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Abstract—We investigate an underlying mathematical model
and algorithms for optimizing the performance of a class of
distributed systems over the Internet. Such a system consists
of a large number of clients who communicate with each other
indirectly via a number of intermediate servers. Optimizing the
overall performance of such a system then can be formulated
as a client server assignment problem whose aim is to assign
the clients to the servers in such a way to satisfy some pre-
specified requirements on the communication cost and load
balancing. We show that 1) the total communication load and
load balancing are two opposing metrics, and consequently,
their trade-off is inherent in this class of distributed systems;
2) in general, finding the optimal client-server assignment for
some pre-specified requirements on the total load and load
balancing is NP-hard, and therefore; 3) we propose a heuristic via
relaxed convex optimization for finding the approximate solution.
Our simulation results indicate that the proposed algorithm
produces superior performance than other heuristics, including
the popular Normalized Cuts algorithm.

Index Terms—Distributed systems, Client-server systems,
Graph clustering, Load balancing, Communication overhead,
Optimization

I. INTRODUCTION

An Internet distributed system consists of a number of nodes
(e.g., computers) that are linked together in ways that allow
them to share resources and computation. An ideal distributed
system is completely decentralized, and that every node is
given equal responsibility and no node is more computational
or resource powerful than any other. However, for many real-
world applications, such a system often has a low performance
due to a significant cost of coordinating the nodes in a
completely distributed manner. In practice, a typical distributed
system consists of a mix of servers and clients. The servers are
more computational and resource powerful than the clients. A
classical example of such systems is Email. When a client A
sends an email to another client B, A does not send the email
directly to B. Instead, A sends its message to its email server
which has been previously assigned to handle all the emails
to and from A. This server relays A’s email to another server
which has been previously assigned to handle emails for B. B
then reads A’s email by downloading the email from its server.
Importantly, the email servers communicate with each other on
behalf of their clients. The main advantage of this architecture
is specialization, in the sense that the powerful dedicated email
servers release their clients from the responsibility associated
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with many tasks including processing and storing emails, and
thus making email applications more scalable.

Email systems assign clients based primarily on the orga-
nizations that the clients belong to. Two employees working
for the same company are likely to have their email accounts
assigned to the same email server. Thus, the client server
assignment is trivial. A more interesting scenario is the Instant
Messaging System (IMS). An IMS allows real-time text-based
communication between two or more participants over the In-
ternet. Each IMS client is associated with an IMS server which
handles all the instant messages for its clients. Similar to email
servers, IMS servers relay instant messages to each other on
behalf on their clients. In an IMS that uses the XMPP (Jabber)
[1] protocol such as Google Talk, clients can be assigned to
servers independent of their organizations. Furthermore, the
client-server assignment can be made dynamic as deemed
suitable, and thus making this problem much more interesting.

In the XMPP, a username is set as user@domain (e.g.,
nishida@jabber.org) just like an email account, where domain
usually stands for a server name in which user is registered.
When a user aaa@domain sends a message to another user
in the same domain bbb@domain, the message is delivered
only through the domain server, i.e., aaa → domain server →
bbb. The clients do not directly exchange their messages each
other. When a user aaa@domain1 sends a message to another
user in a different domain bbb@domain2, the message is sent
as: aaa → domain1 server → domain2 server → bbb. This
design is indeed simple and scalable. If the number of users
increases, another server can be added to accommodate the
new users.

Herein, we consider server load in an IMS. We assume all
communications are encrypted. The amount of load on a server
(we call it communication load) is substantially proportional
to the amount of data that the server receives (= r) for the
following reasons:

• The server basically sends the same amount of data (= r)
to a client/another server.

• The processing times taken for decrypting the received
data and for encrypting the sending data are both propor-
tional to r.

• Except for the encryption and decryption, the load on the
server is dominated by copying the data among a network
device, the operating system’s kernel, an IMS program
and sometimes a hard drive, which is also proportional
to r.

Based on these, we need to consider how to optimally assign
clients to servers, beginning with the following observations:



2

(a) Client i and j are assigned
to server 1. The messages be-
tween them are passed only via
server 1.

(b) Client i is assigned to server 1
and client j is assigned to server
2. The messages are passed through
server 1 and 2, which doubles the
overall communication load.

Fig. 1. Example of client assignment to servers

• Suppose both client i and j are assigned to server 1 and
i sends a message of size 1 to j, then the message is sent
only via server 1 (see Fig. 1(a)). We define the amount
of communication load on server 1 in this case as 1.

• Suppose client i is assigned to server 1 and j is assigned
to server 2. If i sends a message of size 1 to j, then
the message is delivered through server 1 and 2 (see Fig.
1(b)). The amount of communication load on server 1 is
still 1 and that on server 2 is also 1, because both server
1 and 2 need to process the message of size 1. (Note
we assume a system always consists of homogeneous
machines in this paper.)

• From the above two cases, we know that assigning clients
to different servers doubles the amount of total commu-
nication load compared to assigning them to the same
server. Hence, we need to assign clients to servers so that
the amount of total communication load is minimized.

• If two clients who exchange many messages with each
other are assigned to two different servers, then the
amount of total communication load increases. On the
other hand, if two clients who never exchange messages
are assigned to different servers, then the amount of
total communication load stay unchanged. So, it makes
sense to assign clients that exchange many messages to
the same server and to assign clients that exchange few
messages to different servers in terms of minimizing the
overall communication load.

