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ABSTRACT

This paper proposes SEquential GAme NEtwork (SEGANE),
a novel deep neural network (DNN) architecture for optimizing the
performance of machine learning applications with multiple compet-
ing objectives. Specifically, SEGANE is evaluated in the context of
data sanitization which aims to remove any pre-specified private in-
formation from the data in real time while keeping the relevant infor-
mation used to improve the inference accuracy about the non-private
information. In some settings, preserving private information and
improving inference performance about non-private information are
competing objectives. In such cases, SEGANE provides a sequential
game framework and algorithmic tools to implement data sanitiza-
tion schemes with flexible trade-off between these two objectives.
We use two datasets: MNIST (hand-written digits) and IMDB (gen-
der and age) to evaluate SEGANE. For MNIST, even numbers are
considered private while numbers larger than 10 are considered non-
private. For IMDB, in one setting, gender is considered private while
age is non-private, and vice versa in another setting. Our experimen-
tal results on these datasets show that SEGANE is highly effective in
removing private information from the dataset while allowing non-
private data to be mined effectively.

Index Terms— Privacy-preserving machine learning, deep
learning, sequential game

1. INTRODUCTION

Recent years have witnessed the proliferation of Artificial Intelli-
gence (Al) technologies that fundamentally change the ways we
live, play, and work. From drug design research to consumer prod-
ucts such as smart phones and self-driving cars, all are driven by
Al/machine learning algorithms that help better our lives. Central
to these ever more intelligent algorithms is the vast amount of data
being collected and shared by billions of interconnected wireless
devices/sensors. While more data leads to better machine learning
algorithms, data collection and sharing in an insecure and open envi-
ronment such as the Internet where most of Internet of Things (IoT)
devices operate, will undermine the user’s security and privacy is-
sues. For example, Amazon Alexa allows one to conveniently access
information on the Internet or to order pizza by voice command, but
it also inadvertently records the customer’s private conversations in
the background.

Cryptography has long been used to address the privacy and
security issues. However, cryptographic techniques are computa-
tionally expensive for the massive amount of data being collected
constantly. Furthermore, it is difficult to design a secure, efficient,
and reliable mechanism for key exchange/distribution required for
cryptographic techniques in an open environment. All cryptographic
measures are also based on the assumption that it is computationally
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infeasible to decipher an encoded message without the knowledge
of the secret keys. This assumption has not been mathematically
proven, and many implementations of cryptographic schemes have
been shown to be vulnerable [1]. Importantly, encrypted data pre-
vents a benevolent machine learning algorithm to use the raw data to
mine non-private information. To that end, privacy-preserving algo-
rithms have been proposed to transform the raw data into the “san-
itized” data in such a way that private information cannot be mined
from the sanitized data while the sanitized data can be used to mine
some other non-private information.

Related Work. Within the private preserving framework, there
exist privacy-preserving data mining (PPDM) techniques in the
database community [2] [3] [4] whose goal is to prevent association
of any instance in a database to a person. In addition to PPDM, many
privacy-preserving machine learning (PPML) techniques [5],[6], [7],
[8], [9], [10] have been proposed to deal with data beyond those in
the traditional databases. Most existing PPML literature focus on
ensuring that the private information cannot be mined and make
no assumption about the non-private information. On the other
hand, our work assumes pre-specified sets of private and non-private
information. Such formulation not only makes the proposed data
sanitization more effective, but also provides a flexible trade-off be-
tween privacy and the ability to mine non-private information from
the sanitized data.

Contributions. In this paper, we propose a novel deep neu-
ral network (DNN) architecture called SEquential GAme NEtwork
(SEGANE) for optimizing the performance of machine learning
applications with multiple competing objectives.  Specifically,
SEGANE is evaluated in the context of data sanitization which
aims to remove any pre-specified private information from the data
while keeping the relevant information used to improve the infer-
ence accuracy about some pre-specified non-private information.
In some settings, preserving private information and improving in-
ference performance about non-private information are competing
objectives. In such cases, SEGANE provides a sequential game
framework and algorithmic tools to implement data sanitization
schemes with flexible trade-off between these two objectives. We
use two datasets: MNIST (hand-written digits) and IMDB (gender
and age) to evaluate SEGANE. For MNIST dataset, even numbers
are considered private while numbers larger than 10 are considered
non-private. For IMDB dataset, in one setting, gender is considered
private while age is non-private, and vice versa in another setting.
Our experimental results on these datasets show that SEGANE is
highly effective in removing private information from the dataset
while allowing non-private data to be mined effectively.
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2. ONLINE DATA SANITIZATION

