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ABSTRACT

Partitioning algorithms play a key role in machine learn-
ing, signal processing, and communications. They are used in
many well-known NP-hard problems such as k-means clus-
tering and vector quantization. The goodness of a partition
scheme is measured by a given impurity function over the
resulted partitions. The optimal partition is one(s) with the
minimum impurity. Practical algorithms for finding an opti-
mal partitioning are approximate, heuristic, and often assume
certain properties of the given impurity function such as con-
cavity/convexity. In this paper, we propose a heuristic, effi-
cient (linear time) algorithm for finding the minimum impu-
rity for a broader class of impurity functions which includes
popular impurities such as Gini index and entropy. We also
make a connection to a well-known result which states that
the optimal partitions correspond to the regions separated by
hyperplane cuts in the probability space of the posterior dis-
tribution.

Index Terms— Partition, quantization, clustering, opti-
mization, minimum impurity.

1. INTRODUCTION

How to partition of a set of M points into K clusters to maxi-
mize/minimize a given objective is an important problem. It is
key to many algorithms in computer science, signal process-
ing, and communications. In machine learning, many clas-
sifiers such as decision tree and k-means clustering employ
partitioning as their key components. In signal processing and
communication, partitioning is used in vector quantization al-
gorithms for a variety of applications such as compression
and error correcting codes. A popular criteria to evaluate the
goodness of the partition scheme is the purity of data in each
partition. Maximizing the purity of the partitions is equivalent
to minimizing its impurity, which is measured by an impurity
function over the partitions such as the entropy function and
the Gini index [1]. In general, the partition problem is NP-
hard. An exhaustive search has the complexity of O(MK),
and it is infeasible for large K and M . Consequently, practi-
cal algorithms for finding an optimal partitioning are approx-
imate, heuristic, and often assume certain properties of the

given impurity function such as concavity/convexity [2], [3],
[4], [5], [6], [7], [8]. In some special cases where data is low
dimensional, K = 2, and the impurity function is a concave
frequency-weighted impurity function, then the optimal parti-
tion can be found in O(M logM) where M is the number of
data points [9]. Recently, [10], [11], [12] proposed an exact
algorithm that guarantees the performance for binary parti-
tion. However, this method is limited to only a binary parti-
tion (K = 2). For broader cases where K > 2 and the im-
purity function is frequency weighted concave function, there
exist theoretical analyses, especially the optimality condition
for the partition scheme. Specifically, both [5] and [6] showed
that the optimal partitions can be separated by a hyperplane
in the probability space of the posterior distribution.

The partitioning problem is also important in recent work
on error correcting codes, specifically polar codes [13] and
LDPC codes [14]. Many optimal codes depend on optimal
quantizers that maximize the mutual information between in-
put and quantized output of a discrete memoryless channel
(DMC) [15], [16], [17], [18]. Finding optimal quantizers can
be viewed as a partitioning problem where maximizing the
mutual information is equivalent to minimizing the condi-
tional entropy [19], [20], [21] which can be shown to be a
frequency-weighted impurity function.

In this paper, we propose an efficient (linear time) algo-
rithm that works well for finding the optimal partition for a
broader class of frequency-weighted impurity functions. Fur-
thermore, the algorithm can be sped up under the assumption
of convexity. Moreover, our analysis showed that the optimal
partitions correspond to the regions separated by hyperplane
cuts in the probability space of the posterior distribution. This
finding is similar to the classic result in [5].

2. PROBLEM FORMULATION

We consider a general setting shown in Fig. 1 [22]. X is a dis-
crete random source consisting of N symbols x1, x2, . . . , xN
with a given pmf p(xi). A discrete random source Y consists
ofM symbols y1, y2, . . . , yM , is generated using a given joint
pmf p(xi, yj). Due to p(xi) and p(xi, yj) are given, one can
easily determine p(yj |xi), p(xi|yj) and p(yj). Using a certain
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Fig. 1: Quantizer Q : Y → Z.

clustering/partitioning/quantizing operation Q:

Q : Y → Z, (1)

Y is mapped into a discrete random source Z consisting of K
symbols, z1, z2, . . . , zK with K < M . Specifically, each zi
represents a cluster of one or more elements of Y as shown
in Fig. 1. An impurity function F (.) is used to measure the
goodness of the partitions (clusters) resulted from using Q.
The optimal Q∗ is one(s) with the lowest value of F (.).

