
1

A Dynamic Virtual Machine Placement and
Migration Scheme for Data Centers

Thuan Duong-Ba∗, Tuan Tran†, Thinh Nguyen∗, Bella Bose∗
∗School of EECS, Oregon State University

Corvallis, OR, 97331
Email: {duongba, thinhq, bose}@eecs.oregonstate.edu

†College of Information and Computer Technology, Sullivan University
Louisville, KY 40205

Email: ttran@sullivan.edu

Abstract—We study the problem of virtual machine (VM)
placement and migration in a data center. In the current ap-
proaches, VMs are assigned to physical servers using on-demand
provisioning. Such an approach is simple but it often results in a
poor performance due to resource fragmentation. Additionally,
sub-optimal VM placement usually generates unneeded VM
migration and unnecessary cross network traffic. The efficiency
of a datacenter therefore significantly depends on how VMs are
provisioned and where they are placed. A good placement scheme
will not only improve the quality of service but also reduce the
operation cost of the data center. In this paper, we study the
problem of optimal VM placement and migration to minimize
resource usage and power consumption in a data center. We
formulate the optimization problem as a joint multiple objective
function and solve it by leveraging the framework of convex
optimization. Due to the intractable nature of the combinatorial
optimization, we then propose Multi-level Join VM Placement
and Migration (MJPM) algorithms based on the relaxed convex
optimization framework to approximate the optimal solution.
The theoretical analysis demonstrates the effectiveness of our
proposed algorithms that substantially increases data center effi-
ciency. In addition, our extensive simulation results on different
practical topologies show significant performance improvement
over the existing approaches.

Index Terms—Cloud computing, Virtual machine placement,
Energy conservation, Convex optimization, Min rank.

I. INTRODUCTION

Data centers are the crucial part of any cloud computing
provider. Effective operation of data centers will not only
help cloud providers reduce cost but also deliver high quality
services to customers. Much work has been done on designing
a data center networking architecture, e.g., Fat-tree [1], Bcube
[2], VL2 [3] and Dcell [4], etc. Generally, physical hosts1

are placed in racks which are then clustered, i.e., pod in [1]
or in Bcube [2]. Each host cluster may contain hundreds to
thousands of physical hosts. Host clusters are then intercon-
nected by high speed switches and routers which could be in
multiple levels to create more sophisticated architectures for
data centers. Typically, the communication links within a data
center have different capacities. For example, local links at
host cluster, e.g., pod in [1], have a bandwidth of 1 Gbps; links

1In this paper, host, server and physical machine (VP) are used interchange-
ably.

Fig. 1: A fat-tree topology based architecture of a data center

between pods and routers have higher capacity, e.g., 10 Gbps.
Currently, VMs’ data are stored in a storage network [5], [6]
and replicated on multiple storage nodes for high availability
and reliability. Fig. 1 shows a typical architecture of a data
center using a Fat-tree topology.

Due to large number of operational servers, energy conser-
vation is one of the key factors that should be considered
when designing a data center. In this paper, we focus on
the energy consumed by PMs hosting VMs that process
cloud services and by networking devices, e.g., data links,
switches/routers, that transfer data among PMs. This type
of energy consumption significantly depends on how VMs
are placed or deployed onto PMs [7]. Current virtualization
technology allows VM to be migrated from one PM to another
without turning off virtual machines [8]. Such a VM migration
capability provides flexibility in designing VM placement as
a VM can be migrated from one VP to another without
interrupting the running service. However, it will consume
excessive energy if VMs are inappropriately deployed to the
servers. Reducing number of running PMs and inter-host data
traffic could significantly reduce energy consumption of data
centers.

Consider an example of VM pattern in Fig. 2(a). In this il-
lustration, VMs are depicted by nodes, and a directed edge and
its thickness between two nodes represent the communication
direction and load capacity, respectively. Running VMs are
the ones which are already deployed onto PMs and serving
users requests. On the other hand, newly arrived VMs are
VMs awaiting for being deployed onto PMs. These new VMs
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(a) Example VMs (b) Initial placement scheme

(c) Normal placement
scheme

(d) Energy saving scheme

Fig. 2: Example VMs and different scheme

often come from users requests or cloud services that trigger
provisioning more VMs. As an example, when there is an
increase in traffic, service monitoring agent places requests
to scale application fleets. On the other hand, when the
service monitoring agent detects a defect instance that needs
to be replaced, it sends a request to the cloud management
service to replace the defect VM. Here, we define that current
communication load is network traffic among the currently
deployed VMs, whereas new communication load is defined
by data traffic among newly deployed VMs or with currently
VMs. Let’s assume that the initial placement scheme (or
the current placement scheme) of the 4 existing VMs is
depicted in Fig. 2(b). When two new VMs arrive, a typical
placement scheme which balances the load among PMs and/or
minimizing network traffic would deploy each of the newly
arrived VMs onto a host as shown in Fig. 2(c). In such a
deployment, both PMs need to be switched to the running
mode, and more importantly, there exists cross traffic between
these two hosts. Alternatively, if only one PM can be used
to accommodate all the VMs (Fig. 2(d)), the other PM can
be switched to a standby mode to save energy. Furthermore,
energy consumption could be further reduced by switching
unused networking devices to standby mode as well.