• Since we use multiple servers, we also need to balance the
communication load among the servers for the following
reasons:

– As a heavily loaded server typically exhibits a low
performance, we would like to avoid the situation.

– If one server is overloaded, we need to add another
server to distribute the load, which is economically
inefficient and usually increases the overall commu-
nication load (see above). For instance, if the loads
on server 1 and 2 are 1.2 (i.e., 20% overloaded) and
0.6 respectively, then we have to add a server to
reduce the load on server 1 to less than 1.0. However,
if the loads are 0.9 and 0.9, then there is no need to
do that.

• To minimize the amount of total communication load,
assigning all clients to one server is optimal. However,
it is impossible due to overloading and completely loses

the load balance. Simple load balancing does not usually
take account of reducing the overall communication load.

Given the observations above, we must strike a balance be-
tween reducing the overall communication load and increasing
the load fairness among the servers, i.e., the load balance. The
primary contribution of this paper is a heuristic algorithm via
relaxed convex optimization that takes a given communication
pattern among the clients as an input, and produces an
approximately optimal client-server assignment for a pre-
specified trade-off between load balance and communication
cost. Next, we describe a number of emerging applications that
have the potential to benefit from the client-server assignment
problem.

A. Emerging Applications

The client-server assignment problem is also relevant to a
host of emerging applications ranging from social network
applications such as Facebook and Twitter to online distributed
auction systems such as eBay. Facebook is a system that allows
circles of friends to exchange messages and pictures among
themselves. Since friends are likely to communicate with each
other than non-friends, assigning friends to the same server
will reduce the inter-server communication and will result in
reducing the overall communication load. At the same time,
it is preferable to balance the communication load. This is
exactly the client-server assignment problem encountered in
the IMS.

Online distributed auction systems is another candidate for
applying the client-server assignment. If a user logged in a
server which has contents that are mostly not of interest the
user, then on average, every item search by a user will generate
a larger communication overhead, as the search must be done
across multiple servers. Therefore, letting a user log in the
server that likely to have content of interest to a user will
raise the efficiency. In this case, the types of contents can also
be viewed as clients.

The client-server assignment also has the potential to be
applicable to distributed database systems, such as MapReduce
[2]. Assigning the search keywords which are often queried
together to the same servers will reduce the inter-server
communication. In this case, the search keywords correspond
to the clients in the above IMS.

Note we are not focused on real-time (or highly dynamic)
client-server assignment in this paper because of the relatively
expensive computation cost. Instead, moderately dynamic ap-
plications such as social networks where users do not change
their friends too frequently are our targets. We assume that our
algorithms are used in a such situation that the recalculation
of assignment is needed only periodically e.g., once a week.

II. RELATED WORK

A. Clustering Algorithms

To a certain extent, the client-server assignment problem
can be viewed as an instance of the clustering problem.
Specifically, the clients and their communication patterns
can be represented as a graph whose vertices denote the
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Fig. 2. Example of bi-partitioning

clients, an edge between two vertices denote a communication
between two corresponding clients. The weight of an edge
between two vertices represents how frequently the two clients
communicate with each other. The goal of many clustering
algorithms is to cluster the clients into a fixed number of
groups so that a certain objective, e.g., the ratio of inter-
communication among groups to intra-communication within
a group, is minimized. Therefore, we briefly discuss a few
approaches to the clustering problem.

The most related clustering algorithm to our problem is
Normalized Cuts (NC) [3]. The NC divides an undirected
graph into two disjoint partitions by minimizing

Fncut =
W1,2

W1,1+W1,2
+

W2,1

W2,2+W2,1
, (1)

where Wi,j is the sum of the weights of all edges that connect
the vertices in group i and j as shown in Fig. 2. Let Fc denote
a metric for the sum of the weights of the inter-group edges
and Fl denote a metric for the balance of the sums of the
weights of the associated edges in the groups. Suppose those
metrics are optimal when they are minimal, then in the above
bi-partitioning, Fncut is roughly expressed as Fc × Fl, that
is, the less the sum of the weights of the inter-group edges
(W1,2 = W2,1 in Fig. 2) and the more balanced the sums of
the weights of the associated edges of the groups (W1,1+W1,2

for group 1, W2,2 + W2,1 for group 2, for the convenience
we call the total weight of associated edges in this paper)
are, the less Fncut we have. The sum of the weights of the
inter-group edges corresponds to the amount of the inter-server
communication, and the total weight of the associated edges
corresponds to the communication load on a server in our
problem. Therefore, Fncut is very similar to our objective,
though ours is based on Fc+Fl (see Section III-C and III-D).

The NC utilizes the eigenvectors of the adjacency matrix
of the graph and provides adroit solution for minimizing (1).
The NC is especially suitable for segmenting an image, and
is also widely used in bioinformatics and machine learning
communities. Different from other methods such as the simple
Min cut that only minimizes Fc or [4] that minimizes the
largest inter-group flow, the NC indeed considers balancing the
total weight of the associated edges of each group. However,
it still tends to isolate vertices which do not have strong
connection to others and causes unbalance in the total weight
of the associated edges of the groups, especially in the power-
law graphs [5] [6] [7]. For instance, in Fig. 3(a), the NC
clusters only three vertices as a group, and as a result we have
the communication load ratio (= W1,1 +W1,2 : W2,2 +W2,1,
see Section III-B for the details) 1 : 6.5. Such a solution is
not acceptable in practice. A better partition is as shown in
Fig. 3(b) whose communication load ratio is 1 : 1.26. Since
the prime applications of our problem are presumed to exhibit

(a) Cut by Normalized Cuts: the
total weight of the associated
edges are not balanced.