We consider the problem of online data sanitization in which we aim
to transform a raw feature vector such that occurrence of certain pri-
vate event cannot be inferred from the transformed feature vector,
which we refer to as sanitized features, while occurrence of certain
public event can be inferred as efficiently as in the case of using the
raw features. Specifically, we assume that there is a training dataset
D = {(«,p",b"),i = 1,..., N} where 2" is the i-th feature vec-
tor and p® and b® are binary labels associated with x*, representing
occurrence (label 1) or non-occurrence (label 0) of the public event
and the private event respectively. We assume that (z*, p’, b")’s are
independent and identically distributed samples from an unknown
joint distribution F'(x,p,b). Based on the training dataset D, our
objective is to find an optimal sanitizer transformation S within 8,
which denotes the set of feasible sanitizer transformations. In par-
ticular, we aim to solve the following minimization problem to find
an optimal sanitizer design:

min {min E[£(P(S(2)),p)] - Amin E[L(B(S(2)), )]} (1)

Ses P

In the above minimization, £ denotes the loss function (e.g., cross-
entropy loss, Hamming loss), mgn E[L(P(S(z)), p)] represents the

minimum expected loss one can achieve for public event detection
using the sanitized features S(z), and mBin E[L(B(S(x)),b)] de-

notes the minimum expected loss one can achieve for private event
detection using the sanitized features. The hyperparameter \ is set to
properly balance the two objectives: (i) make private event detection
based on the sanitized features infeasible and (ii) ensure that public
event detection can be effectively performed based on the sanitized
features.

In practice, we envision that the online sanitizer can be imple-
mented at the data acquisition stage of sensor hardwares as illus-
trated in Fig. 1. The sanitizer will perform in situ data sanitization
at a sensor such that only the sanitized sensor measurements will be
transmitted over a possibly insecure network environment. There-
fore, even when a data breach or a cyber attack occurs in the network
or the server, only the sanitized data will be revealed to adversaries;
adversaries will not be able to mine private event information from
the sanitized data they acquire, even with the knowledge of the sani-
tizer design. The set S of feasible sanitizers is determined according
to the types of sanitizers that can be implemented under the practi-
cal constraints of the system, considering computation, latency, and
memory requirements. For instance, for an indoor person localiza-
tion system based on sensors to be deployed in a public space, we
can implement online sanitizers at sensors such that identity of peo-
ple monitored by the sensors (private event information) cannot be
inferred from the sanitized data while the number and locations of
people in the space (public event detection) can be effectively in-
ferred based on the sanitized data.

Sequential Game Formulation. The online data sanitization
problem can be seen as a sequential game with three players: the
sanitizer designer, the public event detector designer, and the private
event detector designer. The players do not know the joint distribu-
tion of (z, p, b), but they have access to the training dataset D. The
game is played in the following sequence [11]:

e Stage 1: The sanitizer designer chooses a sanitizer transfor-
mation S from 8.

e Stage 2: The detector designers gain the knowledge of the
sanitizer S. Given the knowledge of the sanitizer, the pub-
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Fig. 1. Implementation of online data sanitization.
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Fig. 2. Architecture of SEGANE for data sanitization.

lic event detector designer chooses the detector P, and the
private event detector designer chooses the detector B.

e Payoffs: The payoff to the public event detector designer is
—E[L(P(S(z)),p)]- The payoff to the private event detector
designer is —E[L£(B(S(z)),b)]. The payoff to the sanitizer
designer is

—E[L(P(5(x)), p)] + AE[L(B(S(2)), b)]-

In choosing their strategies, each player aims to maximize its pay-
off. In other words, the detectors aim to minimize their loss terms
while the sanitizer aims to solve the optimization problem (1). Note
that the objective in online data sanitization problem corresponds to
finding a good strategy for the sanitizer designer.