In fact, migrating VMs from one PM to another is not
free [9]. The cost of migration could be significant, and more
importantly, it might cause interruptions of services. A good
VM placement scheme decreases not only bottleneck traffic
at backbone link but also responding time of applications and
energy consumption. Most of the existing solutions focus on
solving the VM placement problem and migration problem
separately. In such an approach, the final solution might not
be optimal as these two objectives are optimized separately.
Additionally, cloud providers also offer on-demand services,
where VMs are deployed or re-deployed frequently depending
on user’s need or monitoring service requests. For example,
when a monitoring service detects a degrade in quality of
service below a pre-specified threshold, it might trigger a

request to replace defect VM instances, or scale up fleets, i.e.,
replacing VM instances with more powerful ones. Sometimes,
the monitoring service might even issues request to scale
down the fleet such as reducing VM instances or replacing
VMs with less powerful instances to save cost during off-
peak traffic periods. The system dynamics makes the problem
of VM placement and migration much more complicated
and considering the two objective functions separately in the
existing approaches may result in poor performance.

In this article, we propose an adaptive VM management
method to improve the efficiency and effectiveness of a data
center in both resource usage and power consumption. Our
proposed approach takes an arbitrary initial placement state of
the data center and reallocates the load to an optimal state,
where VM migration is minimized. Importantly, our proposed
algorithm can cope with the dynamics of random patterns of
VM requests in cloud data centers. In summary, our main
contributions are:
• We propose a multi-objective formulation to the optimal

VM management in data centers. We mathematically
analyze and quantify the optimality of the multi-objective
function.

• We theoretically show that finding the optimal solution is
NP-hard. A heuristic algorithm based on a relaxed convex
optimization is proposed to find a near optimal solution.

• We prove the convexity of the objective function and
propose two Multi-level Joint VM placement and Migra-
tion (MJPM) algorithms based on its nuclear norm and
augments. The nuclear norm based algorithm, MJPM-
Nucnorm, obtains better results but it is slow and requires
higher computational complexity. On the other hand, the
augment based algorithm, MJPM-Attr, is scalable but
does not guarantee of optimal solution. However, both al-
gorithms produce better results compared to conventional
algorithms. Importantly, the proposed MJPM algorithms
solve both placement and migration problem together and
adapt to the dynamics of data centers.

• The effectiveness of the proposed scheme is corroborated
via both theoretical analysis and extensive simulations on
practical network topologies.

The organization of the paper is as follows. In Section II,
we summarize the existing literature on the problem. Then we
describe the system model, assumptions, and optimization ob-
jectives in Section III. In Section IV, we formulate the energy
conservation as a multi-objective optimization problem and
provide an optimal solution based on the graph partitioning
method. We then describe a heuristic algorithm which exploits
the convexity of the relaxed objective function to find a near
optimal solution in Section V. Extensive simulation results and
discussion are provided in Section VI. Finally, we conclude
the paper in Section VII.

II. RELATED WORK

Many approaches have been proposed for the problem of
VM placement in different settings. In [10], the VM placement
problem is modeled as an instance of the multi-dimentional
bin-packing problem defined by a set of bins S = {S1, S2, ...}
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with size V and n number of items of sizes v1, v2, .., vn,
vj ≤ V . The goal is to find the minimum number of bins
needed to pack all items. Bin-packing is a combinatorial NP-
hard problem, and many heuristic algorithms have been pro-
posed to find an approximation solution to the problem. One
of the most popular algorithms solving bin-packing problems
is the First Fit (FF) algorithm [11], a greedy method. Initially,
a bin is selected and items are chosen in an arbitrary order. The
chosen item will be packed into any currently used bin as long
as it doesn’t overload the bin. When the item size is larger than
the available space of the current bin, a new bin is added to
accommodate it. FF is time-effective but it usually requires
more number of bins than the optimal solution. Another
modified version of FF is First Fit Decreasing (FFD) algorithm
[11]. In FFD, items are first sorted in decreasing order then
the FF algorithm is applied to the ordered items. FFD ensures
that larger size items will be processed first.

Utilizing emulation, the authors of [12] proposed a heuristic
VM placement algorithm based on emulated VM migrations
in order to optimize the total completion time. In this work,
researchers focuses on the minimizing the migration and
placement time rather than energy consumption as well as
cross server communication. Differently, the authors in [13]
proposed a green computing algorithm with load prediction
to balance server loads via an inovative skewness concept.
However, the authors do not specify how the skewness
proptery would be impacted when VMs are migrated out from
hot spots for overload prevention and from cold spots for
green computing. A probabilistically dynamic VM placement
scheme is proposed in [14] to dynamically map VM arrivals to
PMs in order to minimize over all energy consumption of data
centers. Applying the same predictive approach, the authors in
[15] proposed a forecasting based multi-objective optimization
genetic algorithm for maximizing server utilization.

In addition, in [16], authors proposed a VM placement
solution focusing on load balancing among physical hosts.
On the other hand, authors in [17], [18] try to consolidate
VMs into minimum number of physical servers in order to
maximize the utilization of the resources. In [19], the au-
thors proposed the Max-Min Multidimensional Stochastic Bin
Packing (M3SBP) algorithm based on the FFD and Dominant
Resource First (DRF) [20] algorithms. These algorithms focus
only on minimizing the number of servers and ignore the
inter-server communication effects. Contrarily, Traffic-aware
Virtual Machine Placement Problem (TVMPP) formulated in
[21] focuses on minimizing the network traffic by dividing
physical hosts into slots with different communication costs.
However, TVMPP ignores the effectiveness of reducing the
number of physical hosts usage.