(b) More desirable cut by our
algorithm

Fig. 3. Example of clustering

power-law graph characteristics, we cannot apply the NC to
our problem. In addition, when clustering into M > 2 groups,
the NC minimizes

Fncut =

M∑
i=1

P
j 6=i Wi,j

Wi,i+
P

j 6=i Wi,j
, (2)

and it is not sure whether minimizing (2) will always minimize
our objective.

Deng et al. [8] introduce an efficient graph clustering algo-
rithm called Graclus which utilizes the equivalence between
kernel k-means [9] and other graph clustering algorithms
including the NC. The Graclus eliminates the time-consuming
calculation of eigenvectors inherent in the NC, and minimizes
the objective (2) faster than the NC. Moreover, similarly to
Metis [10], its three-step ‘coarsening-base clustering-refining’
multilevel process enables more ‘balanced’ clustering, and as
a result obtains better (smaller) objective values than the NC.
However, as well as the other works [10] [6] [11] [12] [13],
the ‘balanced’ clustering herein means balancing each group
size, i.e., the number of vertices in a group. In our problem,
balancing the total weight of the associated edges of each
group is required, and therefore, the results of the Graclus etc.
are not directly applicable to our problem.

Lang [6] examines some balanced-clustering algorithms for
power-law graphs. Interestingly, [6] simulates with a graph
based on the buddy lists of Yahoo IM, which is also an
instant messenger system, and concludes that the combination
of solving a semidefinite program and multiple tries of a ran-
domized flow-based rounding methods yields effective results.
However, similar to the Graclus, it focuses on balancing each
group size.

Other representative spectral clustering methods Ratio Cut
[14] and Min-max Cut [15] balance the size and the volume
(= the sum of the weights of all edges in a group, equivalent
to Wi,i in Fig. 2) of each group respectively, and therefore are
less relevant to our research than the NC.

To the best of knowledge, there is no clustering algorithm
which achieves our goal: minimizing Fc + Fl.

B. Load Balancing in Distributed Systems

In classical task assignment problems in distributed systems,
such as those stated in [16] and Chapter 7.3 of [17], the
optimal assignment is pursued for given execution cost (load)
of each task and inter-task communication cost. In this model,
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the execution cost is assumed to be invariable regardless of the
task assignment. This is the typical and most common premise
for traditional load balancing in distributed systems, and is in-
applicable to our problem. In our model, the amounts of tasks
(loads) dynamically vary according to the task assignment. To
the best of our knowledge, there are no researches that focus
on load balancing in the same model.

In the recent research, the client-server assignment for
distributed virtual environment (DVE) systems exhibits a
similar set of issues: balancing the workload and reducing
the communication between the servers. The DVE systems
allow multiple users working on different client computers
to interact in a shared virtual world. For example, [18] [19]
[20] [21] study efficient client-server assignment for DVE
systems. Especially, [21] takes account of extra inter-server
communication caused by different client-server assignments.
However, the load by communication is not seriously consid-
ered in DVE systems since the load is primarily generated
by processing 3-D images. Therefore, unlike our problem,
their overall workload is assumed to be constant regardless
of the client-server assignment, and [21] uses the amount of
communication as a constraint for their optimization problem
(Eq. (10)).

III. OPTIMAL CLIENT-SERVER ASSIGNMENT

As discussed in Section I, the total communication load
and load balance are two opposing metrics. Thus, different
applications will allow for different trade-offs between these
two quantities. Our goal in this section is to derive the
expressions for the total communication load and the load
balance for a given communication pattern among the clients.
Based on these, we will formulate a mathematical optimization
problem for this trade-off. We begin with the notation.

A. Notation

The following is the notation used in this paper for vector
v and matrix A:
|v|1: Norm-1 of vector v, i.e., the sum of all elements in

v.
‖A‖1: Elementwise norm of matrix A, i.e., the sum of all

elements in A.
Also, we define the followings parameters:
M : The number of servers in the system.
N : The number of clients in the system, N > M .
S: A [0, 1]N×N matrix whose element Si,j represents the

rate of messages sent from client i to j in the system.
S represents the communication patterns among the
clients. Note ‖S‖1 = 1 and in many systems, we
will have Si,i = 0 ∀i because messages sent to itself
will be processed by a client software, not through
a server. Alternatively, if two clients i and j are
selected uniformly at random, Si,j can be viewed as
the probability that client i sends a message to client
j. As a result, S can be viewed as the distribution on
the ordered pair of clients.

X: An unknown matrix, X ∈ {0, 1}N×M where Xi,s = 1
if client i is assigned to server s and Xi,s = 0

otherwise. Since a client is assigned to only one server,∑M
s=1 Xi,s = 1 ∀i.

