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Abstract—We consider a channel with a binary input X
being corrupted by a continuous-valued noise that results in
a continuous-valued output Y . An optimal binary quantizer is
used to quantize the continuous-valued output Y to the final
binary output Z to maximize the mutual information I(X;Z).
We show that when the ratio of the channel conditional density
r(y) = P (Y =y|X=0)

P (Y =y|X=1)
is a strictly increasing or decreasing function

of y, then a quantizer having a single threshold can maximize
mutual information. Furthermore, we show that an optimal
quantizer (possibly with multiple thresholds) is the one with
the thresholding vector whose elements are all the solutions
of r(y) = r∗ for some constant r∗ > 0. In addition, we also
characterize necessary conditions using fixed point theorem for
the optimality and uniqueness of a quantizer. Based on these
conditions, we propose an efficient procedure for determining all
locally optimal quantizers, and thus, a globally optimal quantizer
can be found. Our results also confirm some previous results
using alternative elementary proofs.

Index Terms—Channel quantization, mutual information,
threshold, optimization.

I. INTRODUCTION

Quantization techniques play a vital role in signal pro-
cessing, communication, and information theory. A classical
quantization technique maps a given real number to an element
in a given finite discrete set that minimizes/maximizes a
certain objective. In compression, quantization is often used
to minimize the distortion (e.g. mean square error (MSE))
between the original data and its quantized version [1], [2]. In
graphics, color quantization is used to reduce the number of
colors in the images for displays with various capabilities [3].
In communication, quantization is often used to minimize the
decoding errors. Broadly, any conversion of a high-resolution
signal to a low-resolution signal requires quantization. In
this paper, we consider the quantization in the context of a
communication channel where the transmitted binary signal
is corrupted by a continuous noise, resulting in a continuous-
valued signal at the receiver. To recover the transmitted signal,
the receiver performs a quantization algorithm that maps the
received continuous-valued signal to the quantized signal such
that the objective function between the input and the quantized
output is maximized/minimized. There is a rich literature
on quantizer design that minimizes various objectives. One
popular objective is to minimize the average decoding error.
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Another fundamental objective is to maximize the mutual
information between the discrete transmitted inputs and the
quantized outputs. Equivalently, this objective minimizes the
information loss between the inputs and the outputs, and is
related to the capacity of the channel. Specifically, for a given
discrete memoryless channel (DMC) specified by a channel
matrix M , its capacity is found by maximizing the mutual
information between the input and the output with respect
to the input distribution p [4], [5]. On the other hand, our
work is focused on maximizing the mutual information with
respect to the quantization parameters, i.e, it is equivalent to
designing a channel matrix M for a fixed distribution p that
maximizes the capacity. This situation often arises in real-
world scenarios where the distribution of input is already
given. In addition, many recent works have proposed to use
quantization strategies that maximize the mutual information
in the designs of low density parity check codes (LDPC) [6],
[7] and polar codes [8].

We consider a channel with binary input X that is cor-
rupted by a given continuous noise to produce continuous-
valued output Y . An optimal binary quantizer is then used to
quantize the continuous-valued output Y to the final binary
output Z to maximize the mutual information I(X;Z). We
show that when the ratio of the channel conditional density
r(y) = P (Y=y|X=0)

P (Y=y|X=1) is a strictly increasing or decreasing
function of y, then a quantizer having a single threshold
can maximize mutual information. Furthermore, we show that
an optimal quantizer (possibly with multiple thresholds) is
the one with the thresholding vector whose elements are all
the solutions of r(y) = r∗ for some constant r∗ > 0. In
addition, we characterize necessary conditions for optimality
and uniqueness of a quantizer via a fixed point theorem. Based
on this, we propose an efficient algorithm that is able to
determine all of the locally optimal quantizers that finally
results in the globally optimal quantizer. Our results also
confirm some previous results using alternative elementary
proofs.

The outline of the paper is as follows. First, we discuss a few
related works in Section II. In Section III, we formulate the
problem of designing the optimal quantizer that maximizes the
mutual information. In Section IV, we describe the structure
of optimal quantizers. In Section V, we describe the sufficient
conditions via the fixed point theorem for the optimality and
uniqueness of a quantizer, together with an efficient procedure
for finding the globally optimal quantizer.
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II. RELATED WORK

Research on quantization techniques has a long history,
including many earliest works in 1960s [9] that aim to
minimize the distortion between the original signal and the
quantized signal. From a communication perspective, design-
ing the quantizers that maximize the information capacity for
Gaussian channels have also been proposed in 1970s [10].
Recently, in constructing efficient codes such as LDPC and
polar codes, a number of works have made use of quantizers
that maximize the mutual information [6], [7], [8]. Many
advanced quantization algorithms have also been proposed
to maximize the mutual information between the input and
the quantized output over the past decade [11], [12], [13],
[14], [15], [16]. In [11], the channel is assumed to have
discrete input and discrete output, and the optimal quantizers
can be found efficiently using dynamic programming that
has polynomial time complexity [17]. On the other hand, we
study the channels with discrete binary inputs and continuous-
valued outputs which are then quantized to binary outputs. The
continuous-valued output is a direct result of the conditional
channel density. We note that it is possible to first discretize
the continuous-valued output, then use the existing quantiza-
tion algorithms for the discrete input-discrete output channels
[11]. However, in many scenarios, this may result in loss of
efficiencies. In particular, many analytical and computational
techniques for dealing with continuous-valued functions are
more efficient than their discrete counterparts.

Our work is also related to the classification problem
in learning theory. Burshtein et al. gave the condition on
the existence of an optimal quantizer which minimizes the
impurity of partitions [18]. Because of the similarity between
maximizing mutual information and minimizing conditional
entropy function [11], [19], the result in [18] can be applied
for finding the optimal quantizer. A similar result also can be
found in [20]. In [21], Zhang et al. show that finding an op-
timal quantizer is equivalent to finding an optimal clustering.
Therefore, a locally optimal solution can be found using k-
means algorithm with the Kullback-Leibler (KL) divergence
as the distance metric. Recently, there have also been many
works on approximating the optimal clustering that minimize
the impurity function for high dimensional data [22], [23],
[24].