Multiple performance metrics are considered in [22] to
design an incremental VM consolidation solution avoiding
frequent migrations. Differently, in [23], the authors proposed
a genetic algorithm for the VM placement problem that
minimizes resource wastage, power consumption and heat
dissipation. An evolutionary framework is proposed in [24]
exploiting data sociality to optimize the trade-off between
server efficiency and balancing data partitions. MinCS and
MinES algorithms are proposed in [25] to minimize the energy

of VM scheduling problem. A VM placement framework
based on traffic patterns among services is proposed in [26].
The proposed algorithm relies on VMs’ requirements and
service types to optimize link utilization via minimizing inter-
server communication load and latency.

Most of current solutions solve the VM placement problem
from scratch which may not work well given an arbitrary
current stage of the cloud data centers. This makes it difficult
to apply those proposed algorithms to an operational cloud
center where there are lots of VMs currently being served.
Migrating VMs to a specific configuration which can be
used with the existing solution may work but it will result
in high migration cost. More importantly, such an approach
may not work in high dynamic data centers where system
configuration changes often. Furthermore, to the best of our
knowledge, proposed frameworks are mostly executed at cen-
tralized controllers and not applicable to practical large-scale
data centers. A Joint Virtual Machine Placement and Migration
(JPM) framework has been proposed and described briefly in
our previous work [27]. In this work, we extend JPM and
propose a Multi-level Joint Virtual Machine Placement and
Migration (MJPM) framework in order to support practically
large scale data centers. In MJPM, we also take into account
scheduled hardware maintenance plans of cloud providers.
Table I summarizes the key technical capabilities of existing
approaches against our proposed MJPM in this paper.

III. SYSTEM MODEL, ASSUMPTIONS, AND OPTIMIZATION
OBJECTIVES

In this section, we formulate the VM placement and migra-
tion problem for energy conservation in data centers. Before
mathematically formulating VM related problems, we first
discuss assumptions and parameters used in our model.

1) System Model and Assumptions: We consider a cen-
tralized controlling system which manages VM requests and
makes decisions in a data center. VM requests can be initi-
ated by customers or cloud services while the VMs leaving
events are sent from physical hosts. At the beginning of each
operational cycle, we consider two types of VMs:
• Running VM: This type consists of VMs that are currently

being served. The migration decision will be determined
for this VM type.

• New VM Request: This type accounts for new VM
requests and placement decision will be considered for
these VMs.

Additionally, we consider an on-demand cloud service model
where VMs are often turned off once they finish processing
their designated service. Finally, we assume that the cloud
data center has enough capacity to serve all requests including
current and new VMs.

2) Optimization Objectives: In our framework, we consider
the following key parameters of a data center as our optimiza-
tion objectives.
• Load Distribution: Balancing load among physical

