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Abstract— In recent years, Content Delivery Networks (CDN) and Peer-
to-Peer (P2P) networks have emerged as two effective paradigms for
delivering multimedia contents over the Internet. An important feature
in CDN and P2P networks is the data redundancy across multiple
servers/peers which enables efficient media delivery. In this paper, we
propose a network coding framework for efficient media streaming in
either content delivery networks or P2P networks in which, multiple
servers/peers are employed to simultaneously stream a video to a single
receiver. Unlike previous multi-sender schemes, we show that network
coding technique can (a) reduce the redundancy storage, (b) eliminate the
need for tight synchronization between the senders, and (c) be integrated
easily with TCP. Furthermore, we propose the Hierarchical Network
Coding (HNC) technique to be used with scalable video bit stream
to combat bandwidth fluctuation on the Internet. Simulation results
demonstrate that our proposed scheme can result in bandwidth saving
up to 40% for many cases over the traditional schemes.

I. INTRODUCTION

Multimedia streaming over the Internet is challenging due to packet
loss, delay, and bandwidth fluctuation. Thus, many solutions have
been proposed, ranging from source and channel coding to network
protocols and architecture. For example, to combat the fluctuating
and limited bandwidth, a scalable video bit stream is used to allow
the sender to dynamically adapt its video bit rate to the available
bandwidth at any point in time [1]. To reduce packet loss and
the associated delay due to the retransmissions of the lost packets,
Forward Error Correction (FEC) techniques have been proposed
to increase reliability at the expense of bandwidth expansion [2].
From the architecture perspective, Content Delivery Network (CDN)
companies such as Akamai employ the edge architecture by pushing
content to the edge of the network, and by strategically placing
servers at the edge of the Internet in such a way that each client
can choose the server resulting in shortest round-trip time and least
amount of congestion.

Recently, the multi-sender streaming paradigm has been proposed
as an alternative to edge streaming for providing smooth video
delivery [3][4][5]. The main idea is to have each server storing
an identical copy of the video. The video is then partitioned into
multiple disjoint parts, each part is then streamed from separate
servers to a single receiver simultaneously. Having multiple senders is
in essence a diversification scheme in that it combats unpredictability
of congestion in the Internet. Specifically, smooth video delivery can
be realized if we assume independent routes from various senders to
the receiver, and argue that the chances of all routes experiencing
congestion at the same time is quite small. If the route between
a particular sender and the receiver experiences congestion during
streaming, the receiver can re-distribute rates among the existing
senders, or recruit new senders so as to provide the required through-
put.

This multi-sender streaming framework is particularly well suited
for CDN and P2P networks since multiple copies of a video are
often present at these servers/peers either through a coordinated
distribution of the video from a original CDN server, or through
an uncoordinated propagation of contents in a P2P networks such

as KaZaa [6]. However, there are a number of drawbacks with the
current multi-sender framework. First, many of the current multi-
sender streaming schemes assume that identical copies of a video
must be present at different servers/peers. This implies an increase
in the overall storage. Second, a careful synchronization among
the senders is needed to ensure that distinct partitions of a video
are sent by different servers/peers in order to increase the effective
throughput. In other words, an optimal partition algorithm must be
able to dynamically assign chunks of different lengths to different
servers based on their available bandwidths. This dynamic partition
algorithm, however is often suboptimal due to the lack of accurate
available bandwidth estimation. Third, many schemes assume a UDP-
like transport protocol, which cannot be used for computers behind
a firewall in many networks. That said, we propose a multi-sender
streaming framework using network coding technique that reduces the
overall storage, the complexity of sender synchronization, and enables
TCP streaming. Furthermore, we propose a Hierarchical Network
Coding (HNC) technique that facilitates scalable video streaming.
The outline of the paper is as follows. We first list a few related
work in Section II. Next, we provide a short introduction of network
coding in Section III, then propose the HNC techniques to be used for
P2P scalable video streaming. In Section IV, we describe a protocol
for multi-sender streaming using network coding. Simulation results
to demonstrate our approach is presented in Section V.