We note that this general setting models many appli-
cations in signal processing, communication, and machine
learning. For example, in a communication scenario, xi can
be thought as a transmitted symbol, yj a received symbol,
p(yj |xi) models the communication channel that introduces
noise/distortion, and zk as a quantized version of yj . We
want zk to carry most information about xi in order to decode
xi accurately. In this case, for given p(x), from an infor-
mation theoretic viewpoint, the conditional entropy function
H(X|Z) is the best impurity function. From the machine
learning perspective, Gini index is often used in the deci-
sion tree as an impurity function. Importantly, we note that
a quantizer/mapping Q determines the resulted joint distri-
bution of p(xi, zk), and the impurity functions often can
be written as a function of p(zk) and p(xi|zk). In particu-
lar, both the entropy function and Gini index can be written
as a frequency-weighted impurity function which takes the
following form:

F (X,Z) =

K∑
j=1

p(zj)f [p(x1|zj), p(x2|zj), . . . , p(xN |zj)].

The factor p(zj) denotes the weight of set zj and f [.] mea-
sures the impurity in each subset zj . To find the optimal
quantizer Q∗, we want to minimize the total weighted impu-
rity F (X,Z). In this paper, we consider the impurity function
f [.] with the following properties:

• f [.] can be written in the following form:

f [p(x1|zj), . . . , p(xN |zj)] =
N∑
i=1

p(xi|zj)g[p(xi|zj)] + C.

• g[p(xi|zj)] is a convex function over p(xi|zj).

Popular impurity functions such as entropy [9] and Gini
index [1] satisfy the above properties, and thus they are in-
stances of our problem. Also, both entropy and Gini index be-
long to a class of frequency-weighted impurity concave func-
tions [5], [6] since f [.] is a concave function. However, in
our setting, f [.] =

∑
xg[x] does not need to be concave, for

example, f [x] =
∑
xg[x] is convex when g[x] = x is con-

vex. Thus, our impurity function f [.] is more general than the
previous impurity functions described in [5], [6], [9].

We also note that our proposed linear time algorithm to
find the optimalQ∗ does not need to use the convexity of g[x].
However, when g[x] is convex, we can speed up the algorithm
significantly, depending on the scenario.

3. SOLUTION APPROACH

In this section, we propose an algorithm that finds the local
optimal quantizer Q∗ which assigns each value of yk ∈ Y
to only one subset zj ∈ Z (hard clustering). We begin by
rewriting F (X,Z) as follows:

F(X,Z) =

K∑
j=1

p(zj)f [p(x1|zj), p(x2|zj), . . . , p(xN |zj)] (2)

=

K∑
j=1

p(zj)(

N∑
i=1

p(xi|zj)g[p(xi|zj)] + C) (3)

=

K∑
j=1

p(zj)(

N∑
i=1

p(xi|zj)g[p(xi|zj)]) + C (4)

=

K∑
j=1

p(zj)

N∑
i=1

M∑
k=1

p(xi|yk)p(yk|zj)g[p(xi|zj)]+C (5)

=

K∑
j=1

M∑
k=1

p(zj , yk)

N∑
i=1

p(xi|yk)g[p(xi|zj)] + C (6)

=

K∑
j=1

M∑
k=1

p(zj |yk)p(yk)
N∑
i=1

p(xi|yk)g[p(xi|zj)]+C,(7)

with (4) due to [
∑K

j=1 p(zj)]C = C, (5) due to p(xi|zj) =∑M
k=1 p(xi|yk)p(yk|zj), (6) due to p(zj)p(yk|zj) = p(zj , yk)

and (7) due to p(zj , yk) = p(zj |yk)p(yk).
Since p(xi|yk) and p(yk) are given ∀ i, k. Thus, F (X,Z)

has only two variables: p(zj |yk) and p(xi|zj). p(zj |yk) de-
notes the assignment of yk to a subset zj . For a hard clus-
tering, if p(zj |yk) = 1, then yk ∈ zj , otherwise yk /∈ zj .
p(xi|zj) denotes the conditional probability of xi in cluster
zj .

We propose an algorithm similar to the k-means algo-
rithm. It has two alternating steps: (1) Computing cen-
troids: fixed p(zj |yk), find the optimal p(xi|zj) that min-
imizes p(yk)

∑N
i=1 p(xi|yk)g[p(xi|zj)] and (2) Clustering

assignment: fixed p(xi|zj), find the optimal assignment
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p(zj |yk) which assigns yk to cluster zj . Algorithm 1 shows
the pseudo code of the proposed algorithm.

Algorithm 1 Minimize the weighted impurity partitions

1: Input: p(x), p(x, y), N , K, M .
2: Ouput: Optimal partition Z = {z1, . . . , zK}.
3: Initialization step: Randomly pick-up K probability

vectors p(xi|zj) for i = 1, . . . , N and j = 1, . . . ,K as
the initial centroids.