Next, we will derive the expressions for the communication
load, i.e., the amount of communication data processed by a
server in terms of S, the client communication pattern and X ,
the client-server assignment.

B. Communication Load

Let Ps,t represent the rate of messages sent from server s
to t, then we have:

Ps,t =

N∑
i=1

N∑
j=1

Si,jXi,sXj,t, (3)

that is:
P = XTSX, (4)

where P ∈ [0, 1]M×M and ‖P‖1 = 1. Similar to S, if two
servers s and t are selected uniformly at random, Ps,t can
be viewed as the probability that server s sends a message to
server t, and consequently P can be viewed as the distribution
on the ordered pair of servers.

As described in Section I, when a message is passed
between two clients only through a single server, i.e.,
the two clients are assigned to the same server, the
amount of communication load on the server is 1 ×
{the size of the messages}. However, when the two clients are
assigned to different servers, the amount of communication
load is 1 × {the size of the messages} for each server and
2×{the size of the messages} in total. Thus, to calculate the
communication load, two different types of message passing
need to be considered:

1) Message passing through a single server, i.e., intra-server
communication.

2) Message passing through two servers, i.e., inter-server
communication.

The communication load for 1) is proportional to Ps,s. The
communication load for 2) is proportional to Ps,t + Pt,s (for
each server of s and t) because both sending and receiving
causes data processing. As a result, let L ∈ [0, 1]M×M

represent the load generated by the message exchanges, then

L = P + PT − PD, (5)

where PT is the transpose of P and PD is the diagonal matrix
of P (i.e., PD

s,s = Ps,s ∀s and PD
s,t = 0 ∀s 6= t). Note L is

symmetric and 1 ≤ ‖L‖1 ≤ 2.
Since P = XTSX , PT = (XTSX)T = XTSTX , PD =

(P + PT )D/2 = (XTSX +XTSTX)D/2, we have:

L = XTSX +XTSTX − 1

2
(XTSX +XTSTX)D. (6)

Let A = S + ST , then we have:

Q = XTAX (7)

L = Q− 1

2
QD. (8)

Note A (∈ [0, 1]N×N ) is symmetric and Ai,j = Aj,i can
be interpreted as the rate of messages ‘exchanged’ (= sent
+ received) between clients i and j. Also, ‖A‖1 = ‖Q‖1 = 2.
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As a result, let l ∈ [0, 1]M be a vector denoting the
communication load for M servers, then

l = L1, (9)

where 1 denotes a column vector whose all elements are 1,
and li is in other words the total weight of associated edges
of group i (see Section II-A).

C. Metrics

In this subsection, we will define the total communication
load and load balance, the two important metrics to be used
in our optimization problem.

Total Communication Load. Total communication load is
the total load on all servers which can be defined as:

‖L‖1 = ‖Q− 1
2Q

D‖1 = ‖ 1
2Q+ 1

2 (Q−QD)‖1 (10)

= 1 + ‖ 1
2 (Q−QD)‖1 = 1 +

∑M
s=1

∑s−1
t=1 Ls,t. (11)

Let

Fc =

M∑
s=1

s−1∑
t=1

Ls,t, (12)

then Fc is the sum of non-diagonal entries of L divided by 2,
and thus represents the amount of inter-server communication.
The total communication load equals to 1 plus the amount of
the inter-server communication (Fc), where the amount of the
inter-server communication can be expressed as the extra load
caused by distributing the servers; if all clients are assigned to
a single server, the total communication load is 1. From the
above equation, we can regard Fc as the metric for the total
communication load. Note 0 ≤ Fc ≤ 1, and the smaller Fc

results less total communication load.
Load Balance. Intuitively, load balance should be a metric

that represents the degree of load variations among different
servers. Some popular metrics are variance, entropy, and Gini
coefficient. The Gini coefficient is used often in economics to
measure the inequality of income distribution in a society. In
this paper, we consider the Gini coefficient as the load balance
metric as it empirically captures the requirements of load
balance on the servers better than other metrics. Specifically,
for large M , the Gini coefficient is more sensitive to a slight
change in the load balance than the entropy and variance.

Mathematically, in the context of the total communication
load, the Gini coefficient is defined as:

Fl =
M

M−1 (
2

PM
s=1 s ls

M
PM

s=1 ls
− M+1

M ) (13)

= 1
M−1 (

2
PM

s=1 s lsPM
s=1 ls

−M − 1), (14)

where l1 ≤ l2 ≤ · · · ≤ lM . Fl is scaled to 0 ≤ Fl ≤ 1, and
the smaller Fl is, the better load balance we have.

To see why the Gini coefficient is more sensitive to a
slight change in the load balance than the entropy and
variance, we consider the following example. If M = 10
and ls

‖l‖1
= 1

10 ∀s (i.e., the uniform distribution), then we
have the entropy −

∑M
s=1

ls
‖l‖1

logM
ls

‖l‖1
= 1, the variance

( M
M−1 )

2
∑M

s=1(
ls

‖l‖1
− 1

M )2 = 0 and the Gini coefficient (14)
= 0, where the metrics are all scaled to [0, 1]. However, if

l1
‖l‖1

= 0, l10
‖l‖1

= 1
5 , ls

‖l‖1
= 1

10 for 2 ≤ s ≤ 9, then we have
the entropy = 0.94, the variance = 0.025, the Gini coefficient
= 0.2, and the corresponding differences are 0.06, 0.025 and
0.2 respectively. In a real distributed system, l1

‖l‖1
= 0 i.e., no

load on server 1 is supposed to be a serious issue, but it is not
sufficiently reflected when using the variance and entropy as
metrics.