II. RELATED WORK

Many P2P file sharing systems such as BitTorrents can be viewed
as multi-sender systems [7]. This is because a BitTorrent file is
partitioned into multiple distinct pieces, and these pieces are then
exchanged among the peers to increase the receiving throughput 1.
Thus, at any point in time, a peer can receive multiple pieces from
different peers. BitTorrents, however, is not designed for streaming
since the pieces of data received at a peer, can be significantly out-
of-order. BitTorrents also does not use any sophisticated coding,
thus the performance can be shown theoretically lower than P2P
systems that employ coding. For example, Byers et al. [8] proposed
to partition data and make use of peers to increase the throughput
of the system. In this approach, each node randomly sends different
coded partitions on different links. Data reconciliation techniques are
then used to reduce data redundancy sent between nodes. In other
work, Padmanabhan et al. used multiple overlay multicast trees to
stream multiple descriptions of the video to the clients [9]. Each
multicast tree transmits a description of the video. When a large
number of descriptions are received, higher video quality can be
achieved. Recently, Li et al. proposed MutualCast [10] which focuses
on throughput improvement for data dissemination in P2P network.
MutualCast employed partitioning techniques and a fully connected
topology to ensure that the upload bandwidth of all the nodes is fully
utilized.

1As compared to using a single server to send the pieces to multiple
receivers



III. NETWORK CODING

The network coding field started with the pioneering paper by
Ahlswede et al., who showed that maximum capacity in a network
can be achieved by appropriate mixing of data at the intermediate
nodes [11]. The most elegant result of network coding is that
the maximum network capacity is achievable using some random
network coding technique, while this is not usually possible with the
traditional store and forward routing.

A. Random Network Coding for P2P Networks

Using random network coding, a peer encodes a new packet pi by
linearly combining n original packets as:

pi =

n∑

j=1

fijcj (1)

where fij are the random elements belonged to a finite field Fq

having q elements. A node then includes the information about the
fij in the header of the new packets and sends these new packets
to its neighbors. If a receiver receives n encoded packets pi’s that
form a set of n linearly independent equations, then it will be able
to recover n original packets. The advantage of using this random
network coding in P2P networks can be seen in the following simple
scenario.

Assuming that a server wants to distribute a file to a number of
peers in a P2P network. To increase the throughput, the server first
divides a file into n different chunks and randomly distributes these
chunks to the peers. The peers then can exchange their chunks among
each other in a random manner. Since each peer downloads pieces
of the file from other peers and the server simultaneously, the time
for a peer to recover all n chunks of the packets is potentially much
shorter than that of downloading the file from the server only. Note
that this design scales well since no coordination among the peers is
required. However, this design is not optimal. Because of the random
exchange of packets (for scalability of not tracking the packets), some
of the packets received at a peer may be duplicate, and thus results
in wasteful bandwidth. For example, suppose a peer C randomly
retrieves packets of a file from other peers A and B simultaneously.
The file is divided into 4 chunks c1, c2, c3, and c4. Assume also that
the chunks at peer A are c1, c2, c3, and at peer B are c2, c3, and c4.
Now suppose C starts to download the chunks c1, c2, c3 and from
A and c2, c3, and c4 from B in that order. After the first time slot,
C obtains both c1 and c2. In the second time slot, C downloads c2

and c3, but since it already obtained c2 from the previous time slot,
it discards c2. In the third time slot, it downloads c3 and c4, and
discards c3. As seen, C needs to download six chunks or three time
slots to be able to receive the complete file.