4: Step 1 (Cluster assignment): Cluster yk into one of the
cluster zj for a given of p(xi|zj) ∀ i, j.

zj = {yk|d(yk, zj) ≤ d(yk, zl),∀l 6= j}, ∀j, (8)

where

d(yk, zj) = p(yk)

N∑
i=1

p(xi|yk)g[p(xi|zj)]. (9)

5: Step 2 (Computing centroids): Compute centroids
p∗(xi|zj) for each cluster zj which is the solution of the
following optimal problem.

p∗(xi|zj) = min
p(xi|zj)

∑
yk∈zj

p(yk)

N∑
i=1

p(xi|yk)g[p(xi|zj)], ∀i.

(10)
6: Step 3: Go to Step 1 until all clusters stop changing or

the maximum number of iterations is reached.

Proof of the convergence (outline): Due to the limited
space, we describe the outline of the proof. We can show that
step 1 of the algorithm always decreases the current value of
F (X,Z). Similarly, step 2 will always decrease the current
value of F (X,Z). Therefore, by running steps 1 and 2 repeat-
edly, the algorithm produces a decreasing sequences bounded
above by non-zero value, and thus must converge. However,
we note that the algorithm might converge to a locally optimal
solution.

Speeding up the algorithm using convexity of g(x).
The speed up of the algorithm comes from step 2 of com-

puting the centroids. Since p(yk), p(xi|yk) are given and
g[.] is a convex function, the function in Eq. (10) is a linear
combination of convex functions, and thus must be convex in
p(xi|zj). Based on this, we can find the optimal p∗(xi|zj)
using convex optimization algorithms [23], [24] efficiently.
That said, we can propose a faster method for computing the
centroids if we can obtain g′−1[.], the inverse function of g′[.],
the derivative of g[.]. Note that if g[.] is a strictly convex
function then g′[.] is a monotonically increasing function and
hence g′−1[.] exists. We will show an example to illustrate
this point shortly. Furthermore, assuming that p(xi, yk) >
0,∀i, k, we can find the global optimal p∗(xi|zj) of Eq. (10)
in closed-form expression using KKT conditions. We also
note that if g[.] is not convex, KKT conditions still can help
to find the local optimal of Eq. (10). Thus, the algorithm may

converge a bit slower if g[.] is not convex. Now, the optimal
p∗(xi|zj) can be found using the following lemma:

Lemma 1. Assuming that g[.] is strictly convex and p(xi, yk) >
0,∀i, k, then the optimal centroids in Step 2 of Algorithm 1
can be computed by:

p∗(xi|zj) = w[
−ν∗∑

yk∈zj
p(yk)p(xi|yk)

], (11)

where ν∗ is the root of
N∑
i=1

w[
−ν∗∑

yk∈zj
p(yk)p(xi|yk)

] = 1, (12)

where w−1[.] = g′[.].

Proof. Since p(xi|zj) is a valid pmf, the optimal p∗(xi|zj)
has to satisfy the following constraints:{

p(xi|zj) � 0,∀i, j∑N
i=1 p(xi|zj) = 1.

Since p(xi, yk) > 0 ∀ i, k, p(xi|yk) = p(xi, yk)/p(yk) > 0.
However, p(yk|zj) > 0 for at least one yk since zj cannot be
an empty set. Therefore, p(xi|zj) =

∑M
k=1 p(xi|yk)p(yk|zj) >

0. That said, the above constraints can be reduced to only∑N
i=1 p(xi|zj) = 1.
Consider the Lagrangian functionL[p(x1|zj), . . . , p(xN |zj)]

[24] with the constraint above:

L[p(x1|zj),. . . ,p(xN |zj),ν] =
∑
yk∈zj

p(yk)

N∑
i=1

p(xi|yk)g[p(xi|zj)]

+ ν(

N∑
i=1

p(xi|zj)− 1), (13)

where ν is a dual variable. Using the KKT conditions, the
optimal p∗(xi|zj) and ν∗ must satisfy:

∑N
i=i p

∗(xi|zj) = 1,
∂L[p(x1|zj), . . . , p(xN |zj), ν]

∂p∗(xi|zj)
= 0,∀i.