There are also works on finding channel capacity by max-
imizing the mutual information over both input probability
mass function (pmf) and thresholds variables. This problem
remains a hard problem [12], [25], [26], [27], [28]. Although
the mutual information is a convex function in the input pmf,
it is not a convex function in the quantization parameters.
As such, many successful convex optimization techniques
for finding the optimal solution are not applicable. In [25],
a heuristic near optimal quantization algorithm is proposed.
However, the algorithm only works well when the SNR ratio
is high. In [12], R. Mathar et al. investigated an optimal
quantization strategy for binary input-multiple output channels
using two support points. These results are only applicable to
approximate the optimal point between two supporting points.
In [19], Kurkoski et al. constructed a sufficient condition such

Figure 1. Channel model: binary input X is corrupted by continuous noise to
result in continuous-valued Y at the receiver. The receiver attempts to recover
X by quantizing Y into binary signal Z.

that a single threshold quantizer is optimal for arbitrary binary-
input, continuous-output channels based on Burshtein et al.’s
theorem on optimal classification [18]. On the other hand, our
work describes the generalized conditions for the existence of
a single threshold optimal quantizer together with a simple
procedure that is able to find the globally optimal quantizer
efficiently.

III. PROBLEM DESCRIPTION

We consider the channel shown in Fig. 1 where the binary
signals x ∈ X = {0, 1} are transmitted and corrupted by
a continuous noise source to produce a continuous-valued
output y ∈ R at the receiver. Specifically, y is specified by
the a channel conditional density p(y|x). p(y|x) models the
distortion caused by noise. The receiver recovers the original
binary signal x by decoding the received continuous-valued
signal y to z ∈ Z = {0, 1} using a quantizer Q. Since y ∈ R,
the quantization parameters can be specified by a thresholding
vector

h = (h1, h2, . . . , hn) ∈ Rn,

with h1 < h2 < · · · < hn−1 < hn, where n is assumed a
finite number. Theoretically, it might be perceivably possible
to construct the conditional densities p(y|x0) and p(y|x1) such
that the optimal quantizer might consist an infinite number of
thresholds. On the other hand, for a practical implementation,
especially when the quantizer is implemented using a lookup
table, then a finite number of thresholds must be used. To
that end, the optimal quantizer in this paper refers to the best
quantizer in the class of all quantizers with a finite number of
thresholds.

In particular, h induces n+ 1 disjoint partitions:

H1=(−∞, h1), H2=[h1, h2), . . . , Hn=[hn−1, hn), Hn+1=[hn,∞).

Let H =
⋃
i∈oddHi and H̄ =

⋃
i∈evenHi, then H ∩ H̄ = ∅

and H ∪ H̄ = R.
The receiver uses a quantizer Q : Y → Z to quantize Y to

Z as:

Z =

{
0 if Y ∈ H,
1 if Y ∈ H̄.

(1)

Note that we can also switch the rule such that Q quantizes
Y to Z = 1 if y ∈ H and quantizes Y to Z = 0 if y ∈ H̄.
The main point is that h divides R into n + 1 contiguous
disjoint segments, each maps to either 0 or 1 alternatively.
Our goal is to design an optimal quantizer Q∗, specifically h∗
that maximizes the mutual information I(X;Z) between the
input X and the quantized output Z:

h∗ = arg max
h

I(X;Z). (2)
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We note that both the values of thresholds hi’s and the
number of thresholds n are the optimization variables. The
maximization in (2) assumes that the input probability mass
function p(x) and the channel conditional density p(y|x) are
given.

IV. OPTIMAL QUANTIZER STRUCTURE

For convenience, we use the following notations:
1) p = (p0, p1) denotes the probability mass function for

the input X , with p0 = P (X = 0) and p1 = P (X = 1).
2) q = (q0, q1) denotes probability mass function for the

output Z, with q0 = P (Z = 0) and q1 = P (Z = 1).
3) φ0(y) = p(y|x = 0) and φ1(y) = p(y|x = 1) denote

conditional density functions of the received signal Y
given the input signal X = 0 and X = 1, respectively.

Furthermore, we make two following assumptions:
Assumptions:

1) r(y) =
φ0(y)

φ1(y)
will play a central role this paper. All the

results in this paper assume that r(y) is a continuous
function, and has a finite number of stationary points.
Equivalently, r(y) = r′ has a finite number of solutions
for any constant r′ > 0. Note that this assumption will
hold for most φ0(y) and φ1(y).

2) Both φ0(y) and φ1(y) are differentiable everywhere.
Using the notations and the assumptions above, a 2×2 chan-

nel matrix A associated with a discrete memoryless channel
(DMC) with input X and output Z is:

A =

[
A11 1−A11

1−A22 A22

]
,

where
A11 =

∫
y∈H

φ0(y)dy, (3)

A22 =

∫
y∈H̄

φ1(y)dy. (4)

The simplest quantizer (decoding scheme) uses only a single
threshold to quantize a continuous received signal into binary
outputs. Specifically,

Z =

{
0 if Y < h1,

1 otherwise.

In general, this quantizer is not optimal, i.e., does not max-
imize the mutual information I(X;Z). Using the results of
Burshtein et al. [18], Kurkoski et al. [19] showed a sufficient
condition on p(y|x) for which the single threshold quantizer is
indeed an optimal quantizer. Our first contribution is to show
that the optimal binary quantizer with multiple thresholds,
specified by a thresholding vector h∗ = (h∗1, h

∗
2, . . . , h

∗
n) with

h∗i < h∗i+1, must satisfy the conditions stated in the Theorem
1.

Theorem 1. Let h∗ = (h∗1, . . . , h
∗
n) be a thresholding vector

of an optimal quantizer Q∗, then:

φ0(h∗i )

φ1(h∗i )
=
φ0(h∗j )

φ1(h∗j )
= r∗, (5)

for ∀ i, j ∈ {1, 2, . . . , n} and some optimal constant r∗ > 0.

Proof. We note that using the optimal thresholding vector h∗,
the quantization mapping follows (1). h∗ divides R into n +
1 contiguous disjoint segments, each maps to either 0 or 1
alternatively. The overall DMC in Fig. 1 has the channel matrix

A∗ =

[
A11 A12

A21 A22

]
,

and the mutual information can be written as a function of h
as:

I(h) = H(Z)−H(Z|X) = H(q0)−[p0H(A11)+p1H(A22)],
(6)

where for any w ∈ [0, 1], H(w) = −[w log(w) + (1 −
w) log(1− w)] and q0 = P (Z = 0) = p0A11 + p1A21.