Suppose each peer is allowed to use network coding in which, it
encodes an output chunk as a linear combination of the input chunks.
In particular, peers A and B may randomly encode their packets as:

ai =
∑

3

j=1
fa

ijcj , bi =
∑

4

j=2
fb

ijcj ,

where fa
ij and f b

ij are random elements belonged to a finite field Fq .
If C downloads a1 = fa

11c1 + fa
12c2 + fa

13c3 and a2 = fa
21c1 +

fa
22c2 + fa

23c3 from A and b1 = f b
12c2 + f b

13c3 + f b
14c4 and b2 =

fb
22c2 +f b

23c3 +f b
24c4 from B, then clearly, it will be able to recover

c1, c2, c3, c4 if these four equations are linearly independent and
fa

ij and f b
ij are known. It can be shown that if the field size is large

enough, the probability of obtaining these independent equations is
close to 1. Also, information about fa

ij and f b
ij can be included in

the data packets. The number of bits required to specify f a
ij and f b

ij

are n log(q) where n is the number of original packets while q is
the size of the finite field. If m >> n then these bits are negligible.
Therefore, for most practical purposes, this network coding scheme
can speed up the download time (4 packets as compared to 6 packets)
without the overhead of coordination.

One important observation is that network coding incurs an addi-
tional delay before any of the original data can be recovered. Without
network coding, C will be able to recover c1 and c2 during the first
time slot. On the other hand, using network coding, c1 and c2 cannot
be recovered until the second time slot, although after the second time
slot, all c1 through c4 are also recovered simultaneously. In general,
if a network coded packet is a combination of n packets, then a
receiver will have to receive at least n coded packets in order for it
to recover any one of the original packets. This potentially introduces
unnecessary delay for video streaming applications. Therefore, we
propose a network code structure that enables a receiver to recover
the important data gracefully in presence of limited bandwidth which
causes an increase in decoding delay.

B. Hierarchical Network Codes

We design HNC such that when a small number of coded packets
are received, with high probability, the most important data can be
recovered. To illustrate our approach, suppose a file is divided into a
number of packets, and each packet belongs to one of the 3 classes:
A, B, and C with A and C being the most and least important,
respectively. We further assume that there are six packets in the file
with a1, a2 belonged to A, b1, b2 belonged to B, and c1, c2 belonged
to C. We then randomly code the packets using one of the following
structures:

N1 = f
1

1 a1 + f
1

2 a2 (2)

N2 = f
2

1 a1 + f
2

2 a2 + f
2

3 b1 + f
2

4 b2

N3 = f
3

1 a1 + f
3

2 a2 + f
3

3 b1 + f
3

4 b2 + f
3

6 c1 + f
3

6 c2

where f
j
i are the random non-zero elements of a finite field Fq . Using

this structure, it is easy to easy that the probability of recovering ai’s
is always larger than that of bi’s and the probability of recovering
bi’s is always larger than that of ci’s. This is because if one assumes
that all packets arrive at a peer in a random manner, then only two
packets of N1 type are needed to recover a’s while 4 packets of either
N1 or N2 types are needed to recover a’s and b’s. To fine tune the
probability of receiving a certain type of packets, one can control the
number of packets belonged to a certain types. For example, one can
increase the probability of receiving packets of type N1 by generating
more packets of N1 type.

IV. P2P STREAMING WITH NETWORK CODING

In a traditional video streaming application, a video is streamed
from a server to a client. However, if the path between the server
and the client experiences heavy congestion, the quality of the video
can degrade significantly. To overcome congestion, many researchers
have proposed the path-diversity streaming technique in which, the
different parts of the video are simultaneously streamed from multiple
servers to the client on multiple distinct routes [4][12][3][5]. With
appropriate channel and source coding techniques and rate allocation
among the servers, the video quality at the receiver can be improved
significantly. In addition, video streaming using multiple servers also
allows fine-grained load balancing to improve network performance.
Unfortunately, current approaches to multi-sender video streaming
requires a careful coordination between a client and server to achieve
optimal performance. In particular, assuming that two servers are
used for streaming, then server 1 can stream the odd packets while



the other streams the even packets, starting from the beginning of
the file. This approach works when there are only two servers,
and that their average bandwidth are equal and constant throughout
the streaming session. When there are many servers with different
available bandwidth, and these bandwidths are varied with time
(e.g. TCP is used for streaming), then obtaining the optimal packet
partitions for each server requires a complex dynamic coordination
between the client and the servers. Even when complex coordination
is possible, the inaccurate estimation of available bandwidth is often
not possible which results in suboptimality.