servers is not crucial provided that VMs are placed on
each host such that the total load is under a capacity
threshold. Cloud providers might want to fill VMs to
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TABLE I: Comparison of different approaches
`````````Factors

Approaches [21] [23] [13] [28] [22] [26] [12] [14] [15] JPM [27] MJPM

Energy consumption X X X X X
VM Placement X X X X X X X X X
VM Migration X X X X X X X X
VM Consolidation X X X X X
Communication X X X X X X
Multiple resources X X X X X
PM reliability X X
Joint/multi-objective X X X X X

Optimization technique Min-Cut Genetic Alg. Greedy N/A M-Convex N/A N/A NA Genetic Alg. Convex
optimization

Convex
optimization

Distributed processing X

physical hosts such that they can maximize the number
of idle physical hosts which can be turned off, or put into
standby/sleep mode, to save energy.

• Cross Traffic Cost: Minimizing communication among
servers in order to save energy consumed by network
devices and links. More importantly, minimizing cross
communication traffic will reduce traffic jam at the bottle
neck nodes in the data center.

• Migration Cost: Minimizing migration requests to save
cost or energy as well as avoid degradation in quality of
services hosted by VMs.

3) Notation: In this subsection, we describe our notations
and metrics used in the paper.
• Resources: Let N be the number of hosts in the data

center. Without loss of generality, we assume that there
are M0 VMs running and M+ newly requested VMs.
Assume that there are K types of resources that each
VM may consume including number of CPUs, amount
of memory, network bandwidth, storage space, etc. A K-
element vector is used to represent resources demanded
by a VM. The overall resources demanded by all VMs of
the data center is then represented by a matrix RM×K .
In addition, we assume that each physical host has
limited resource of each type. Let CN×K be the resource
capacity matrix, i.e., each row is a server’s resource
capacity/threshold. Our goal is to provision new VMs
onto physical hosts and migrate some running VMs onto
different hosts in order to optimize energy consumption
of the data center.

• Communication Model: In our model, we consider two
types of network communication used by each VM. First,
the amount of data that services or applications hosted by
VMs exchanges with clients over the Internet. Second, the
data exchanged among VMs within the data center. We
note that the former is independent of placement schemes
that is modeled as a resource demanded by VMs. On the
other hand, the later communication type is modeled by
a directed graph which is represented as adjacent matrix
AM×M . We denote XM×N as a placement matrix whose
rows represent VMs and columns represent PMs. For
example, X(i, j) ∈ {0, 1} with X(i, j) = 1 means that
VM i is decided to be placed on host j. Each VM must be
placed on one and only one server, i.e.,

∑
j X(i, j) = 1.

If VM i is scheduled to be terminated,
∑

j X(i, j) = 0.

TABLE II: Notation

Notation Description
N Number of active hosts
M Total number of VMs
K Number of resources
RM×K Resource demand matrix
CN×K Resource capacity matrix
AM×M Communication cost matrix
XM×N Placement matrix
XM×N

0 Initial placement matrix
p0 Power consumption per host at idle mode

(zero load)
p1×K
1 Power consumption vector

λN×1 Migration cost vector
LN×1 Maintenance penalty vector
∆t Optimization interval
Ct Overall power consumption of inter-server

communication
Cp Overall power consumption of physical

server
Cm Overall migration cost
Lr Maintenance penalty vector

Let’s XM×N
0 be the initial placement matrix. All rows

in X0 corresponding to being served VMs have one
’1’ element representing current placement; all rows
corresponding to newly arrival VMs are 0T .

• Energy Measure: In our model, energy consumed by
physical hosts is divided into two main types: idle mode
energy and running mode energy. Idle mode energy is
needed to keep host up and running and ready for hosting
VMs. Running mode energy is energy needed to process
data. Each resource consumes different levels of power
consumption. Let p0 denote the power consumption of
host at idle mode (zero load) and p1×K

1 power consump-
tion vector whose elements are power consumption of 1
unit of corresponding resources. The power consumption
by VMs can be written as PM×1

1 = Rp1. Migrating VMs
from one physical host to another also costs power con-
sumption which depends on types of migrated resources.
Normally, in-memory data and persistent data on storage
devices are resources that need to be transferred from
current host to new host.

• Migration Cost: We denote λN×1 as the migration cost
vector whose elements are the amount of energy needed
to migrate a unit of corresponding resources from one
PM to another. Intuitively, the element corresponding to
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CPU is 0 since we don’t need to migrate CPU; only in-
memory data and persistent data stored on hard drives
are migrated. Further, we denote L1×N the maintenance
penalty vector whose elements are the cost if a VM is
served by a specific PM. The values of the elements in
this vector are statically assigned by operators and they
are proportional to the hardware maintenance cost. A
value of 0 means that the physical server is healthy and
can normally host VMs. On the other hand, a positive
penalty (cost) value is assigned to a server being planned
for maintenance and currently VMs hosted on the server.
This is because the hosted VMs will need to be migrated
away.

• Operational Time: Finally, ∆t is defined as the effective
period of optimization process. Our system will execute
the optimization algorithm every ∆t time.

Table II summarizes the notation used in this paper.

IV. MULTI-OBJECTIVE OPTIMIZATION TO VM
DEPLOYMENT