This is an optimization problem that maximizes I(h). The
theory of optimization requires that an optimal point must
satisfy the KKT conditions [29]. In particular, define the
Lagrangian function as:

L(h, λ) = I(h) +
n−1∑
i=1

λi(hi − hi+1), (7)

then the KKT conditions [29] states that, an optimal point h∗
and λ∗ = (λ∗1, λ

∗
2, . . . , λ

∗
n−1) must satisfy:

∂L(h,λ)
∂hi

|h=h∗,λ=λ∗ = 0, i = 1, 2, . . . , n− 1,

λ∗i (hi − hi+1) = 0, i = 1, 2, . . . , n− 1,

λ∗i ≥ 0, i = 1, 2, . . . , n− 1.

(8)

Since the structure of the quantizer requires that hi < hi+1,
the second and the third conditions in (8) together imply that
λ∗i = 0, i = 1, 2, . . . , n − 1. Consequently, from (7) and the
first condition in (8), we have:

∂L(h, λ)

∂hi
|h=h∗,λ=λ∗ =

∂I(h)

∂hi
|h=h∗ = 0.

The stationary points can be found by setting the partial
derivatives with respect to each hi to zero:

∂I(h)
∂hi

= (log
1− q0
q0

)
∂q0
∂hi
− p0(log

1−A11

A11
)
∂A11

∂hi

− p1(log
1−A22

A22
)
∂A22

∂hi

= (log
1− q0
q0

)(p0
∂A11

∂hi
− p1

∂A22

∂hi
)

− p0(log
1−A11

A11
)
∂A11

∂hi
−p1(log

1−A22

A22
)
∂A22

∂hi
(9)

= p0
∂A11

∂hi
(log

1− q0
q0

− log
1−A11

A11
)

− p1
∂A22

∂hi
(log

1− q0
q0

+ log
1−A22

A22
) = 0, (10)

with (9) due to q0 = p0A11 + p1A21 = p0A11 + p1(1−A22).
Since ∂A11

∂hi
= φ0(hi) and ∂A22

∂hi
= −φ1(hi), from (10), we

have:

φ0(h∗i )

φ1(h∗i )
= −p1

p0

log
1− q0

q0
+ log

1−A22

A22

log
1− q0

q0
− log

1−A11

A11

= r∗. (11)
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Since r∗ > 0 (please see Appendix E) and (11) holds for
∀ i, the RHS of (11) equals to some constant r∗ > 0 for a
quantizer Q∗. Theorem 1 follows.

Remark: The importance of Theorem 1 is as follows.
Suppose the optimal value r∗ is given and the equation
r(y) = r∗ has m solutions: y1 < y2 < · · · < ym. Then,
Theorem 1 says that the optimal quantizer must either have
its thresholding vector be (y1, y2, . . . , ym) or one of its ordered
subsets, e.g., (h∗1, h

∗
2) = (y1, y3), or both. In Theorem 2 below,

we will show that the quantizer whose thresholding vector is
all the solutions of r(y) = r∗, will be at least as good as any
quantizer whose thresholding vector is an ordered subset of
the set of all solutions. Moreover, we will show that under
some sufficient conditions via Banach’s fixed point theorem,
r∗ is unique, and describe an efficient procedure for finding
r∗ in Section V.

Theorem 2. Let y∗1 < y∗2 < · · · < y∗n be the solutions of
r(y) = r∗ for the optimal constant r∗ > 0. Let Qnr∗ be the
quantizer whose thresholding vector is all the solutions, i.e.,
h∗i = y∗i , i = 1, 2, . . . , n, then for k < n, Qnr∗ is at least as
good as any quantizer Qkr∗ whose thresholding vector is an
ordered subset of k elements of the set of (h∗1, h

∗
2, . . . , h

∗
n).

Proof. Let (h∗1, h
∗
2, . . . , h

∗
m) be an optimal thresholding vector

for all the quantizers having m thresholds (m ≤ n). Let
(z∗1 , z

∗
2 , . . . , z

∗
m−1) be an optimal thresholding vector for all

quantizers having m − 1 thresholds. The mutual informa-
tion can be written as a function of these quantizers as:
I(h∗1, h

∗
2, . . . , h

∗
m) and I(z∗1 , z

∗
2 , . . . , z

∗
m−1). We will first show

that I(h∗1, h
∗
2, . . . , h

∗
m) ≥ I(z∗1 , z

∗
2 , . . . , z

∗
m−1), for any m > 0.

This will be proved using contradiction.
Assume that I(h∗1, h

∗
2, . . . , h

∗
m) < I(z∗1 , z

∗
2 , . . . , z

∗
m−1),

then

I(z∗1 , z
∗
2 , . . . , z

∗
m−1) = I(h∗1, h

∗
2, . . . , h

∗
m) + δ, (12)

where δ is a positive constant.
Since (h∗1, h

∗
2, . . . , h

∗
m) is optimal,

I(h∗1, h
∗
2, . . . , h

∗
m) ≥ I(h1, h2, . . . , hm−1, hm), (13)

for any hi < hi+1, i = 1, 2, . . . ,m− 1.
Now replacing hi = z∗i , for i = 1, 2, . . . ,m − 1 into (13),

we have:

I(h∗1, h
∗
2, . . . , h

∗
m) ≥ I(z∗1 , z

∗
2 , . . . , z

∗
m−1, hm). (14)

Since
∫∞
−∞ φi(y)dy = 1, ∀ i = 1, 2,

lim
y→∞

φi(y) = 0, i = 1, 2.

Consequently,

lim
hm→∞

I(z∗1 , z
∗
2 , . . . , z

∗
m−1, hm) = I(z∗1 , z

∗
2 , . . . , z

∗
m−1).

Equivalently, there exists an hm > Nε such that

|I(z∗1 , z
∗
2 , . . . , z

∗
m−1, hm)− I(z∗1 , z

∗
2 , . . . , z

∗
m−1)| ≤ ε, (15)

for any ε > 0. Next, we pick a Nε such that ε < δ. Then,

I(h∗1, h
∗
2, . . . , h

∗
m) (16)

= I(z∗1 , . . . , z
∗
m−1)+I(h

∗
1, h
∗
2, . . . , h

∗
m)−I(z∗1 , z∗2 , . . . , z∗m−1)

≥ I(z∗1 , . . . , z
∗
m−1)−|I(h∗1, h∗2, . . . , h∗m)−I(z∗1 , z∗2 , . . . , z∗m−1)|

≥ I(h∗1, h
∗
2, . . . , h

∗
m) + δ − ε, (17)

where (17) is due to (12) and (15). Since δ−ε > 0 by assump-
tion, (17) indicates that I(h∗1, h

∗
2, . . . , h

∗
m) is strictly greater

than itself which is a contradiction. Thus, I(h∗1, h
∗
2, . . . , h

∗
m) ≥

I(z∗1 , z
∗
2 , . . . , z

∗
m−1).