We now propose two network coding schemes for multi-sender
streaming framework that reduces the coordination among servers.
In the first scheme, a video file F is randomly network coded
and dispersed to a number of servers/peers in the network. In
particular, our model is similar to the networked storage architecture
as described in [13]. In this model, a file is partitioned into N chunks
c1, c2, ...cN . Each chunk ci is further divided into n small packets
pi1, pi2, ...pin. Now, for each of the chunk ci, the origin server will
randomly network code the packets within it, to produce a number
of coded packets. These packets will be randomly sent to the other
servers/peers. Note that each server/peer does not need to keep all n

coded packets. They may keep only a fraction of the coded packets,
but each server/peer will have some coded packets from every chunk
ci. Therefore, the total amount of storage of this scheme is small
than other approaches.

Using this approach, the client first requests all the servers to send
their packets p1i’s from the first chunk c1. After the client receives
roughly n coded packets, it will be able to recover n original packets.
It then immediately sends a request to all the servers to signal them
to start streaming the packets from the second chunk c2. In the
meanwhile, the client can start video playback. The process continues
until the end of the stream is reached. Clearly, there is a delay at the
beginning due to the time for the client to receive n independent
packets. The attractive feature of this scheme is that no dynamic
packet partition is required. All servers are sending at their available
time-varying bandwidth until the client sends an end of chunk
request to move to the next chunk. Therefore, TCP can be employed
for streaming. We emphasize that this scheme achieves maximum
throughput without the complex coordination. This scheme, however
may not work well when the aggregate bandwidth of all the servers
is smaller than that of the video bit rate. Thus, one cannot playback
the video smoothly.

We propose a second scheme to solve this problem using HNC
together with scalable video bit streams. A scalable video bit stream
is composed of a base layer and several enhancement layers. The base
layer is the most important layer and must be present in order to have
a reasonable video quality. The enhancement layers are organized
in a hierarchical fashion such that the first enhancement layer must
be present for the second enhancement layer to be useful, and the
second enhancement layer must be present for the third enhancement
layer to be useful, and so on. As the client receives more layers,
the higher quality video can be obtained. In a single server, single
client, and non network coding scenario, a scalable video bit stream
allows the server to adapt its bandwidth to the network conditions
by varying the number of enhancement layers. On the other hand,
a direct application of scalable bit stream to the scenario involving
multiple servers with network coding technique is non-trivial due to
the mixing of packets resulted from network coding.

Our approach is to apply HNC on the existing hierarchy of a
scalable bit stream. In particular, the origin server would randomly
code packets using HNC technique based on the importance levels
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Fig. 1. Simulation setup.

of the bits in a scalable bit stream. HNC technique allows a client
to likely receive the most important packets first. Thus, if the current
available bandwidth is low, the client can decide to play back
the video using the most important packets, e.g. important layers,
and requests the servers to send the packets from the next chunk,
depending on the current available bandwidth. This technique allows
a client to have a low quality but smooth video playback.

V. SIMULATION RESULTS

In this section, we investigate the performances for different
multi-sender schemes. We first consider the following uncoordinated
schemes: non-network coding, random network coding, and HNC
schemes. For simplicity, we assume that there is an origin server with
the original file. This server distributes either uncoded or network
coded packets to a number of non-origin (streaming) servers which
are then responsible for streaming the video to a client as shown in
Figure 1. In this simulation, we use a file of F which is divided into
a number of chunks ci of 1Mbyte, each chunk consists of 10 packets
of size 100K bytes. Note that 100 Kbytes is not the size of the packet
sent to the network. This is simply the size of the packets that are
used in network coding operation. We use TCP to transmit data from
multiple servers to a single client.

