradicts to (29). By contradiction method, h′1 ≤ h′2
or f(h1) ≤ f(h2) if h1 < h2. Thus, f(h) is a non-
decreasing function of h. The proof for Theorem 3 is
complete.
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