D. Problem Formulation and Hardness Result

After deriving the expressions for communication load Fc

and load balance Fl in terms of client communication patterns
and a client-server assignment, we are now ready to formulate
our optimization. Let

F = αFc + (1− α)Fl, (15)

where 0 ≤ α ≤ 1 is an arbitrary coefficient. We want
to minimize F . Note that 0 ≤ F ≤ 1, and the smaller
F is, the more optimal the system is. The value of α is
set to select a certain trade-off between load balance and
total communication load; if one places more importance on
reducing the total communication load, α should be large. To
simplify our discussion, we use α = 0.5 in the rest of the
paper, namely:

F = 0.5Fc + 0.5Fl. (16)

As mentioned in Section II-A, Fc × Fl also shows similar
characteristics to F : the smaller Fc and Fl are, the smaller
Fc × Fl we get. However, for 0 ≤ Fc, Fl ≤ 1, if Fc (or Fl)
= 0, then we have optimal Fc×Fl (= 0) regardless of Fl (or
Fc) value. This is not desirable and will produce unbalanced
clustering as shown in Fig. 3. Hence, we employ Fc+Fl style
for our research.

As a consequence, our optimization problem is formally cast
as:

Minimize F

Subject to X ∈ {0, 1}N×M ,
∑M

j=1 Xi,j = 1 ∀i. (17)

Note that our optimization problem is one of many optimiza-
tion problems that we can formulate after having the mathe-
matical expressions for load balance and total communication
load.

Proposition 3.1: Our optimization problem in (17) is NP-
hard.

Proof: The main idea is to show that the well-known
partition problem is a special case of our problem. The
partition problem is to decide whether a given set of integers
can be partitioned into two sets with identical sums, and is
known to be NP-complete. Suppose our problem is to decide
if there is an assignment s.t. F = 0 (i.e., Fc = Fl = 0) for
M = 2, that is, there is no communication between the two
servers and the loads are completely balanced. For a given set
of integers in the partition problem, we can always construct
a corresponding special graph for our problem in polynomial
time that represents the communication pattern of the clients
s.t. an optimal partition of integers into two sets will result in
the optimal client-server assignment.

Specifically, if there are K integers in a set, we will
construct a graph with N = 2K clients s.t. each client is to
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(a) Example of graph (b) Optimal clustering

Fig. 4. Special case of our problem is equivalent to partition problem

communicate with exactly one other client. Therefore, there
are a total of K edges connecting between K pairs of clients.
We can assign the weight of an edge between a pair of clients
as exactly one of the integers in the given set of the integers.
This mapping takes O(K) steps.

For example, suppose the given set of integers for the
partitioning problem is {8, 3, 4, 5, 6, 2}, then we construct a
graph G = (V,E) s.t. V = {v1, . . . , v12}, E = {e1, . . . , e6},
e1 = (v1, v2), e2 = (v3, v4), . . . , e6 = (v11, v12) and assign
the weights w(e1) = 8, w(e2) = 3, . . . , w(e6) = 2 as
seen in Fig. 4(a). Since {8, 3, 4, 5, 6, 2} can be partitioned
into {8, 4, 2} and {3, 5, 6} so that the sums of the subsets
are equal, our problem can also obtain the optimal assignment
with F = 0 as illustrated in Fig. 4(b). Clearly, the original
partition problem has an answer yes iff our problem has an
answer yes.

Hence, our problem is NP-hard since the partition problem
is NP-complete.

IV. APPROXIMATE METHODS VIA RELAXED CONVEX
OPTIMIZATION

Since our problem is NP-hard, in this section we present an
approximation method via relaxed convex optimization. The
main idea of our approach is to solve the special case with
the number of servers M = 2 via relaxed convex optimization.
Specifically, we will approximate both the objective and the
solution domain with convex functions and a convex set,
respectively. Next, we show how to apply this result to the
general case for M > 2. The main idea is to split the servers
into two groups sequentially. For each group of servers, we
then recursively solve the problem for M = 2. Empirical re-
sults show that this method approximates the optimal solution
very well.

A. Two-Server Solution

Suppose there are only two servers and x is a {0, 1}N vector
whose element xi indicates that client i is assigned to server
xi + 1 (so, if xi = 0, i is assigned to server 1, if xi = 1,
i is assigned to server 2). Then, the amounts of inter- and
inner-server communication are:

LB =

(
1
2 (1− x)TA(1− x) (1− x)TAx

xTA(1− x) 1
2x

TAx

)
, (18)

where 1 is a vector with N ones, A is a matrix from (7),
LB
1,1 = 1

2 (1− x)TA(1− x) is the amount of communication
exchanged only through server 1, LB

1,2 = (1 − x)TAx =
LB
2,1 = xTA(1 − x) is the amount of communication ex-

changed between server 1 and 2, LB
2,2 = 1

2x
TAx is the amount

of communication exchanged only through server 2. Suppose

D is a diagonal matrix such that Di,i =
∑N

j=1 Ai,j ∀i, then
we have (1− x)TAx = xTA(1− x) = xT (D −A)x, that is,
the amount of inter-server communication can be expressed
as:

FB
c = xT (D −A)x, (19)

which is equivalent to Fc (12) for M = 2 and 0 ≤ FB
c ≤ 1.