A. Multi-Objective Optimization Function

The overall energy consumption of a data center is formu-
lated by a multi-objective function consisting of three terms:
CP - the energy consumption per time unit by all physical
hosts, Ct - the inter-server communication load per time unit,
Cm - the cost of VM migration, and Lr - the maintenance
penalty. Mathematically, we write the multi-objective opti-
mization as:

Minimize: αCt∆t+ βCP ∆t+ γCm + θLr (1)
subject to: X(v, s) ∈ {0, 1}, ∀1 ≤ v ≤M, 1 ≤ s ≤ N, (2)

XT1 = 1, (3)
XTR,� C, (4)

where α, β, γ, and θ denote the weight factors indicating how
much each term contribute to the objective function. Constrain
(2) represents if a VM v is placed on server s; constrain (3)
ensures that a VM is placed on only one server; constrain
(4) guarantees the total resources requested by VMs won’t
exceed the server capacities. The function optimizes the energy
over a period of time ∆t. Note that both Ct∆t and CP ∆t
are functions of time while migration cost Cm and Lr are a
onetime cost. Next, we discuss the components of objective
function.

1) Communication Power Consumption: This parameter ac-
counts for power used for inter-server communication. It
is proportional to the amount of data transmitted across
the network (i.e., between servers.) Thus, minimizing
communication load will reduce the network power con-
sumption. The total communication load per time unit
can be written as

Ct =
∑
s

X(u, s)(1−X(v, s))A[u, v].

Let D be the diagonal matrix representing the sum of
communication cost/rate, i.e,:

D[u, v] =

{ ∑
iA[u, i] if u 6= v

0 otherwise.

The communication load can be compactly rewritten as:

Ct = Tr(XT (D −A)X),

where Tr(.) denotes the trace of matrix - the sum of all
main diagonal elements of the matrix. In fact, D − A is
the Laplacian matrix which is positive semi-definite.

2) Total Power Consumption: The amount of energy con-
sumed per time unit at server s is expressed as

Cs
P =

{
p0 +

∑
vX(v, s)P (v) if

∑
vX(v, s) > 0

0, otherwise.

Hence the total power consumption at all servers is
computed by

CP =
∑
s

Cs
P

=
∑
s

(p0 +X(v, s)RT p1))I{
∑

v X(v,s)>0}

= ||RT p1||1 +
∑
s

p0I{
∑

v X(v,s)>0} (5)

= ||RT p1||1 + p0Rank(X). (6)

The first term of (5) is a constant representing the total
power consumption to serve all VM requests. The second
term of (5) is the power consumption of running hosts.
The indicator function I{

∑
v X(v,s)>0} indicates that if

there is at least a VM placed on a specific physical ma-
chine. Thus, minimizing Pw is equivalent to minimizing
the number of physical machines needed to server all VM
requests. Mathematically, minimizing Pw is equivalent to
minimizing the rank of the placement matrix X as in (6).

3) Migration Cost: The migration cost can be determined by
the total energy consumed to migrate VMs. The energy
consumed by VM migration is mainly caused by data
transferred from one physical host to another [9]. We
have

Cm = (Rλ)T (X0 ◦ (1−X))1N ,

where “◦” operator denotes the element-wise product
(Hadamard product) of two matrices. Each element in
X0◦(1−X) represents if corresponding VM was initially
placed on one server and finally re-placed on another
server. Hence 1T

M (X0 ◦ (1−X))1N is the total number
of VM migration requests. We note that the migration
cost depends only on the changes in primary servers of
VMs that are already placed on physical hosts. Newly
assigned VMs do not contribute to the migration cost.

4) Maintenance Penalty: Commodity hardware is not always
reliable; therefore, cloud computing providers regularly
have schedules for hardware maintenance. Outages and/or
quality degradation will occur if hosted services are
being served by VMs associated with those maintained
hardware. In order to guarantee service agreement level,
VMs should be proactively migrated away from those
PMs before their maintenance occurrences. We introduce
a penalty vector L1×N that models the penalty of a VM
not being migrated from a PM before its maintenance.
Specifically, we denote L(s) as the penalty that a VM
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is running on server s might bear if not being migrated
to another healthy PM. L(s) = 0 implies that server s
is normally operational. Operator will choose to set L(s)
values in order to reflect upcoming scheduled mainte-
nance. A large value of L(s), e.g.,∞, indicates that VMs
on server s will experience severe penalty if their host PM
does not change and the optimization algorithm will force
to migrate all VMs hosted by server s to a new server
immediately. We have that

Lr = XL.

Thus, minimizing our objective function in (1) can be
rewritten as:

Minimize: αCt∆t+ βrRank(X)∆t+ γCm + θLr, (7)

where βr is the equivalent coefficient when we replace energy
conssumption CP by Rank(X). Minimizing Rank(X) can be
approximated via minimizing the nuclear norm of X [29]:

||X||∗ =

r∑
i=1

σi(X),

where {σi(X)} are singular values of matrix X . However,
determining nuclear norm is known to be computational ex-
pensive as it needs to compute the eigenvalues of a large-size
matrix X ′X . We have the following results.

Theorem 1. The placement and migration problem is NP-
complete.

Proof. The proof is done via reducing the placement and
migration problem to the bin packing problem which is NP-
complete [30]. Suppose that there are M items with volumes
v1, v2, .., vm and N identical bins S1, S2, .., SN with capacity
V (N is large such that there are enough bins to pack all
items). Let X ∈ RM×1 be the vector representing item
placements, e.g., X(i) = k, i ∈ [1..M ], k ∈ [1..N ] means
item i is placed into bin k. The bin-packing problem is to find
N0 ≤ N , the minimum number of bins, such that{

0 <
∑

i viI{X(i)=k} ≤ V, ∀k ∈ [1, .., N0]∑
i viI{X(i)=k} = 0, ∀k ∈ [N0 + 1, .., N ],

where I{X(i)=k} is the indicator function, i.e.,

I{X(i)=k} =

{
