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ABSTRACT

Mining repeated patterns in television broadcast is important to
advertisers in tracking a large number of television commercials.
It can also benefit long-term archival of television because histor-
ically significant events are usually marked by repeated airing of
the same video clips or sound-bytes. In this paper, we describe
a system that can efficiently mine repeated patterns of arbitrary
lengths from television broadcast. Compared with existing work,
our system has two main innovations: first, our system is robust
against minor temporal variations among repeated patterns. This
is important as broadcasters often perform temporal editing on
commercials so as to fit them into different time slots. Second,
our system does not rely on any temporal segmentation algorithm,
which may lead to over- or under-segmentation of important pat-
terns. Instead, our system scans the television broadcast with a
fixed-size sliding window, summarizes each window into a hash
value, and maintains a running frequency count and a reference
time-stamp on each hash value. The boundaries of a repeated pat-
tern are identified by the changes in frequency counts and refer-
ence time-stamps. Initial experiments show that our system is very
efficient in identifying all the repeated commercials from 12 hours
of television broadcast.

1. INTRODUCTION

Radio and television broadcasting has been a major influence in
shaping the political, social, cultural, and economic trends of the
twentieth century. Important events, like the attack of the world
trade center or the tsunami in south east Asia are usually marked
by repeated airings of the same video clips. The broadcast fre-
quency of a particular video clip is perhaps one of the most im-
portant indicators of its historical significance. As such, the capa-
bility of finding video or audio material with high broadcast fre-
quency can help greatly to identify important footages for news
alert and preservation. Nevertheless, not all repeated broadcast are
historically significant. Perhaps the largest category of repeated
broadcast belongs to television commercials. Even though finding
repeated commercials may not be important to historians, it is cru-
cial for advertisers to track the air time of their commercials and
for companies to monitor new products from their competitors.

The aforementioned applications will benefit greatly from a
system that can continuously monitor a large number of broadcast
channels, and identify, inreal-time, the duration, the frequency,
and thelocation(time and channel) of every repeated pattern. We
call this therepeated-pattern miningproblem. Due to the nature
of the target content like news footages and tv commercials, their
presence are usually not indexed in the Electronic Programming
Guide (EPG). Thus, we contend that the only viable approach is
to use the content-based approach – identifying a multimedia item
by extracting salient audiovisual features directly from the content.
However, building such a system poses many technical challenges,

mainly due to the enormous volume of broadcast information, its
continuous nature, and the requirement of a real-time response.

In this paper, we describe a system that can efficiently mine
repeated patterns of arbitrary lengths from television broadcast.
Compared with existing work, our system has two main innova-
tions: first, our system is robust against minor temporal variations
among repeated patterns. This is important as broadcasters often
perform temporal editing on commercials so as to fit them into
different time slots. Our system accommodates such variations
by using a randomized summarization technique called ViSig [1].
The advantage of ViSig is that it can be used to match patterns
that are only partially overlapped. Second, our system does not
rely on any temporal segmentation algorithm, which may lead to
over- or under-segmentation of important patterns. Instead, our
system scans the television broadcast with a fixed-size sliding win-
dow, summarizes each window into a hash value using ViSig, and
maintains a running frequency count and reference time-stamp for
each hash value. We will show that the boundaries of a repeated
pattern can be easily identified by the changes in frequency counts
and reference time-stamps.

The paper is organized as follows: we first review related work
and motivate our approach in Section 2. We then describe our
proposed algorithm in Section 3 and present experimental results
in 4. We conclude by discussing ongoing work in Section 5.

2. RELATED WORK

The problem of mining repeated patterns in a time series is impor-
tant in many applications such as discovering similarities in ge-
nomic data [2] and identifying themes in music [3]. Efficient algo-
rithms exist for mining repeated patterns in such applications [4].
The basic idea is to build a suffix tree that stores all the possible
subsequences in a compact form. The algorithm described in [4] is
an offline algorithm withO(N log N) time complexity andO(N)
memory requirement whereN is the length of the time series.