Note (D−A) is a Laplacian matrix and therefore is symmetric
positive semidefinite. Hence, FB

c is a convex function, and the
smaller FB

c is, the less inter-server communication we have.
Also,

1
2 (1− x)TA(1− x) = 1

2{d
T (1− x)− FB

c } (20)
1
2x

TAx = 1
2 (d

Tx− FB
c ), (21)

where d = A1(= AT1) is a vector composed of D’s diagonal
elements and |d|1 = ‖A‖1 = 2. Consequently, we have:

LB =

(
1
2{d

T (1− x)− FB
c } FB

c

FB
c

1
2 (d

Tx− FB
c )

)
, (22)

and the communication loads are:

l1 = LB
1,1 + LB

1,2 = 1
2{d

T (1− x) + FB
c }, (23)

l2 = LB
2,1 + LB

2,2 = 1
2 (d

Tx+ FB
c ). (24)

Based on (23) (24), we propose two convex functions that
approximate our original non-convex objective function, i.e.,
the Gini coefficient.

The first convex function is based on the difference between
l1 and l2. Since l1−l2 = 1

2 (|d|1−2dTx) and |d|1 = 2, (l1−l2)
2

i.e.,
FB
lv = (1− dTx)2 (25)

can be utilized as a new load balance metric. Note FB
lv is

convex and 0 ≤ FB
lv ≤ 1. Since the Gini coefficient herein is

|l1 − l2|/(l1 + l2) = |l1 − l2|/(1 + FB
c ) and we also have to

minimize FB
c , minimizing (25) approximately minimizes the

Gini coefficient.
The second convex function is based on the entropy of

l1 and l2. In (23) (24), FB
c is common for both l1 and l2.

Therefore, in order to balance l1 and l2, balancing dT (1− x)
and dTx is enough. Consequently, we can use the following
minus entropy function as another load balance metric:

FB
le = dT (1−x)

2 log2
dT (1−x)

2 + dT x
2 log2

dT x
2 . (26)

Since dT (1−x)
2 + dT x

2 = |d|1
2 = 1, FB

le is also convex and
0 ≤ FB

le ≤ 1. The smaller FB
le is, the better load balance

we have. In an ideal case, both the negative entropy and
the Gini coefficient are minimized when the communication
load distribution is uniform. Thus, we approximate the Gini
coefficient with the negative entropy function which is convex.

As a result, (19) + (25) and (19) + (26), i.e.,

FB
v = βFB

c + (1− β)FB
lv (27)

FB
e = βFB

c + (1− β)FB
le (28)

become our new metrics, and optimal solutions are obtainable
by minimizing them, because both are convex functions. Note
β (0 ≤ β ≤ 1) is an arbitrary coefficient to balance FB

c and
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Fig. 5. Example of splitting servers binarily

FB
lv (or FB

le ). We test for β = 0.5, 0.3, 0.1 and 0.05 in the
simulation (Section V).

Next, we relax the constraint of xi being binary, to allow
xi ∈ [0, 1]. However, (27) (28) with a weak constraint such
as 0 ≤ x ≤ 1 output x1 = x2 = · · · = xN = 0.5, which is
undesirable in our case because x must be binary integers.
Therefore, we use a quantization technique in the following
algorithm for finding the optimal assignment.

Algorithm 1 (Two-server Algorithm).
1) We start with picking up one arbitrary xi and set it 0.
2) Afterwards, we solve (27) or (28) by convex optimiza-

tion.
3) However, in most cases, other elements of x will still

remain non-binary. Therefore, we choose xc whose
value is closest to 0 or 1, then set it 0 or 1 whichever
xc is closer to.

4) Repeat 2) – 3) until no more non-binary element exists
in x.

B. General Solution

Thus far, we have described the basic idea of our relaxed
convex optimization approach for the two-server scenario. We
can achieve an approximately optimal client-server assignment
for M servers by splitting M servers into two groups and
recursively splitting within each group as shown in Fig. 5.

How to split M servers is the central question. If M is
even, then it makes sense to split M servers into two equal
groups with M/2 servers in each group. In the ideal case,
optimizing the load balance between these two groups will
result in individual servers in these two groups having identical
communication loads. On the other hand, when making the
number of servers in these groups is not same, optimizing the
objectives in (27) or (28) will result in two groups having total
identical communication loads. However, since the two groups
have different number of servers, a server within a group with
fewer servers will likely to have a higher load than a server in
the group with more servers. This reduces the load balance.
Therefore, when M is not even, it is necessary to modify the
objective at each step, depending on how splitting is done, so
as to maintain the similar load at individual servers. Intuitively,
the modified objective should reflect the number of servers in
each group.