(14)

Now, from the second equation of (14),

ν∗ = −
∑

yk∈zj

p(yk)p(xi|yk)g′[p∗(xi|zj)]]. (15)

Let w[.] be the inverse function of g′[.], then

p∗(xi|zj) = w[
−ν∗∑

yk∈zj
p(yk)p(xi|yk)

] (16)

Now, ν∗ can be found from the first equation of (14),

N∑
i=1

w[
−ν∗∑

yk∈zj
p(yk)p(xi|yk)

] = 1. (17)
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Example 3.1. Let the impurity function be the conditional
entropy function H(X|Z), then the total weighted-frequency
impurity F (X,Z) =

∑K
j=1 p(zj)H(X|Z = zj), where

f [x] = −
∑

x x log x and g[x] = − log x is convex. Thus,

g′[x] = − 1

x
and w[x] = − 1

x
. From Eq. (17),

N∑
i=1

∑
yk∈zj p(yk)p(xi|yk)

ν∗
= 1. (18)

Thus, ν∗ =
∑N

i=1

∑
yk∈zj p(yk)p(xi|yk) = p(zj) and

p∗(xi|zj) =
∑

yk∈zj p(yk)p(xi|yk). We note that this opti-
mal centroids is the same to the centroids of clustering using
Bregman divergence (Proposition 1, [25]) due to minimizing
conditional entropy is equivalent to minimizing the KL diver-
gence which is a special case of Bregman divergence [25].

Algorithmic complexity: Step 2 of the Algorithm 1 can
be obtained in either closed-form expression for convex op-
timization which is very efficient. The computational bottle-
neck is step 2 for which, we have to compute the distances
from all points in set Y to the K centroids of Z. All compu-
tations are performed in N -dimensional space, thus the com-
putational complexity of Algorithm 1 is O(TKNM) where
T denotes the number of iterations and K,N and M are the
sizes of partition set Z, input source X and the data set Y ,
respectively.

Hyperplane separation: Algorithm 1 produces a nec-
essary optimal condition that is similar to the previous re-
sults [5] and [6] which can be brief stated in the following
lemma:

Lemma 2. The optimal partitions that minimize the weighted
frequency impurity using Algorithm 1 are separated by a hy-
perplane in N − 1 dimensional probability space of the pos-
terior probability p(xi|yk).

Proof. (outline) From Algorithm 1, if yk belongs to an opti-
mal partition zj , then yk satisfies the Step 1 of Algorithm 1,
or:

N∑
i=1

p(xi|yk)[g[p(xi|zj)]− g[p(xi|zl)]] ≤ 0,∀l 6= j. (19)

Let ai = g[p(xi|zj)] − g[p(xi|zl)], ∀ i = 1, . . . , N . Plug
in p(xN |yk) = 1−

∑N−1
i=1 p(xi|yk) into (19) we obtain

N−1∑
i=1

p(xi|yk)[ai − aN ] + aN ≤ 0. (20)

Now at the optimal partitions, p(xi|zj) and p(xi|zl) are
fixed and [ai−aN ] are constants ∀ i. Therefore, (20) indicates
that p(xi|yk) is separated by hyperplanes in N − 1 dimen-
sional space with the parameters [ai−aN ], ∀ 1 ≤ i < N .

Number of iterations T
0 2 4 6 8 10

F
(X

;Z
)

1.27

1.28

1.29

1.3

1.31

1.32

1.33

1.34

Fig. 2: F (X,Z) as a function of iterations T .

Since the number of hyperplanes in N − 1 dimensional
space is 2

∑N
i=0

(
M−1
K

)
[5], Lemma 2 reduced the complexity

of finding the global solution using an exhaustive searching
from KM to a polynomial time complexity 2

∑N
i=0

(
M−1
K

)
.

4. NUMERICAL EVALUATION

We now provide an example of finding optimal partitions for a
Gaussian mixture model consisting ofN = 3 Gaussian distri-
butions with different means and variances. The conditional
entropy is used as the impurity function. Our goal is to clas-
sify these points back into K = 3 clusters. Specifically,

p(y|xi) = N(y|µi, σ
2
i ) =

1√
2πσ2

i

e
−
(y − µi)

2

2σ2
i , i = 1, 2, 3,

where σi = 1 ∀ i and µ1 = −1, µ2 = 0, µ3 = 1.
Since Algorithm 1 is used for discrete dataset, we first

uniformly quantize the continuous Gaussian data points to
M = 20 levels. Next, Algorithm 1 is used to find the optimal
partitions. Fig. 2 shows the quick convergence of Algorithm
1 to the exact optimal solution (1.2789) which was comput-
ing independently using exhaustive search. The running time
of exhaustive search and our Algorithm 1 are 37428.85 and
11.69 seconds, respectively. Note that we can perform an ex-
haustive searching only with a small value of K, N , and M .

5. CONCLUSION

We propose a heuristic, efficient (linear time) algorithm for
finding the minimum impurity for a broad class of impurity
functions which includes popular impurities such as Gini in-
dex and entropy. We also made a connection to the well-
known result which states that the optimal partitions corre-
spond to the regions separated by hyperplane cuts in the prob-
ability space of the posterior distribution. Numerical exam-
ples are provided to illustrate the proposed algorithm.
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