Suffix trees are appropriate for genomic data and music be-
cause each symbol belongs to a limited set of alphabets. A typical
video sequence, on the other hand, requires a high-dimensional
feature vector to represent each video frame. This renders suffix
trees useless as the alphabet size is effectively infinite. The high
dimension, however, is in fact a blessing in disguise because the
probability of observing two identical feature vectors in different
time is so rare that their occurrences strongly indicate the pres-
ence of repeated patterns. Furthermore, as the broadcast video is
usually of good quality, with an appropriate feature design, video
frames with the same content are likely to produce not similar but
identical feature vectors. Thus, it is possible to use a simple table
lookup to mine most of the repeated video frames [5, 6].

Nevertheless, the presence of the same video frame does not
always lead to the discovery of meaningful repeated patterns. Black
frames, frames with station logos, or even frames with a news an-
chor may occur repeatedly at different time but the contexts to



which they belong may be completely different. Thus, one has
to consider a longer segment of video in mining repeated patterns.
Comparing long video clips is difficult and one approach is to use
feature vectors of even higher dimension to represent them. Un-
like the frame-based approach, two long video clips with identical
content are far less likely to produce identical feature vectors. As
a result, one needs to resort to high-dimensional similarity search,
which is the approach used in [7, 8]. To expedite the similarity
search, sophisticated index structures are usually needed and cre-
ated off-line to support fast search. Such an approach is not suit-
able for on-line broadcast monitoring as the index structure needs
constant updating and the search response may not satisfy the real
time constraint. A compromised approach called ViSig to repre-
sent long video clips was proposed in [1]. Instead of using an
aggregate feature vector to represent an entire clip, ViSig uses a
small subset of frames sampled from the sequence. We have cho-
sen ViSig for our application and we will provide a brief review in
Section 3.1.

Another problem that has not attracted much attention is how
to minemaximalrepeated patterns – the repeated patterns of max-
imal lengths that cannot be further extended. A maximal repeated
pattern represents the most meaningful unit of repeated patterns.
For example, it may represent a complete commercial or a music
video. Most existing research assumes either a fixed time window
as in [7] or uses a shot detection algorithm to define the basic unit
for repeated pattern mining [6]. Besides the reliability issue of the
shot detection algorithm, a maximal repeated patterns may contain
a large number of shots and an efficient data structure is needed to
connect them together to form the entire pattern. In this paper, we
describe how maximal repeated patterns can be mined by simply
using frequency counts and reference time-stamps.

3. PROPOSED ALGORITHM

3.1. Review of ViSig

We begin with a brief review of ViSig algorithm[1]. We assume
each frame in a videoX is represented by a feature vectorx in
a metric spaceF with distanced(·, ·). ViSig summarizes a video
sequence as a tuple ofn vectors called video signature. A video
signatureXS of a videoX is defined as follows:

XS = (gX(s1), gX(s2), . . . , gX(sn)) (1)

wheregX(s) = arg minx∈Xd(x, s) andS = {s1, s2, . . . sn} is
a fixed set ofn random seed vectors. In our application,X repre-
sents all the frames within a sliding window. Notice that in com-
puting the signatures of successive sliding windows, there is no
need to recompute the distances between all the feature vectors in a
window and the random seed vectors. Assume the current window
cover feature vectorsxt−W+1 to xt. For each seed vectorsi, we
maintain a sorted listLi of distances between every feature vec-
tor within the window andsi. When the window advances and a
new feature vectorxt+1 arrives, we first discard the oldest distance
d(xt−W+1, si) from Li and insert the new distanced(xt+1, si) to
Li while maintaining its order. The complexity of this process is
O(log W ). The signature vector for this new window is simply
the one corresponding to the smallest distance at the top ofLi.