SEquential GAme NEtwork. We present a novel deep neu-
ral network architecture, referred to as SEquential GAme NEtwork
(SEGANE), which we can use to find a local optimum design of
the sanitizer. In solving the sanitization problem (1), as the distribu-
tion information is not available, the expected loss terms cannot be
computed. Therefore, we replace the expected loss terms with the
empirical loss terms. Specifically, the optimization formulation with
the empirical loss terms can be written as

Se8 | Pe?

min minig L:(P(S(xi))vpi)
N
=1 (2)

1= iy i
—Amin ;E(B(S(w ), b )}
where P and B denotes the classes of classifiers represented by cer-
tain machine learning models. Similarly, in analyzing the sequential
game, the expected loss terms in the payoffs are replaced by the
above empirical loss terms.

Fig. 2 provides an overview of SEGANE. In SEGANE, the san-
itizer S, the public event detector P, and the private event detector
B are restricted to belong to certain classes of mappings represented
by some machine learning models (e.g., neural networks, logistics
regression), denoted by 8, P, and B respectively. In this paper, we
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focus on the case where 8 is the set of functions that can be rep-
resented as a deep neural network (DNN) encoder associated with
certain DNN architecture, and PP and B are the sets of classifiers that
can be represented as DNN classifiers associated with certain DNN
architectures [12]. We use SEGANE to emulate the sequential game
of data sanitization for different santizer designs chosen by the san-
itizer designer in Stage 1; based on the emulated game results, we
incrementally improve the sanitizer design to make it converge to a
local optimum. Specifically, we initialize the sanitizer design to S ©
and the iteration index k to 1 and then perform the following itera-
tive procedure to train the sanitizer:

1. Update public event and private event detectors: assuming
that the sanitizer design S is set to S (F=1) " the public event detec-
tor designer and the private event detector designer use the sanitized
training dataset D g1y = {(S*~V(z%),p",b"),i =1,..., N} to
train their respective detectors, P (%) and B In other words, they
train their respective DNNs to compute P® and B®™ to minimize
the empirical losses. This step emulates the player actions at Stage
2 of the sequential sanitize-learn game when the sanitizer designer
chose S*~1 as the sanitizer in Stage 1.

2. Update sanitizer design: while fixing P and B to P*) and B®),
we compute a stochastic gradient direction using a small batch of
training data points and use it to make incremental improvement of
the sanitizer design and set S ) to the new sanitizer.

3. Terminate and return S® if k = K. If k < K , increase k by 1
and go to Step 1.

Note that in updating P and B in each iteration, we aim to look
for globally optimal detectors for the given sanitizer design. But, in
updating S in each iteration, we are making an incremental improve-
ment based on a stochastic gradient direction. This update structure
is intended to ensure that the sanitizer design will converge to a lo-
cal optimum'. The details of the sanitizer training procedure using
SEGANE with the stochastic gradient descent method are presented
in Algorithm 1. In Algorithm 1, 6s, 6p, and 6 denote the DNN
parameters for .S, P, and B respectively.

Algorithm 1 The hyperparameter d (d > 1) is the number of
stochastic gradient descent steps to be used for updating P and B
in each iteration.

1: for K training iterations do

2: for d steps do

3: o Sample {z', ..., 2™}, a batch, from dataset.

4: e Update P (?n p) by descending its stochastic gradient:
Vo 3 L(P(S()), )

5: e Update B 22113) by descending its stochastic gradient:
Von o D0 L(B(S@).Y)

6: end for -

~

o Sample {z', ..., 2™} a batch from dataset.
8: e Update S (6s) by descending its stochastic gradient:

Vos % Z {c(P(S(af')),p") — AL(B(S(z")), bi)}
9: end for )

I'The intuition is that for any sanitizer within a small neighborhood of
S(K) | the corresponding optimal public event and private event detectors can
be well approximated by (P(¥), B(¥)). Therefore, if we make an incremen-
tal improvement as in the second step of iteration, this incremental update
will approximate a stochastic gradient descent step for (2).

3. EXPERIMENTS

To evaluate SEGANE, we use two image datasets: MNIST (hand-
written digits) dataset [13] and IMDB (gender and age) dataset [14].
Algorithm 1 is implemented using the PyTorch deep learning plat-
form. We set A = 1 and m = 64 for both datasets. We use d = 5
and K = 15 for MNIST while d = 8 and K = 25 for IMDB. In
general, d should be sufficiently large to allow Algorithm 1 to con-
verge to a local optimum. However, for these two datasets, we find
that good empirical results can be obtained for small values of d.
When using small values of d, Algorithm 1 can be viewed as a type
of coordinate descent algorithms that have been known to produce
good results in many settings.