1 if X(i) = k
0 o.w.

Consider the following VM placement and migration prob-
lem. Suppose that the data center has N identical physical
servers. Let c0 ∈ RK×1 be the resource capacity vector,
and r0 ∈ RK×1 be the atomic resource demand vector such
that r0(1)

c0(1) = r0(2)
c0(2) = .. = r0(K)

c0(K) . There are M VMs with
resource demand vectors which are multiple times of the
atomic resource demand vector. In other words, the resource
demand matrix R ∈ RM×R satisfies R(v, :) = p × rT0 with
p > 0 being a real-value multiplier. Assume also that there
are no communication load among VMs.

The next step is to normalize the problem by dividing
VM sizes by corresponding resource capacities of servers.
In the normalized problem, all servers have capacities of 1

Communication load Attractive force
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Fig. 3: Communication load and attractiveness of VMs

for all resources and VMs’ resource demand vectors have all
elements with the same value. In addition, the VM placement
and migration problem at the first iteration is reduced to the
placement problem since the migration cost will be 0. Now
we map r0(1)

c0(1) to vi, the VM placement and migration problem
can be restated as follows.

Given N identical server of size V = 1 and M VMs of sizes
v1, v2, ..., vM . Let X ∈ RM×1 be the vector representing VM
placements, e.g., X(i) = k, i ∈ [1..M ], k ∈ [1..N ] means VM
i is placed into server k. Find N0 ≤ N , the minimum number
of servers, such that

{
0 <

∑
i viI{X(i)=k} ≤ V, ∀k ∈ [1, .., N0]∑

i viI{X(i)=k} = 0, ∀k ∈ [N0 + 1, .., N ].

Apparently, the solution to the normalized placement and
migration problem exists if and only if there exists a solution
to the normalized bin-packing problem.

B. Graph Partitioning Based Rank Minimization

Assume that there exists a (weakly) attractive force2 be-
tween any pairwise VMs. The attractive force would try to
pull VMs together on a single machine. In a partitioning
scheme, an attractive force is satisfied if both VMs are placed
on the same partition (host). A good partitioning scheme will
satisfy as many attractive forces as possible, i.e., minimizing
the number of unsatisfied attractive forces. The attractive
force graph can be considered as a fully connected graph
where edges are pairwise attractive forces. Minimizing the
number of unsatisfied attractive forces is to minimize the
number of edges cut of the attractive force graph. Fig. 3
shows an example of two groups of VMs serving two cloud
services. An optimal placement solution in terms of inter-
server communication load minimization might place VMs on
different servers. If a single physical host can accommodate all
VMs, the optimization scheme that minimizes both inter-server
communication cost and unsatisfied attractive force would
place all VMs on the same physical server which will save
the power consumption of using two servers. Given a fully
connected graph G = (V,E) of M vertices and M(M −1)/2
edges. Assume that G is divided into K ≤M partitions; and

2Attractive force can be interpreted as augmented communication load
between any pairwise VMs.
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Mi (i ∈ [1..K], 1 ≤ Mi ≤ M −K and
∑

iMi = M ) be the
number of vertices belonging to partition i. Let Ei denote the
number of internal edges within partition i. We have that

Ei =
1

2
Mi(Mi − 1).

We next show that minimizing #edges(cut) is equivalent
to minimizing rank(X). Let M(K) be the set of K non-
zero positive integers M1, ..,MK that satifies

∑K
i=1Mi = M .

The partitioning scheme associated with M(K) has the total
number edges in all cuts:

ε(G,M(K)) =
M(M − 1)

2
− 1

2

K∑
i=1

Mi(Mi − 1).

Claim 1. Given a partitioning scheme M(K). If there is a
partition i having more than 1 vertices, i.e., Mi > 1, and M

′

i

vertices are selected to create a new partition (1 ≤ M
′

i <
Mi). Let M(K+ 1|K) be the new partitioning scheme which
has K + 1 partitions, i.e., M(K + 1|K) = {M1, ...,Mi −
M

′

i , ...,MK ,MK+1 = M
′

i}. We have the following property:

ε(G,M(K + 1|K)) = ε(G,M(K)) +M
′

i (Mi −M
′

i ).

Proof.

ε(G,M(K + 1|K)) =
M(M − 1)

2

−1

2

K∑
j=1,j 6=i

Mj(Mj − 1)

− (Mi −M
′

i )(Mi −M
′

i − 1)

2

−M
′

i (M
′

i − 1)

2

= ε(G,M(K)) +M
′

i (Mi −M
′

i )

In other words, further partitioning a given partitioning
scheme always results in higher number of edges in cuts. In
reverse, we have the following Claim:

Claim 2. Given a partitioning schemeM(K); denoteM(K−
1|K) as the new partitioning scheme obtained by merging
partition i and j inM(K) into a single partition, the number
of edges in cut of new partitioning scheme will reduce:

ε(G,M(K − 1|K)) = ε(G,M(K))−MiMj .

Proof.

ε(G,M(K − 1|K)) =
M(M − 1)

2

−1

2

K∑
k=1,k/∈{i,j}

Mk(Mk − 1)

− (Mi +Mj)(Mi +Mj − 1)

2

=
M(M − 1)

2

−1

2

K∑
k=1,k/∈{i,j}

Mk(Mk − 1)

−Mi(Mi − 1)

2

−Mj(Mj − 1)

2
−MiMj

= ε(G,M(K))−MiMj .

In other words, merging partitions always reduce the num-
ber of edges in cuts.

Let M (K) be the set of all possible M(K). We denote

M∗(K) = arg min
M (K)

ε(G,M(K)).

We now obtain our main result.

Theorem 2. Given two integers K1 and K2 between 1 and
M , i.e., 1 ≤ K1 < K2 ≤M :

ε(G,M∗(K1)) < ε(G,M∗(K2)).

Proof. LetM∗m(K1) be the partitioning scheme resulted from
merging partitions of M∗(K2). From Claim 2 we have:

ε(G,M∗m(K1)) < ε(G,M∗(K2)).

On the other hand,

ε(G,M∗(K1)) < ε(G,M∗m(K1)).

The result then just follows.

Let X be the matrix representing a partitioning scheme, DM

be the diagonal matrix whose diagonal elements are M−1, and
AM be the adjacent matrix representing the fully connected
graph G. The total number of edges of G is 1

2Tr(X
TDMX);

the total internal edges in all partitions of the partition scheme
associated with X is: 1

2Tr(X
TAMX). Therefore the total

number of edges in all cuts is:

1

2
Tr(XTDMX)−1

2