To compare two video signatures, we define the signature sim-
ilarity as the fraction of similar signature vectors as follows:

Sim(XS , YS) =

nX
i=1

1 (d(gX(si), gY (si)) ≤ ε) /n (2)

where1(·) is one if the predicate inside is true and zero otherwise
and ε > 0 defines the similarity criterion between vectors. We

declare two video sequences as similar if their signature similar-
ity is larger than a user-defined threshold. In [1], we have shown
that Sim(XS , YS) is an unbiased estimate of the volume of the
intersection between the Voronoi diagrams created byX andY .
It can be shown that the size of the signaturen depends on the
desired measurement accuracy, but not on the length of the video
sequence. Another result from [1] shows that for a given video
X, there exist some seed vectors that are more “robust” than the
others in identifying video sequences similar toX – for any video
X ′ highly similar toX, the probability ofd(gX(s), gX′(s)) ≤ ε
for somes ∈ S may be significantly higher than the other seed
vectors. Geometrically, a seed vector is robust if it is far away
from the Voronoi cell boundary. Later in Section 3.2, we will take
advantage of this fact in simplifying our design.

3.2. Frequency Counts and Reference Time-stamps

The basic idea of using frequency counts and reference time-stamps
for mining repeated pattern is straightforward. Consider the pro-
cess of scanning the video stream with a sliding window that con-
tainsW vectors. Assume all the feature vectors within the sliding
window [t −W, t] are hashed into a symbolht. For every sliding
window, we update a hash table that contains a tuple(freq count,
ref time) , indexed by all the possible symbols. Letref time (t)
indicate the time when the symbolht first appears, andfreq count (t)
indicate the number of times the symbolht has appeared. As ad-
jacent windows are likely to produce the same symbol, we only
updatefreq count once for a continuous stream of identical
symbols.
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Fig. 1. Samplefreq count sequences.

Consider a pattern that first occurs between timeL0 andL0 +
T , and repeats again between timeL1 andL1+T . Assume that no
portion of this pattern has appeared elsewhere, thefreq count
of every sliding-window symbolht for t ∈ [L1 + W, L1 + T ]
must be two. This is illustrated in Figure 1(a). By using the ris-
ing and falling edges offreq count (t), we can easily identify
the boundaries of the repeated pattern. If a part of the pattern, say
betweenL2 andL2 + T2, has appeared elsewhere beforeL1, then
freq count (t) will be similar to Figure 1(b). The repeated pat-
terns in this case can be easily handled by using a simple stack.
When encountering a rising edge at timet, we create a new pat-
tern, set the beginning time tot −W , and push it in therepeated
pattern stack. When we encounter a falling edge at a later timet′,
we pop all the patterns from the stack whose frequency counts are
larger than the currentfreq count (t′), set the ending time of all
these patterns tot′, and output these patterns.

The situation becomes slightly trickier when there are two dis-
tinct patterns that are adjacent to each other and have the same fre-
quency count. The perfect scenario is that the sliding windows at



the transition produce zero counts like in Figure 1(c) and we can
separate the two patterns completely. As we plan to use ViSig to
summarize each window, it is possible that the transition may dis-
appear as ViSig is a sampling technique. In such case, we utilize
the reference time-stamp sequenceref time (t) to identify the
boundary: if there is a significant discontinuity in theref time ,
as shown in Figure 1(d), we pop the top pattern from the stack and
create a new pattern starting at the same time. Theref time
can also be used to establish correspondence among repetitions of
the same pattern as they share the same range ofref time time-
stamps.
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Fig. 2. Proposed system for repeated pattern mining.

We are now able to describe our proposed system for mining
repeated patterns. The overall architecture is shown in Figure 2.
For each sliding window, we compute an-vector video signature
based on the sliding-window ViSig described in Section 3.1. We
declare two sliding windowsX andY to be the same ifp out of
then vectors in their signatures are identical, i.e.Sim(XS , YS) ≥
p/n whereε = 0 as defined in (2).