Next, since (z∗1 , z
∗
2 , . . . , z

∗
m−1) is an optimal thresholding

vector for all quantizers having m − 1 thresholds,
I(z∗1 , z

∗
2 , . . . , z

∗
m−1) ≥ I(h̄∗1, h̄

∗
2, . . . , h̄

∗
m−1) where

(h̄∗1, h̄
∗
2, . . . , h̄

∗
m−1) is an arbitrary subset of (h∗1, h

∗
2, . . . , h

∗
m).

Thus, I(h∗1, h
∗
2, . . . , h

∗
m) ≥ I(z∗1 , z

∗
2 , . . . , z

∗
m−1) ≥

I(h̄∗1, h̄
∗
2, . . . ,

¯h∗m−1). Consequently, the optimal quantizer
having n thresholds is at least as good as the optimal
quantizer having n − 1 thresholds. Similarly, the optimal
quantizer having n − 1 thresholds is at least as good as the
optimal quantizer having n − 2 thresholds and so on. Thus,
by induction, Qnr∗ is at least as good as any quantizer Qkr∗ , ∀
k < n.

Corollary 1. If

r(y) =
φ0(y)

φ1(y)
(18)

is a strictly increasing or decreasing function, then the optimal
quantizer consists of only a single threshold h∗1.

Proof. Noting that since r(y) is a strictly increasing or de-
creasing function. Therefore, r(y1) 6= r(y2) for y1 6= y2.
Thus, (5) will not hold for h∗1 6= h∗2. Consequently, the optimal
quantizer has only a single threshold.

We note that in a previous result [19], an optimality condi-
tion for a single threshold quantizer is that:

s(y) = log
φ0(y)

φ1(y)
(19)

is a monotonic function. If
φ0(y)

φ1(y)
is a strictly monotonic

function, then previous result is a consequence of Corollary
1 since log(.) is a strictly monotonic function, any strictly

monotonic function
φ0(y)

φ1(y)
results in a strictly monotonic

function s(y).

Corollary 2. If

φ0(y − µ) = φ1(y) for some constant µ, (20)

and φ0(y) is a strictly log-concave or log-convex function,
then using a single threshold quantizer is optimal.

Proof. Taking derivative of r(y), we have:

dr(y)

dy
=
φ′0(y)φ1(y)− φ0(y)φ′1(y)

φ1(y)2
> 0, (21)

which is equivalent with:

φ′0(y)

φ0(y)
>
φ′1(y)

φ1(y)
. (22)
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Using (20), we have:

φ′0(y)

φ0(y)
>
φ′0(y − µ)

φ0(y − µ)
. (23)

Now, a function f(x) is strictly log-convex if and only if
f ′(x)

f(x)
is a strictly increasing function [29]. Thus, if φ0(y) is

strictly log-convex, then

φ′0(y)

φ0(y)
>
φ′0(y − µ)

φ0(y − µ)
. (24)

Thus, r′(y) > 0 or r(y) is a strictly increasing function which
satisfies the condition for having an optimal single threshold
quantizer in Corollary 1. A similar proof can be established
for log-concave functions.

V. NECESSARY CONDITIONS FOR OPTIMALITY AND
UNIQUENESS OF A QUANTIZER VIA FIXED POINT

THEOREM AND FIXED POINT ALGORITHM

In this section, we characterize necessary conditions for
optimality and uniqueness of a quantizer via a fixed point
theorem. Using this new conditions, we describe an efficient
procedure based on fixed point algorithm for finding all the
possible r∗ that results in a globally optimal quantizer Q∗.

A. Necessary Conditions for Optimality via Fixed Point The-
orem

For ease of analysis, we define a new variable a as:

a =
p1φ1(y)

p0φ0(y) + p1φ1(y)
=

1

1 +
p0φ0(y)

p1φ1(y)

=
1

1 +
(p0

p1

)
r
,

(25)
where

r =
φ0(y)

φ1(y)
.

We note that a ∈ (0, 1). In addition, the mapping from
r to a is a one-to-one mapping. Furthermore, each value
of a corresponds to a different value of r which in turn,
corresponds to a quantizer in a set of possible quantizers
that contains an optimal quantizer. As an example, Fig. 2
shows two conditional densities φ0(y) and φ1(y), and the
corresponding r(y) and u(y) are shown in Fig. 3 and Fig. 4,
respectively. Now, the mutual information I(X;Z) can be re-
written as a function of a, and is denoted as I(X;Z)a. Thus,
finding the optimal r∗ is equivalent to finding the optimal a∗

that maximizes I(X;Z)a. Furthermore, the optimal thresholds
h∗ = (h∗1, . . . , h

∗
n) can be directly determined as the solutions

of
p1φ1(h)

p0φ0(h) + p1φ1(h)
= a∗. (26)

First, let

u(y) =
p1φ1(y)

p0φ0(y) + p1φ1(y)
. (27)

For given a, define Ha = {y : u(y) < a} and H̄a = {y :
u(y) ≥ a}. The sets Ha and H̄a together specify a binary
quantizer that maps y to z ∈ {0, 1}, depending on whether y
belongs to Ha or H̄a as shown in Fig. 4.
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Figure 2. Conditional densities φ0(y) = 0.3N(0,
√

0.3) +
0.4N(−3,

√
0.2) + 0.3N(3,

√
0.1) and φ1(y) = N(−2, 3). They

are used in Fig. 3 and Fig. 4.
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(1)
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(1)
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(2)
1 , h

(2)
2 ) correspond to two different values of r are shown.