Tr(XTAMX) =

1

2
Tr(XT (DM−AM )X).

In other words, minimizing number of edges cut can be done
via minimizing Tr(XT (DM −AM )X). Note that DM −AM

is the Laplacian matrix of the fully connected graph G and
positive semi-definite.
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V. RELAXED CONVEX OPTIMIZATION BASED HEURISTIC
ALGORITHM

A. Relaxed Convex Optimization

Since the minimization problem for the placement and
migration problem is NP-complete, we propose a heuristic
algorithm based on relaxed convex optimization of (7). Re-
laxing X to accept real values in [0, 1], the energy saving
optimization problem for placement and migration VMs in
cloud centers becomes:

Minimize:
F (X) = αCt(X) + fR(X) + γCm(X) + θLr(X) (8)

subject to: 0 ≤ X(u, v) ≤ 1, 1 ≤ u, v ≤M,

XT1 = 1,

XTR � C,

where fR(X) can be chosen as fR(X) = βr
1 ||X||∗ or

fR(X) = βr
2Tr(X

T (DM − AM )X). Since D − A and
DM−AM are the Laplacian matrices of communication graph
and the attractive force graph respectively, they are positive
semi-definite [31]. Hence all four terms in F (X) are convex.
In addition, all constraints are also convex therefore relaxed
VM placement and migration problem is a convex optimiza-
tion problem which can be solved efficiently. In fact, in our
simulation we use CVX package [32] to solve the relaxed
convex optimization problem. Solving relaxed optimization
problems return a solution which has real values. We can make
final decision based on the real solution to obtain an optimal
VM placement and migration scheme.

We next describe how to apply solution of the relaxed
problem in determining final decision of placing and migrating
to cloud centers.

B. Joint VM Placement and Migration (JPM) Algorithm

We next describe the JPM algorithm for minimizing the
energy consumption of a data center. Algorithm 1 sketches the
main steps in JPM. At the beginning of every optimization pe-
riod ∆t, assume that there are M0 VMs currently being served,
and there is a queue of M1 new VMs waiting to be served.
Without loss of generality, assume that the total capacity of all
physical hosts of the cloud center can accommodate all VMs
requests including VMs being served and newly arrived VMs,
i.e., RT1 ≤ CT1.

Let X0 be the initial placement scheme: first M0 rows
corresponds to currently being served VMs; last M+ rows cor-
responds to newly arrival VMs. Let V be the set of VMs that
have been made decision; the corresponding rows in matrix
X will be kept fixed during successive optimization iterations.
On the other hand, let V ′

be the set of undecided VMs which
are corresponding to optimization variables in successive itera-
tions. Additionally, let S

′
be the set of available servers which

are under load and willing to accept new possible VM requests.
Denote S′ the set of saturated servers who are underload but
will be overloaded if another VM is placed on. At every
optimization iteration, we fix the VM placement/migration

Algorithm 1 JPM Algorithm

1: M0 ← # VMs currently being served.
2: M+ ← # new VMs waiting for placement.
3: M ←M0 +M+

4: X0 ← current placement scheme.
5: L← maintenance plan vector.
6: Initialize α, β, γ,W,∆t
7: V ← ∅ //Set of VMs having been made decisions
8: V ′ ← [1..M ] //Set of remaining rows
9: S

′ ← [1..N ] //Set of available servers
10: X(i, j)← 0∀i ∈ V, j ∈ S′

11: while |V ′ | > 0 do
12: Ω← {X|X(i, j) = constant if i ∈ V

OR (i ∈ V ′
AND j ∈ S′)}

13: X∗ ← arg min
X∈Ω

F (X)

14: (X,V ′

d, S
′
)← Make Decision (X∗,W,X,V ′

, S
′
)

15: V ← V ∪ V ′

d

16: V ′ ← V ′ \ V ′

d

17: end while
18: Return X .

Algorithm 2 VM Deployment Algorithm

1: Input X∗,W,X,V ′
, S

′

2: V ′

d ← ∅
3: while |V ′

d| < W ∧ |V ′ | do
4: (v0, s0)← arg max

(v,s)

X∗(v, s)

5: X(v0, s0)← 1
6: X(v0, s)← 0 ∀s 6= s0

7: if There is overloaded server so then
8: S

′ ← S
′ \ so

9: else
10: V ′

d ← V
′

d ∪ v0

11: end if
12: X∗(v0, s)← 0 ∀s //Remove row v0 from X∗

13: end while
14: Return X,V ′

d, S
′
.

decisions that have been made in previous iterations. We also
exclude the servers that are saturated. The remaining elements
are optimization variables. Let Ω be the set of placement
matrix X whose elements at corresponding rows in V or
columns in S′ are fixed. The optimization problem now will
have |Ω| = |V ′ |×|S′ | variables. In each optimization iteration,
X∗, the optimal solution to the relaxed optimization problem
(8), is used in order to make decision.

Algorithm 2 summarizes how decisions are made based on
X∗. Let W be the decision window which is the maximum
number of VMs that will be decided to be placed on a possible
physical server. In each iteration, a row v0 in X∗ which has
the highest value is selected and the server so corresponding
to the highest value of v0 is chosen. However, if chosen server
so will be overloaded, the decision will be discarded and so
will be removed from available server set of next optimization
iterations. The decision is discarded by not adding v0 to
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TABLE III: Amazon EC2 Instances.

Instance Type CPU (#core) Memory (GB) HDD (GB)
m3.medium 1 3.75 4

m3.large 2 7.5 32
m3.xlarge 4 15 40

m3.2xlarge 8 30 80

the set of decision made VMs and the corresponding VM
will be reconsidered in successive optimization iterations.
The decision process will iterate up to W times. Once the
optimization process finishes, the solution will be applied to
place new VM requests and/or migrate current VMs onto
selected servers. The redundant servers, i.e., have no VMs
placed on, can be turned off for energy saving.

Complexity Analysis: JPM is comprised of M/W iterations. At
the iteration ith, JPM solves the relaxed optimization problem
of N(M − iW ) variables. Hence the complexity of JPM
is O(M

W f(MN)) where f(MN) is the complexity of the
algorithm used for solving the relaxed optimization problem