Claim 4.1: When splitting M servers into two groups con-
sisting of m and M−m servers in each group, the load balance
metrics in (25) and (26) should be replaced by:

FB
lv = M2

4(M−m)2 {
2(M−m)

M − dTx}2, (29)

and
FB
le = l′1 log2 l

′
1 + l′2 log2 l

′
2, (30)

where

l′1 = {dT (1−x)
2 − 2m−M

M }/ 2(M−m)
M (31)

l′2 = dT x
2 / 2(M−m)

M . (32)

The justification of these modified objectives can be found
in the Appendix. We would like to mention that intuitively,
the modified load balance metrics above allocate a higher
load to groups with more servers. Importantly, both (29) and
(30) metrics in Claim 4.1 are convex functions, therefore we
can employ the Algorithm 1 embedded in the Algorithm 2
below for finding an approximate solution.

Algorithm 2 (General Algorithm).
1) Split the number of servers into two groups with m =

dM
2 e and M −m = bM

2 c servers in each group.
2) Run Algorithm 1 with modified load balance metric (29)

or (30).
3) Repeat 1) – 2) for each of the two groups, until the

number of servers in each group equal to 1.
Note in order to obtain a better result, we will also need to
run Algorithm 1 twice at step 2) of Algorithm 2 when M is
odd, as follows:

1) At first, run Algorithm 1 normally.
2) At second, run Algorithm 1 by setting xi 1 instead of 0

at step 1).
Then choose a result with smaller F . This is because different
results will be obtained by forcing xi to initially assign to the
two different groups since the graph is not symmetrically split.
Our simulation in Section V employs this way.

C. Time Complexity

The proposed two-server algorithm consists of solving the
N convex optimization problems, each problem corresponds
to a quantization of a client (xi). For each quantization, we
need to search over all possible N clients. Suppose the convex
optimization routine takes f(N), then the time complexity of
the two-server algorithm is O(N(N + f(N)). The general
algorithm consists of running the two-server algorithm about
logM times for M servers. Thus, the overall time complexity
is O(N(N+f(N)) logM). f(N) depends on the optimization
algorithm but takes at least O(N). As a result, the time
complexity of our algorithms is at least O(N2 logM), which
is considerably expensive.

The Normalized Cuts achieves approximately O(N) time
complexity by introducing fast eigenvector calculation (in-
cluding lowering the precision), though normal eigenvector
calculation takes O(N3). Similarly, the time complexity of
the Graclus is also about O(N) due to the coarsening-refining
scheme and kernel k-means. Since our programs use generic
optimization library Ipopt [22], they are currently much slower
than the NC and Graclus. Optimizing our techniques remains
as future work, and we note that it is not the scope of this
paper. However, considering the goal of most graph clustering
algorithms is balancing the size of each group, we think that



8

a certain level of high time complexity for our problem is
inevitable because balancing the total weights of associated
edges is more of the challenge.

V. SIMULATION RESULTS

In this section, we evaluate the performance of the following
algorithms abbreviated as follows:

BCO-V: The binary splitting via relaxed convex optimiza-
tion based on (27)

BCO-E: The binary splitting via relaxed convex optimiza-
tion based on (28)

NC: The Normalized Cuts
Graclus: An efficient graph clustering algorithm in [8] (see

also Section II-A)
RND: The random client-server assignment

We examined the BCO-V and BCO-E for β = 0.5, 0.3, 0.1,
0.05 and used Ipopt [22] as a convex optimization solver. For
the NC algorithm, we used the MATLAB code at [23], and
for the Graclus, we used the version 1.2 code at [24]. Both
programs are written by the authors of their original papers [3]
[8]. Note we ran C based programs (BCOs, Graclus) with Intel
Pentium E2140 machines and ran MATLAB based programs
(NC) with High Performance Computing Cluster at Oregon
State Univ. Therefore, the comparison on the computation time
is approximate.

A. Examples of Graph Clustering

Fig. 6–7 show our simulation results with small graphs. The
reason for using a small graphs is because it is easy to examine
the results of each algorithms in details. Furthermore, it is
feasible to find the optimal solution by an exhaustive search,
which helps us to quantify how good an approximate solution
produced by a heuristic is. In the simulation, β = 0.5 is used
for the BCOs and ρ = 1 is used for the ALSs. Also, the
results by the NC and Graclus are added for the comparison.
F is the metric in (16), and the smaller, the better client-server
assignment we have.

As shown in the figures, the NC tends to isolate small
volumes of groups that do not have strong connection to
others. Our BCO methods well balance the total weight of
the associated edges in each group, which appears as smaller
F values. The Graclus clusters better than the NC but does
not better than the BCOs.

B. Optimality

To verify how close the outputs by our algorithms are to
the optimal solutions, we made the following examination:

1) For each graph, we calculate F s (16) exhaustively for
all MN combinations of X . Herein, we suppose the
best (smallest) F = Fbest and the worst (largest) F =
Fworst.

2) For each graph, calculate F by each of the BCO-
V, BCO-E, NC, Graclus and a randomly generated X
(RND), then calculate F ’s optimality F−Fworst

Fbest−Fworst
. We

also obtain each F ’s ranking (FR) out of MN outputs,

(a) Optimal, BCO-V, BCO-E
(F = 0.183)

(b) NC (F = 0.326)

(c) Graclus (F = 0.297)

Fig. 6. Examples of clustering with twenty clients and three servers

(a) Optimal (F = 0.159) (b) BCO-V (F = 0.196)

(c) BCO-E (F = 0.235) (d) NC (F = 0.421)

(e) Graclus (F = 0.252)

Fig. 7. Examples of clustering with twenty clients and three servers
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and then calculate its optimality 1− FR−1
MN−1

. The larger
those values are, the better optimality we have.