φ0(y) = 0.3N(0,
√

0.3) + 0.4N(−3,
√

0.2) + 0.3N(3,
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0.1), φ1(y) =
N(−2, 3).
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while H̄a consists of green dotted segments. In this example, there exists a
quantizer with 6 thresholds h1, h2, . . . , h6 that correspond to a specific value
of a = 0.5. p0 = p1 = 0.5, φ0(y) = 0.3N(0,
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Without the loss of generality, suppose we use the following
quantizer:

z =

{
0 y ∈ Ha,
1 y ∈ H̄a,

(28)

then the channel matrix of the overall DMC is:

A =

[
f(a) 1− f(a)

1− g(a) g(a)

]
,

where f(a)
4
= p(z = 0|x = 0) and g(a)

4
= p(z = 1|x = 1).

f(a) and g(a) can be written in terms of φ0(y) and φ1(y) as:

f(a) =

∫
y∈Ha

φ0(y)dy, (29)

g(a) =

∫
y∈H̄a

φ1(y)dy. (30)

Now, let us consider the special cases where a = 1 or a = 0.
In these cases, I(X;Z) = 0 due to f(a) = 1 and g(a) = 0
or vice-versa. Therefore, a = 1 and a = 0 cannot be the
optimal points. Thus, we can assume that a ∈ (0, 1) and 0 <
f(a), g(a) < 1. Lemmas 1 and 2 below provide the properties
of f(a) and g(a) and the relationship with each other.

Lemma 1. Derivatives of f(a) and g(a) are related through
the following equation:

dg(a)

da
= − ap0

(1− a)p1

df(a)

da
. (31)

Proof. Please see the proof in Appendix A.

Lemma 2. For ∀ a ∈ (0, 1),
(1) g′(a) < 0 and f ′(a) > 0.
(2) f(a) + g(a) > 1.

Proof. Please see the proof in Appendix B.

Define

la = [
p0f(a)

p0f(a) + p1(1− g(a))
,

p1(1− g(a))

p0f(a) + p1(1− g(a))
],

ra = [
p0(1− f(a))

p0(1− f(a)) + p1g(a)
,

p1g(a)

p0(1− f(a)) + p1g(a)
],

a = [1− a, a].

Let DKL(x, y) denote the Kullback-Leibler (KL) divergence
between two vectors x = [1 − x, x] and y = [1 − y, y] for
x, y ∈ (0, 1),

DKL(x||y) = x log(
x

y
) + (1− x) log(

1− x
1− y

). (32)

Lemma 3. Each optimal quantizer Q∗ (local or global)
corresponds to an optimal a∗ such that

DKL(a∗||la∗) = DKL(a∗||ra∗).

Proof. Using Lemma 1, setting derivative of I(X;Z)a to zero,
we have:
dI(X;Z)a

da
= p1g

′(a)
[a− 1

a

(
log(

f(a)

1− f(a) ) (33)

− log(
p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

)
)

+ log(
g(a)

1− g(a) ) + log(
p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

)
]

= p1g
′(a)F (a) = 0, (34)

where

F (a) =
a− 1

a
log(

f(a)

1− f(a)
) + log(

g(a)

1− g(a)
)

+
1

a
log(

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
). (35)

From Lemma 2 g′(a) < 0 and p1 > 0, thus, the stationary
points of I(X;Z)a must occur at F (a) = 0. Applying
definitions of a, la, ra, and KL divergence, it can be shown
that

F (a) =
1

a

[
DKL(a||la)−DKL(a||ra)

]
.

Please see the proof in Appendix C. Thus,

F (a) = 0↔
[
DKL(a||la)−DKL(a||ra)

]
= 0.

In other words, each optimal quantizer Q∗ (local or global)
corresponds to an optimal a∗ such that

DKL(a∗||la∗) = DKL(a∗||ra∗).

Lemma 4. Let ca = [1− c(a), c(a)] then

c(a) =

log(
1− f(a)

f(a)

p0f(a) + p1(1− g(a))

p0(1− f(a)) + p1g(a)
)

log(
1− f(a)

f(a)

1− g(a)

g(a)
)

(36)

if and only if

DKL(ca||la) = DKL(ca||ra).

Proof. By using the definitions of ca, la, ra, and KL diver-
gence, (37) follows. Now, (1− f(a))(1− g(a)) = 1− f(a)−
g(a) + f(a)g(a) < f(a)g(a) due to f(a) + g(a) > 1. Thus,

log((
1− f(a)

f(a)
)(

1− g(a)

g(a)
)) 6= 0. Therefore, DKL(ca||la) −

DKL(ca||ra) = 0 if and only if c(a) satisfies (36).

We now characterize the optimality condition for a quantizer
via the fixed point theorem.

Theorem 3. Let a quantizer Q∗ be an optimal quantizer with
an optimal a∗, then c(a∗) = a∗ where c(a) is defined in (36).

Proof. From Lemma 3, the optimal quantizer Q∗ corre-
sponds to an optimal vector a∗ = [1 − a∗, a∗] must have
DKL(a∗||la∗) = DKL(a∗||ra∗). Now, from Lemma 4 for
given la∗ and ra∗ , there exists a unique vector ca∗ =
[1 − c(a∗), c(a∗)] such that DKL(ca∗ ||la∗) = DKL(ca∗ ||ra∗)
where c(a) is defined in (36). Combining Lemma 3 and 4, we
have c(a∗) = a∗.

We will use Theorem 3 in our algorithm for finding op-
timal quantizers. To do that, we will show some interesting
properties of c(a) in Theorem 4 and Theorem 5 below.

Theorem 4. c(a) ∈ (0, 1) and is a smooth (derivative exists),
non-decreasing function of a.

Proof. Please see Appendix D for the proof.

Lemma 5. The sequence ai+1 = c(ai) must converge to a
fixed point a∗ for any initial point a0 ∈ (0, 1).
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DKL(ca||la)−DKL(ca||ra) =
(
c(a) log(

c(a)

p1(1− g(a))
p0f(a) + p1(1− g(a))

) + (1− c(a)) log( 1− c(a)
p0f(a)

p0f(a) + p1(1− g(a))

)
)

−
(
c(a) log(

c(a)

p1g(a)

p0(1− f(a)) + p1g(a)

) + (1− c(a)) log( 1− c(a)
p0(1− f(a))

p0(1− f(a)) + p1g(a)

)
)

= c(a) log(

p1g(a)

p0(1− f(a)) + p1g(a)

p1(1− g(a))
p0f(a) + p1(1− g(a))

) + (1− c(a)) log(

p0(1− f(a))
p0(1− f(a)) + p1g(a)

p0f(a)

p0f(a) + p1(1− g(a))

)

= log(

p0(1− f(a))
p0(1− f(a)) + p1g(a)

p0f(a)

p0f(a) + p1(1− g(a))

)− c(a)
(
log(

p0(1− f(a))
p0(1− f(a)) + p1g(a)

p0f(a)

p0f(a) + p1(1− g(a))