Non-network coding scheme. The origin server distributes the
entire video file to all the streaming servers. Each streaming server
randomly sends packets belong to a chunk ci. When the client signals
an “end” signal, the server then moves on to the next chunk, and
randomly sends packets of this new chunk.
Network coding scheme. The origin server has previously generated
network coded packets (linear combination of 10 packets for each
chunks) and distributed these packets to the streaming servers. Thus,
for each chunk ci, each streaming server keeps a fraction of random
network code packets. Each streaming server then sends these packets
at random to a client.
HNC scheme. The origin server has previously encoded the packets
using HNC. In particular, the packets of the video are classified into
3 layers A, B and C, and are randomly coded by the origin server
using the following structures:

N1 = f
1

1 a1 + f
1

2 a2 (3)

N2 = f
2

1 a1 + f
2

2 a2 + f
2

3 b1 + f
2

4 b2

N3 = f
3

1 a1 + f
3

2 a2 + f
3

3 b1 + f
3

4 b2 + f
3

6 c1 + f
3

6 c2

where f
j
i ’s are random coefficients of a finite field Fq . The origin

server generates packets such that a packet has equal probability of
being in either N1, N2, or N3 types. For simulation purpose, the
number of packets in layers A, B, and C are equal to each other.
These packets are randomly distributed to the streaming servers. Note
that non-origin servers are oblivious to the packet types. They just
randomly send their packets to the client.

Heavy background traffic between the servers and the client are
generated using on-off exponential distribution with mean of 300kbps
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Fig. 2. Latencies for non-network coding, random-network coding, and HNC
coding for (a) 3 servers; (b) 5 servers; (c) 7 servers.

and the on and off periods of 50 ms each. Figure 2 shows the
average time before a client can decode different layers within a
chunk for different schemes. As seen, for the uncoded scheme, the
time to decode any layer is largest due to high probability of getting
duplicate packets. For the random network coding scheme, the time
to decode all 3 layers is shortest. However, the time to decode 1 and
2 layers are longer than those of the HNC. This is due to the fact that
random network coding mixes all the packets together, thus it requires
a larger number coded packets to decode any packets. However, when
enough number of packets are received, it can decode all the packets
simultaneously. On the other hand, HNC allows a receiver to recover
the important packets early, but pays extra overhead to recover all the
packets. This is suitable for scalable video streaming since if there is
not enough bandwidth, the receiver can instruct the servers to start
sending packets from the next chunk. In the meanwhile, the receiver
can playback the important layers that it has received.

We now compare HNC technique with the coordinated technique in
which, the receiver instructs the servers 1, 2, 3 to send distinct packets
with equal rates. It is easy to see that if the available bandwidth of
all the servers is equal to each other, then this coordinated technique
is optimal. However, when the available bandwidth of these servers
are not equal and varied with time, then the HNC technique can
outperform this coordinated technique significantly. In particular, we
simulate heavy congestion of a link in a three server scenario by
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Fig. 3. Latencies for coordinated transmission vs. non-coordinated HNC
based transmission.

injecting into link one the same on-off exponential traffic but with
the mean of 500kbps. As seen in Figure 3, the receiver cannot
dynamically repartition the packets based on the available bandwidth
in time, thus the coordinated approach takes up 40% more time to
download a chunk.

VI. CONCLUSIONS

We have proposed a network coding framework for efficient media
streaming in either content delivery networks or P2P networks in
which, multiple servers/peers are employed to simultaneously stream
a video to a single receiver. Our framework reduces the redundancy
storage and tight synchronization between the senders. Furthermore,
the proposed HNC technique to be used with scalable video bit stream
enable a receiver to adapt to the available bandwidth. Simulation
results demonstrate that our proposed scheme can result in bandwidth
saving up to 40% for many cases over the traditional schemes.
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