3) Do 1) – 2) for:
• A hundred random graphs generated by Barabasi-

Albert power-law graph generator algorithm.
• A hundred different graphs generated by our random

graph generator. In our random graph generator,
each vertex is allocated at most ten randomly se-
lected neighbors.

• Regular graphs in which every node has the equal
number of neighbors (H) with an equal edge weight.
Note H is even and vertex i is connected to i +
1, . . . , i + H

2 , i − 1, . . . , i − H
2 . We simulated for

H = 2, 4, . . . , N−2, that is, N
2 −1 different regular

graphs for a given {M,N}.
4) Do 1) – 3) for {M,N} = {2, 30}, {3, 20}.

Table I and II show average F−Fworst

Fbest−Fworst
and 1− FR−1

MN−1
values

for a hundred graphs created by each of the power-law, random
and regular graph generators respectively. Overall, the BCOs
for β = 0.3 or 0.1 show the best optimality in spite of the
simple and cheap quantization technique (see Section IV-A). In
fact, unlike the NC, the BCOs constantly output good F values
(close or equal to Fbest) regardless of the graph type. The
simulation shows that the BCOs are very suitable for solving
our problem.

On the other hand, the NC tends to isolate vertices that do
not have strong connection to others. This is typically observed
in power-law graphs for M = 2, N = 30. As a result, though
we have small amount of inter-server communication Fc, the
load balance metric Fl becomes large and F produced by NC
is larger (worse) than those produced by our algorithms.

The Graclus exhibits more balanced cuts than the NC for
any type of graph. This is due to its multilevel process;
balancing the size of each group is somehow related to
balancing the weights of associated edges in small graphs.
As a result, the Graclus achieves smaller Fl and F than the
NC. However, it does not necessarily result in balancing the
total weight of associated edges of each group, and therefore
the Graclus does not perform better than the BCOs.

As for the computation time, all the methods finish cluster-
ing a graph literally in a moment (≤ 1 second).

C. Experiments for Larger Power-law Graphs

As described in Section I-A, our algorithms should perform
better than the NC and Graclus for power-law graphs. We sim-
ulated for a hundred power-law graphs, in which each vertex is
connected to up to a hundred neighbors, with M = 4, 7, 10 and
N = 1000. In this setting, we cannot find the rankings for each
algorithm as it requires an exhaustive search over all possible
assignments which is infeasible for large N . Instead, Table III
shows the average F (16), Fc (12), Fl (14) values and lmax

lmin

where lmax, lmin are the maximum and minimum elements
in (9) i.e., the maximum and minimum communication load
in M servers respectively. lmax

lmin
is another side metric that

reflects the load balance among the servers.
As shown by the Fl and lmax

lmin
values, the BCO-V and

BCO-E fairly balance the load, and at the same time maintain

low total communication load as seen in their Fcs. Though
the NC yields low Fcs, it does not balance the load, which
appears as large Fl, F and lmax

lmin
values consequently. The

Graclus performs more balanced cuts than the NC, but its
lmax

lmin
values are higher than 2, which will not be acceptable in

real distributed systems. Interestingly, the Fc values of the
Graclus are very close to those of the BCOs. Hence, the
differences in their F values are mainly determined by their Fl

values; Fls of the Graclus are higher than those of the BCOs.
This also substantiates that our algorithms aptly strikes the
balance between the two opposing metrics: reducing the total
communication load and load balance.

Also, the BCOs reduce the total communication load (=
1 + Fc, see (11) (12)) by 33-36% compared to the random
assignment. This indicates that a system that uses 100 servers
with a random client-server assignment requires only 64-67
servers (or less because the inter-server communication will
also decrease by reducing the number of servers) with an
assignment by the BCOs. Also, since 1 ≤ 1+Fc ≤ 2 (see (11)
and Section III-C), the maximum reduction rate of the total
communication load = 50% (= 1/2). Thus, the reduction
rates of 33-36% are significantly high, and we can also know
how inefficient the random assignment is, though it yields ‘not
bad’ load balance (see their lmax

lmin
values). This also verifies the

effectiveness of our algorithms.
As for the computation time taken for clustering a graph,

the Graclus and NC finish within a second, while the BCOs
take 18-58 minutes. The BCOs for N = 7 take longer than
those for N = 10. This is because as described in the end of
Section IV-B, we examine binary split twice for odd M , and
therefore the initial split for M = 7 takes longer than that for
M = 10. We recognize the expensiveness of our algorithms.
The improvement in the time complexity is the next step of
our research.

VI. CONCLUSION

In this paper, we present a mathematical model and an al-
gorithmic solution to the client-server assignment problem for
optimizing the performance of a class of distributed systems
over the Internet. We show that in general, finding the optimal
client-server assignment for some pre-specified requirements
on total load and load balancing is NP-hard, and propose
a heuristic via relaxed convex optimization for finding the
approximate solution to the client-server assignment problem.
Our simulation results indicate that the proposed algorithm
almost always finds the optimal solution. Furthermore, the
proposed algorithm outperforms other heuristics, including the
popular Normalized Cuts algorithm.
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