)− log(

p1g(a)

p0(1− f(a)) + p1g(a)

p1(1− g(a))
p0f(a) + p1(1− g(a))

)
)

= log((
1− f(a)
f(a)

)(
p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

))− c(a) log((1− f(a)
f(a)

)(
1− g(a)
g(a)

))

= log((
1− f(a)
f(a)

)(
1− g(a)
g(a)

))
( log((1− f(a)f(a)

)(
p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

))

log((
1− f(a)
f(a)

)(
1− g(a)
g(a)

))

)− c(a)
)
. (37)

Proof. From Theorem 4, c(a) is a non-decreasing function and
c(a) ∈ (0, 1). Thus, the sequence generated by ai+1 = c(ai),
starting from any a0 is monotone, i.e., ai+1 ≥ ai ∀ i or ai+1 ≤
ai ∀ i. Specifically, if a1 ≤ a0, then a2 = c(a1) ≤ c(a0) = a1,
therefore, a2 ≤ a1. By induction method, if a1 ≤ a0 then
ai+1 ≤ ai ∀ i. Similarly, if a1 ≥ a0 then ai+1 ≥ ai ∀ i. Thus,
the sequence ai is monotone. From Theorem 4, c(ai) ∈ (0, 1)
or the sequence ai is bounded in (0, 1). Thus, sequence ai has
a limit a∗ such that a∗ = c(a∗).

Theorem 5. For any initial point a0 ∈ (0, 1), if limi→+∞ ai =
a∗ where ai+1 = c(ai), then there is no other solution a′ such
that a′ = c(a′) between a0 and a∗.

Proof. We will prove by contradiction. For the case where
a0 ≤ a∗, assume that there is a a′ such that a′ = c(a′) and
a0 < a′ < a∗. Since the sequence ai is monotone, there exists
an i such that ai < a′ < ai+1. Since c(a) is non-decreasing,
we have ai+1 = c(ai) ≤ c(a′) = a′ which contradicts the
assumption that a′ < ai+1. Similarly, we can show that there
is no other solution a′ in the interval (a∗, a0) for the case
a0 > a∗.

Fig. 5 illustrates the convergence of sequence ai to a∗ from
the initial point a0.

B. Outline of Algorithm for Finding All Solutions to a∗ =
c(a∗)

A straightforward way of computing the optimal a∗ is the
iteration method by starting with a0. However, depending on
the starting point a0, the iterations may lead to a local optimal
solution. In other words, when the equation a = c(a) has more
than one solution, we need a procedure capable of finding all
the solutions of a = c(a). Using Theorem 5, we outline an
efficient procedure that can find all the solutions to a = c(a).
A global solution then can be chosen among these solutions
that maximize the mutual information.

Figure 5. Illustration of the convergence of sequence ai to a∗ from the initial
point a0.

Our procedure initiates two iteration loops using two start-
ing points a0

l = ε and a0
r = 1− ε where ε is a small number.

Suppose that the first iteration loop converges to a∗l , and the
second iteration loop converges to a∗r . If a∗l = a∗r , then the
procedure terminates with a∗ = a∗r being the optimal point.
This is due to Theorem 5 which states that there is no solution
of a = c(a) in either (ε, a∗) or (a∗, 1 − ε). We assume that
the optimal solution is not in (0, ε) or (1− ε, 1) since we can
make ε arbitrarily small. Otherwise, if a∗l < a∗r , we need to
check whether or not there exists some other solutions in the
interval (a∗l , a

∗
r). In order to find them, the procedure initiates

another iteration loop using a starting point a0 = (a∗l + a∗r)/2
. After this iteration loop converges to a∗c , one needs to
run the iterations over two intervals (a∗l ,min(a0, a∗c)) and
(max(a0, a∗c), a

∗
r). If any of these intervals is nonempty, then

the procedure recursively repeats the previous steps until the
whole interval (0, 1) has been completely searched. When all
a∗’s are found, we pick the one that maximizes the mutual
information. Note that this fixed point method is much faster
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than an exhaustive search through all the values of a. Finally,
we note that our procedure is based on the algorithm in [30].

Next, we state a sufficient condition for which a∗ is unique.

Corollary 3. Let d(x, y) is an arbitrary distance metric
between x and y. If there exists a q ∈ [0, 1) such that for
all x, y ∈ (0, 1)

d(c(x), c(y)) ≤ qd(x, y), (38)

then there exists a unique a∗ such that c(a∗) = a∗.

Proof. From Theorem 4, obviously that a ∈ (0, 1) and c(a) ∈
(0, 1). Thus, c(a) maps to itself. If existing q and d(, ) such
that d(c(x), c(y)) ≤ qd(x, y) for all x, y ∈ (0, 1) then c(.)
is a contraction mapping. From Banach’s fixed point theorem
[31], there exists a unique a∗ such that c(a∗) = a∗.

Note that if we use d(x, y) = |x − y|, then it is straight
forward to show that if 0 < c′(a) < 1, then a∗ is unique.

VI. CONCLUSION

In this paper, we show that if the ratio of the channel
conditional densities of the inputs r(y) = P (Y=y|X=0)

P (Y=y|X=1) is a
strictly increasing or decreasing function, then the quantizers
having a single threshold are optimal. Furthermore, we show
that an optimal quantizer (possibly with multiple thresholds)
is the one with the thresholding vector whose elements are
all the solutions of r(y) = r∗ for some constant r∗ > 0. We
also describe a necessary condition for optimality, a sufficient
condition for uniqueness via a fixed point theorem, together
with an algorithm for finding the globally optimal quantizer.

APPENDIX

A. Proof for Lemma 1

From (25), we have:

φ1(hi) =
ap0

(1− a)p1
φ0(hi),∀i ∈ {1, 2, . . . , n}. (39)

Now, suppose that u(y) = a having n solutions
{h1, h2, . . . , hn}. Without loss of generality, suppose that
Ha = {(−∞, h1) ∪ [h2, h3) ∪ · · · ∪ [hn,+∞)} and H̄a =
R \Ha = {[h1, h2) ∪ [h3, h4) ∪ · · · ∪ [hn−1, hn)}. From (29)
and (30)

df(a)

da
=
∂f(a)

∂h

∂h

∂a
=+φ0(h1)

∂h1

∂a
−φ0(h2)

∂h2

∂a
+. . .−φ0(hn)

∂hn

∂a
,

(40)
dg(a)

da
=
∂g(a)

∂h

∂h

∂a
=−φ1(h1)

∂h1

∂a
+φ1(h2)

∂h2

∂a
−. . .+φ1(hn)

∂hn

∂a
.