To account for all possible choices of thep vectors, we will
need as many asC(n, p) = O(np) hash tables. This is too com-
putational demanding unless bothn andp are very small. For-
tunately, as pointed out earlier in Section 3.1, repeated patterns
usually have the same subset of similar signature vectors, which
correspond to those robust seed vectors that are far away from the
Voronoi cell boundary. Thus a simple heuristics is to use one hash
table for each signature vector to record its frequency count and
reference time-stamp, which is the function of theFreq. Update
component in Figure 2. For a given signatureXS , those hash ta-
bles corresponding to the robust seed vectors will give the correct
freq count , while the other hash tables are likely to underesti-
mate the count. Thus, to combine the frequency counts from all
the hash tables, we rank them in increasing order and choose the
α = 1− p/n percentile as the output, denoted asfreq count1 .
This will produce the same frequency count sequence as the op-
timal version, provided that there are at leastp robust vectors for
each signature. The correspondingref time1 is chosen to be the
oldest time-stamps among all the signature vectors that share the
same frequency count asfreq count1 . Such a strategy makes it
more likely for all repetitions of the same pattern to share the same
reference time-stamps. The process of combining results from
multiple hash tables to producefreq count1 andref time1
is performed by theRankingcomponent in Figure 2.

TheTemporal smoothingcomponent in Figure 2 is to eliminate
short bursts of erroneous frequency counts due to noisy data or the
presence of common but unimportant repeated patterns like black
frames or station logos. This component holds a temporal buffer
of freq count1 andref time1 , and outputsfreq count2
that corresponds to the most common frequency counts in the buffer,
and ref time2 that corresponds to the median of all reference

time-stamps that share the same frequency count asfreq count2 .
freq count2 andref time2 are then passed to theRepeated
pattern stack, whose function has already been described earlier.
The final output is the list of repeated patterns identified by the
proposed algorithm.

4. EXPERIMENTS

To show the retrieval performance of our proposed algorithm, we
have captured two 6-hour long continuous broadcast from two
television channels ”Comedy Central” and ”Turner Broadcasting
System (TBS)”. The primary programming in these channels are
movies, drama and comedy shows. These programs are captured
from analog cable and compressed into MPEG-1 bitstreams. All
repeated patterns are commercials and they are manually identi-
fied to form ground-truth clusters of repeated patterns. We use two
sets of ground-truth: set A consists of repeated patterns that are
identical, while set B include all patterns that are “approximately
identical” – some of them are edited versions of the others, while
others are commercials that are shown in a smaller size along with
the rolling credits from the previous programs. The details of the
ground-truth sets are as follows:

Set no. clusters Avg. size Avg. length
Comedy (A) 43 2.40 30.97 sec
Comedy (B) 51 2.57 29.96 sec

TBS (A) 25 2.88 26.57 sec
TBS (B) 26 2.96 26.96 sec

Table 1. Statistics of repeated commercials in test videos

In our experiments, we use ordinal features on both the luma
and chroma color channels [9]. The luma feature is the ranking
of average intensities of the4 × 4 partition of the Y frame. The
chroma feature is the concatenation of the two rankings of the3×3
partitions of the Cb and Cr frames.l1 distance is used in comput-
ing signatures for these features. The two features are combined
in such a way that there is a match in the sliding window if either
feature finds it to be a match. Thus, in the implementation, sep-
arate signatures are generated for the two features and the results
are combined in theRankingcomponent in Figure 2: whichever
produces the higher frequency count or older reference time if the
frequency counts are equal will be passed on to the next step. A
sliding window of 5 seconds is used and each window is summa-
rized by 32 signature vectors. Each signature vector is hashed into
a 32-bit number based on the algorithm in [10]. Instead of a full
hash table with232 entries, the frequency counts and reference
time-stamps are stored as a B-tree indexed by the hash values of
the features. To accommodate small variations in feature vectors,
in theFreq. Updatestep in Figure 2, we consider the entries cor-
responding to the hash values of the signature vector and all of its
perturbed versions. The perturbation is limited to those withinl1
distance of two, i.e. the exchange of neighboring ranks. Thus, a
luma feature vector has15 perturbed versions and a chroma feature
vector has8 + 8 = 16 perturbed versions. Again, whichever ver-
sions produce the highest frequency count, or the oldest reference
time-stamp in case of equal count will be passed on to the next
step. As all the repeated patterns in the ground-truth set are longer
than 10 seconds, we use a temporal smoothing buffer of 20 sec-
onds and discard any identified repeated patterns that are shorter
than 10 seconds.