To evaluate a trained sanitizer S(-), we implement public and
private detectors as DNNs that are trained separately using the san-
itized training instances {(S(z*),p’,b"),i = 1,..., N}. Presum-
ably, these detectors act as ideal detectors for detecting public and
private events. Therefore, the performance of the sanitizer can be
characterized by the area under the ROC curves (AUC) resulted from
these public and private detectors. A better sanitizer would have a
larger AUC for the public detector and a smaller AUC for the private
detector.

MNIST dataset: The original MNIST dataset is a handwritten
digit dataset consisting of 60,000 training examples and 10,000 test-
ing examples. Each example is a 28 x 28 grayscale image. We
create a new synthetic dataset where each synthetic image is a two-
digit image (ranging from 00 to 19) generated by concatenating two
handwritten images into one with 28 x 56 pixels. We use 50,000
synthetic images for training and the remaining 5,000 were used for
testing. A private event is defined as the event that the two-digit
number in the synthetic image is greater than or equal to 10 and a
public event is defined as the event that the two-digit number in the
image is even. The sanitizer is designed to map a 28 x 56 input im-
age to S(z) € R'. Fig. 3 depicts the ROC curves for the public
and private detectors trained based on the sanitized training dataset.
As seen, the AUC is close to 1 for public detector and near 0.5 for the
private detector. This indicates that the sanitizer produces sanitized
features that allow the public events to be mined effectively while the
private events cannot be inferred, i.e., the private detector performs
like a random guess. To compare the effectiveness of the proposed
sanitizer to retain the data features that allow for accurate classifi-
cation of a subsequent classifier, Fig. 4 shows the two ROC curves
for public detectors operating on raw and sanitized data. As seen,
the two curves are almost identical, demonstrating that the proposed
sanitizer is very effective, i.e., the sanitized data is as useful as the
raw data with regard to the accuracy of public event classification.

IMDB dataset: IMDB consists of 460,723 facial images with
gender and age labels. We created a clean dataset consists of 55,000
64 x 64 images of single frontal faces. We use 50,000 images for
training and 5,000 images for testing. We define the public event as
the event that the person in an image is male, and a private event as
the event that the age of the person is greater than or equal to 25.
The sanitizer maps an 64 x 64 input image to S(z) € R*%°. As seen
in Figs. 5, the ROC for the public detector is quite good while the
ROC for the private detector is slightly better than that of random
guess. We now let the gender to be the private event while age to be
the public event. Fig. 6 shows that the AUC for the public detector
is not as large as that in Fig. 5. This is because classifying ages
is more difficult than gender. On the other hand, Fig. 6 shows that
the performance of the private detector is similar to a random guess.
Similar to Fig. 4, Fig. 7 shows the two ROCs of public detectors
performing on the raw and santized data. As seen, they are almost
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Fig. 3. MNIST experiment: ROC curves for public and private de-
tectors trained with the sanitized dataset

10+

0.8 1

0.6

True Positive Rate

0.4+

0.2 §

- ROC curve of public detector (sanitized data)
—-= ROC curve of public detector (raw data)
——- Random guess

0.0

04 0.6 0.8 1.0
False Positive Rate

Fig. 4. MNIST experiment: ROC curves for public detectors trained
with the raw dataset and the sanitized dataset

identical, indicating that the performance of good subsequent public
event classifier on the sanitized data is as good as it is used on the
original raw data.

4. CONCLUSION

In this paper, we have proposed SEGANE, a novel DNN architec-
ture for optimizing the performance of machine learning applications
with multiple competing objectives. Specifically, SEGANE is eval-
uated in the context of data sanitization which aims to remove any
pre-specified private information from the data in real time while
keeping the relevant information used to improve the inference ac-
curacy about the non-private information. The experimental results
on two datasets MNIST and IMDB show that SEGANE is highly

effective.
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Fig. 6. IMDB experiment: ROC curves for public and private de-
tectors trained with the sanitized dataset (public event is age, and

private event is gender)
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Fig. 7. IMDB experiment: ROC curves for public detectors trained
with the raw dataset and the sanitized dataset (public event is gender,

and private event is age)
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