(41)
Combining Eqs. (39), (40) and (41), we have the desired

proof. We note that f ′(a) and g′(a) have the opposite sign.
As a result, if f(a) increases, then g(a) decreases and vice-
versa.

�

B. Proof for Lemma 2

(1) From (26), f(a) represents the quantized bit “0” which is
the area of u(y) (defined in (27)) where u(y) < a. Therefore, if
a is increasing, f(a) is obviously increasing. Thus, f ′(a) > 0.
A similar proof can be established for g(a) which corresponds
to the area of u(y) where u(y) ≥ a.

(2) We note that f(a) and g(a) represent the quantized bits
“0” and “1” which correspond to the areas of u(y) < a and
u(y) ≥ a, respectively. Let Ha = {y|u(y) < a} and H̄a =
{y|u(y) ≥ a}. From (26)

ap0φ0(y) > (1− a)p1φ1(y), ∀y ∈ Ha, (42)

ap0φ0(y) ≤ (1− a)p1φ1(y), ∀y ∈ H̄a. (43)

We consider two possible cases: a > p1 and a ≤ p1. In
both cases, we will show that f(a) + g(a) > 1.
• If a < p1 then 1 − a > 1 − p1 = p0. Thus, from (42),

φ0(y) > φ1(y) for ∀ y ∈ Ha. Therefore,

f(a) + g(a) =

∫
y∈Ha

φ0(y)dy +

∫
y∈H̄a

φ1(y)dy (44)

>

∫
y∈Ha

φ1(y)dy +

∫
y∈H̄a

φ1(y)dy (45)

= 1. (46)

• If a ≥ p1 then 1 − a ≤ 1 − p1 = p0. Thus, from (43),
φ0(y) ≤ φ1(y) for ∀ y ∈ H̄a. Therefore,

f(a) + g(a) =

∫
y∈Ha

φ0(y)dy +

∫
y∈H̄a

φ1(y)dy (47)

≥
∫
y∈Ha

φ0(y)dy +

∫
y∈H̄a

φ0(y)dy (48)

= 1. (49)

�

Remark: The necessary condition for inequality (49) be-
comes equality is φ0(y) = φ1(y) for ∀ y ∈ H̄a that contradicts
to the assumption that r(y) has a finite number of stationary
points. Thus, f(a) + g(a) > 1.

C. Proof of Lemma 3

By using the definitions of a, la, ra and KL divergence, it
can be shown that (54) holds with (50) due to a log a+ (1−
a) log(1 − a) is cancelled after summing up, (51), (52) and
(53) due to a bit of algebra, (54) due to the definition of F (a)
in (35).

D. Proof Theorem 4

We will use the following lemmas and the order notion of
2-dimensional vector below to prove Theorem 4.

Vector Order. Consider two binary probability vectors x =
[1−x, x] and y = [1−y, y], x, y ∈ (0, 1), we define the vector
order y ≥ x if and only if y ≥ x.

Lemma 6. For any three binary probabiity vectors a = [1 −
a, a], b = [1− b, b] and c = [1− c, c] such that a ≤ b ≤ c (or
a ≤ b ≤ c), then
• (a) DKL(a||b) ≤ DKL(a||c)
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1

a

[
DKL(a||la)−DKL(a||ra)

]
=

1

a

[(
a log(

a

p1(1− g(a))
p0f(a) + p1(1− g(a))

) + (1− a) log( 1− a
p0f(a)

p0f(a) + p1(1− g(a))

)
)

−
(
a log(

a

p1g(a)

p0(1− f(a)) + p1g(a)

) + (1− a) log( 1− a
p0(1− f(a))

p0(1− f(a)) + p1g(a)

)
)]

=
1

a

[
−

(
a log(

p1(1− g(a))
p0f(a) + p1(1− g(a))

) + (1− a) log( p0f(a)

p0f(a) + p1(1− g(a))
)
)

+
(
a log(

p1g(a)

p0(1− f(a)) + p1g(a)
) + (1− a) log( p0(1− f(a))

p0(1− f(a)) + p1g(a)
)
)]

(50)

=
1

a

[
(1− a) log(p0(1− f(a))

p0f(a)
) + a log(

p1g(a)

p1(1− g(a))
) + (1− a+ a) log(

p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

)
]

(51)

=
1

a

[
(a− 1) log(

f(a)

1− f(a) ) + a log(
g(a)

1− g(a) ) + log(
p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

)
]

(52)

=
a− 1

a
log(

f(a)

1− f(a) ) + log(
g(a)

1− g(a) ) +
1

a
log(

p0f(a) + p1(1− g(a))
p0(1− f(a)) + p1g(a)

) (53)

= F (a), (54)

• (b) DKL(c||b) ≤ DKL(c||a)
• (c) DKL(b||a) ≤ DKL(c||a)
• (d) DKL(b||c) ≤ DKL(a||c)

Proof. Proof of (a). For a given a, we show that DKL(a||b)
is a non-decreasing function of b. Let D(b) = DKL(a||b) =

a log(
a

b
) + (1− a) log(

1− a
1− b

)

D′(b) =
1− a
1− b

− a

b
. (55)

Since a ≤ b then 1 − a ≥ 1 − b, thus
1− a
1− b

≥ 1 ≥ a

b
and D′(b) ≥ 0 ∀ b ≥ a. Since b ≤ c, D(b) ≤ D(c) or
DKL(a||b) ≤ DKL(a||c). The equality happens if and only if
b = c.

We omit the proofs of (b), (c), and (d) since they are similar
to the proof of (a).

Lemma 7. If DKL(ca||la) = DKL(ca||ra), then la ≤ ca ≤ ra
Proof. First, we show that la < ra, ∀ a. Indeed, consider

p1g(a)

p0(1− f(a)) + p1g(a)
− p1(1− g(a))
p0f(a) + p1(1− g(a))

=
p0p1(g(a)f(a)− (1− g(a))(1− f(a)))

(p0(1− f(a)) + p1g(a))(p0f(a) + p1(1− g(a)))

=
p0p1(f(a) + g(a)− 1)

(p0(1− f(a)) + p1g(a))(p0f(a) + p1(1− g(a)))
> 0,

where the last inequality is due to f(a) + g(a) > 1 (Lemma
2), and all other terms in the last equation are positive. Thus,
the second entry of ra is strictly greater than the second entry
of la or ra > la.