To compare the output set of repeated patterns with the ground-
truth, we first measure the amount of overlap in time between all
pairs of patterns from the two sets. The amount of overlap is de-
fined as the average of two ratios: one between the length of the
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Fig. 3. Retrieval performances of the proposed system.

intersection and the ground-truth pattern, and the other between
the intersection and the output pattern. After sorting all the over-
lapped pairs in the decreasing order of their amount of overlap, we
scan the sorted list and declare a pair as a match if neither pat-
terns in the pair has been matched with other patterns before. We
measure “recall” and “precision” based on the ratios between the
number of matched patterns and the total number of patterns in the
ground-truth set and the output set respectively. We also measure
the average amount of overlap and the deviation of the frequency
counts among all the matched patterns. All the measurements are
performed for five different percentile levels: 16/32, 24/32, 28/32,
30/32, and 31/32. Note that higher percentile level implies a less
stringent requirement in declaring two signatures as similar. Re-
call, precision, average amount of overlap, and average deviation
of the frequency counts as functions of the percentile levels are
shown in Figure 3 (a)–(d).

Unsurprisingly, as shown in Figure 3(a), recall improves as the
percentile level for matching increases. All but “Comedy B” reach
a recall level higher than 95% at high percentile levels. “Comedy
B” has a number of very difficult patterns, which include com-
mercials shown simultaneously with rolling credits of different
movies. Even the commercials themselves are identical, the rolling
credits are not, making spatial features like the ordinal feature
unsuitable to identify them. In Figure 3(b), the precision level
reaches beyond 90% for the two B sets at high percentile levels.
They are higher than the corresponding A sets because ViSig is
capable of identifying the approximated repeated patterns that are
not present in the two A sets. The two “Comedy” curves show an
unusual pattern of increase in precision when the percentile level
increases. This is because some of the longer patterns are broken
into multiple shorter ones due to the more stringent matching cri-
terion. As a result, there are multiple output patterns correspond-
ing to the same ground-truth pattern. Since only one of them can
match with the ground-truth, the precision value decreases. The
average amount of overlap, shown in Figure 3(c), stays mostly at
the 85% level, except at the lowest percentile level. This is rea-
sonable as the average length of repeated patterns is 30 second, a
sliding window of 5 second may lead up to 5/30 = 17 % of error
in estimating the boundaries of the patterns. For the last plot of
the deviation in frequency counts, once again the two sequences

have quite different behavior. While the system makes close to
zero mistake in “Comedy” at the high percentile levels, it is off by
more than one for “TBS”. A closer examination reveals that the
estimates are correct for most patterns, but there are differences as
big as 15 for a small number of repeated patterns in TBS. It turns
out that they are all commercials about a movie TBS is running that
day and a segment of that movie is embedded in many variations of
the station’s promotional commercials. While these variations be-
long to different ground-truth clusters, our system identifies them
as the same repeated pattern, making the frequency count much
higher than expected.

5. CONCLUSIONS

In this paper, we have described a system to find repeated patterns
from television broadcast. We have introduced an novel idea of
using frequency counts and reference time-stamps of sliding win-
dows in identifying arbitrary-length repeated patterns. The sliding
windows are summarized by the ViSig method which has the ad-
vantage of capturing approximately similar patterns. Preliminary
results on two 6-hour broadcast have been presented. There are
a number of obvious improvements that we are currently investi-
gating. First, when applying our system to television broadcast,
we need to implement an expiration policy such that entries older
than a certain time are removed from the hash tables to make room
for newer ones. Techniques such as those described in [11] may
be applicable to reduce memory usage if we are only interested in
keeping only the most frequent patterns. Second, better features
are needed to further improve the recall performance. Third, more
diverse material are needed to further test the robustness of the
system. For example, our current system may have a hard time
handling video from a 24-hour news channel as the anchor shots
are all similar even though the underlying stories are completely
different.
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