Now, suppose that ca < la < ra, by Lemma 6
part (a), DKL(ca||la) < DKL(ca||ra) that contradicts to
DKL(ca||la) = DKL(ca||ra). Thus, la ≤ ca. A similar

proof can be constructed to show that ca ≤ ra. Thus,
la ≤ ca ≤ ra.

Lemma 8. Consider a1 and a2 such that 0 < a1 ≤ a2 < 1,
then la1 ≤ la2 and ra1 ≤ ra2 .

Proof. First, we show that la1 ≤ la2 . Indeed, consider the
function s(a) as the ratio of the second entry over the first

entry of la, i.e., s(a) =
p1(1− g(a))

p0f(a)
. We have

s′(a) =
−p1g

′(a)p0f(a)− p1(1− g(a))p0f
′(a)

(p0f(a))2

= p0p1f
′(a)

( ap0

(1− a)p1
f(a)− (1− g(a))

)
,(56)

with (56) due to Lemma 2. Also from (42),

φ1(y) <
ap0

(1− a)p1
φ0(y),∀y ∈ Ha.

Moreover, from the definitions of f(a) and g(a) in (29) and
(30), f(a) and 1− g(a) are the integrals of φ0(y) and φ1(y),
respectively over Ha, respectively. Thus,

ap0

(1− a)p1
f(a)−(1−

g(a)) > 0. From Lemma 2 f ′(a) > 0, thus s′(a) > 0. That
said, the ratio of the second entry over the first entry of la is
an increasing function of a. Furthermore, la is a probability
vector, i.e., the summation of the first entry and the second
entry equals one. Therefore, the second entry of la is an
increasing function of a or la1 ≤ la2 .

A similar proof can be constructed to show that ra1 ≤ ra2 .

Lemma 9. Consider 4 vectors a = [1 − a, a], b = [1 − b, b],
c = [1− c, c] and d = [1− d, d] such that a ≤ b ≤ c ≤ d (or
a ≤ b ≤ c ≤ d), then
• (a) DKL(d||a) ≥ DKL(c||b).
• (b) DKL(a||d) ≥ DKL(b||c).
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Proof. Proof of (a). We have DKL(c||b) ≤ DKL(c||a) and
DKL(c||a) ≤ DKL(d||a) due to Lemma 6 part (b) and (c),
respectively. Thus, DKL(d||a) ≥ DKL(c||b). The equality
happens if and only if a = b and c = d.

Proof of (b). Similar to proof of part (a), DKL(a||d) ≥
DKL(b||d) and DKL(b||d) ≥ DKL(b||c) due to Lemma 6
part (a) and (d), respectively. Thus, DKL(a||d) ≥ DKL(b||c).
The equality happens if and only if a = b and c = d.

Now, we are ready to prove Theorem 4.
Proof of c(a) ∈ (0, 1).
From Lemma 7, we have la ≤ ca ≤ ra. Equivalently,

0 <
p1(1− g(a))

p0f(a) + p1(1− g(a))
≤ c(a) ≤ p1g(a)

p0(1− f(a)) + p1g(a)
< 1.

(57)

Proof for the smoothness of c(a). Since 0 < f(a), g(a) <
1, p0(1−f(a))+p1g(a) > 0 and f(a)g(a) > 0, thus all of the
denominators of (36) is positive. In addition, one can verify
that

(1−f(a))(1−g(a)) = 1−f(a)−g(a)+f(a)g(a) < f(a)g(a).

Thus, log(
(1− f(a))(1− g(a))

f(a)g(a)
) is non-zero. In addition, if

f ′(a) and g′(a) exist, it is straight forward to show that
c′(a) also exists. Therefore, c(a) is a well-defined and smooth
function of a.

Proof for the non-decreasing of c(a).
Suppose that there exists a1 ≤ a2 such that

DKL(ca1 ||la1) = DKL(ca1 ||ra1) and DKL(ca2 ||la2) =
DKL(ca2 ||ra2) but c(a1) > c(a2). From Lemma 8,
la1 ≤ la2 , ra1 ≤ ra2 . From Lemma 7, la1 ≤ ca1 ≤ ra1
and la2 ≤ ca2 ≤ ra2 . From the assumption that ca1 > ca2 ,
ca1 > ca2 . Therefore,

la1 ≤ la2 ≤ ca2 < ca1 ≤ ra1 ≤ ra2 .

Now, using Lemma 9 part (a) for la1 ≤ la2 ≤ ca2 < ca1 ,

DKL(ca1 ||la1) > DKL(ca2 ||la2). (58)

Similarly, using Lemma 9 part (b) for ca2 < ca1 ≤ ra1 ≤
ra2 ,

DKL(ca1 ||ra1) < DKL(ca2 ||ra2). (59)

From (58) and (59),

DKL(ca1 ||la1)>DKL(ca2 ||la2)=DKL(ca2 ||ra2)>DKL(ca1 ||ra1)

that contradicts to our assumption that DKL(ca1 ||la1) =
DKL(ca1 ||ra1). By contradiction method, c(a1) ≤ c(a2) if
a1 ≤ a2. Thus, c(a) is a non-decreasing function of a.
Combining with (57), we have the proof for Theorem 4.

E. Proof of r∗ > 0

From (11) and p0 > 0, p1 > 0, r∗ > 0 is equivalent to

−
log

1− q0

q0
+ log

1−A22

A22

log
1− q0

q0
− log

1−A11

A11

> 0.

Thus, we need to show that

log(
1− q0

q0

1−A22

A22
) log(

q0

1− q0

1−A11

A11
) > 0.

Since log(x) > 0 if and only if x > 1, we can show that

(
1− q0

q0

1−A22

A22
− 1)(

q0

1− q0

1−A11

A11
− 1) > 0.

Using a bit of algebra, (60) is equivalent to

(A11 − q0)(A22 − q1) > 0. (60)

However, A11 = f(a), A22 = g(a), thus A11 + A22 > 1 by
Lemma 2. From A21 + A22 = 1 < A11 + A22, A21 < A11.
Similarly, A12 < A22. Therefore,

q0 = p0A11 + p1A21 < p0A11 + p1A11 = A11, (61)

q1 = p0A12 + p1A22 < p0A22 + p1A22 = A22. (62)

Combining (61) and (62), (60) follows. The proof is complete.
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