of variable X ∈ [0, 1]M×N .

C. Multi-level Joint VM Placement and Migration (MJPM)
Algorithm

A data center typically has thousands of servers and may
scale to even million servers in the future [4] [3]. A centralized
algorithm is definitely not viable as it can not be managed
by any single machine. It is also known that the VM inter-
connection graphs are very sparse with VMs are strongly
connected with each other within groups [33]. Particularly,
VMs belonging to the same service/application usually com-
municate more often with each other than VMs of different
service types. In other words, VMs belonging to different ser-
vices/applications normally have weak or zero communication.

With that observation, we propose a multi-level join VM
placement and migration algorithm (MJPM). In this approach,
the VM graphs will firstly be partitioned into smaller com-
munities by community detection algorithm. Some of the
algorithms used for identifying community structures of a
network have been proposed [34]. We illustrate the operation
of MJPM in Fig. 4. In this example, PMs are statically grouped
into cells based on physical relationship. Due to the very high
sparsity of VM graphs, the first phase to identify community
structures could be done in linear time [35] [36]. Next, subset
sum algorithms [37] are then employed to group communities
into clusters whose sizes are approximately equal. Identified
VM community clusters will be mapped to PM cells based on
current state of the data center. Finally, JPM will be applied
to solve the placement and migration problem for each VM
community in parallel.

VI. PERFORMANCE EVALUATION AND DISCUSSION

In this section, we show the performance of MJPM com-
pared to other methods. Specifically, we compare MJPM using
nuclear norm and (weakly) attractive force with a random
method which place VMs onto server randomly, the FFD-like
algorithm and round-robin method. We modify FFD a little

Fig. 4: An abstraction of multi-level joint VM placement and
migration algorithms

bit by ordering the servers first and try placing VMs onto
acceptable hosts in decreasing order of available resources.
By doing this we would like to maximize the servers’ resource
utilization in the hope to reduce the power consumption. We
also apply Random method and FFD-like for newly arrival
VM requests rather than running from scratch.

A. Simulation Setup
We simulate a cloud data center with VMs requests being

chosen with typical configuration as in Amazon EC2 [38].
Table III lists some parameters of VM instances used in
our simulation. We generate M = 5120 VMs of random
sizes and used instance parameters as VM’s resource request
vector. Initially, a portion of VMs, e.g., 70%, are placed onto
physical hosts randomly as the initial placement scheme X0

(the current snapshot of the data center). The remaining VMs
are considered as newly arrival VM requests. The capacities
of physical hosts are equal and resource capacities are chosen
such that the total capacity of cloud center is at least double the
demanded capacity of all VMs. That means, all VMs will be
placed successfully on a physical host. Consequently, physical
server capacity is inversely proportional to the number of
physical servers in our simulated data centers. We assume that
the data center is consisted of 40 server cells. Without loss of
generality, we assume that the simulated data center has no
maintaince schedule during our simulations, i.e., L = 0T . Fi-
nally, we generate a random adjacent matrix A of size M×M
representing the communication load among VMs based on the
Barabasis algorithm [39]. Communication weight is uniformly
selected between 0Mbps and 75Mbps. All simulations are run
in Matlab on a PC3, and CVX package [32] is used in solving
the relaxed convex optimization.

B. Performance Evaluation
We evaluate the performance of algorithms in terms of

following metrics: Total communication load; Migration cost;

3Intel Core 2 Quad Q8200 processor 2.33 GHz, 4 MB L2 cache; 8GB
RAM).



10

300 400 500 600 700 800

# Servers

1

2

3

4

5

6
T

o
ta

l 
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

107

Random

FFD

RR

Opt-nucnorm;W =2

Opt-Attr;W =2

Opt-nucnorm;W =4

Opt-Attr;W =4

Opt-nucnorm;W =8

Opt-Attr;W =8

Opt-nucnorm;W =12

Opt-Attr;W =12

(a)

2 4 6 8 10 12

W

1

2

3

4

5

6

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
(J

) 107

Random
FFD
RR
Opt-nucnorm; N =320
Opt-Attr; N =320
Opt-nucnorm; N =480
Opt-Attr; N =480
Opt-nucnorm; N =640
Opt-Attr; N =640
Opt-nucnorm; N =800
Opt-Attr; N =800

(b)

Fig. 5: Total energy consumption versus (a) number of servers
and (b) window size W’s

Power consumption; Time elapsed; and Rank of the final
decision matrix. In our simulation we set power consumption
of server at idle mode as 480 W4. Power consumed by VMs is
set to 10 W, 1 W, and 0.5 W per virtual core, 1 GB memory
and 1 GB of HDD respectively. Energy needed to transmit
1 GB of data between two physical hosts is set to 512 J.
VM migration energy consumption is chosen at 0 J 5, 250 J,
and 250 J per CPU core, 1GB of RAM and 1 GB of HDD,
respectively [9].6

C. Simulation Results and Discussion

Fig. 5 shows total energy consumption in different views.
In general, MJPM (using either nuclear norm or attractive
force method) outperforms conventional algorithm in term
of saving energy consumed by data centers. MJPM using
nuclear norm achieves higher performance compared to MJPM
using attractive force. However, by adjusting coefficient in (8),
MJPM using attractive force can approach to the performance
of MJPM using nuclear norm.

Figures 6 and 7 show the power consumption of data center
versus different optimization period ∆t and window size W ,
respectively. In our simulations, we use different cloud center
configurations by varying the number of physical hosts. As
shown in Fig. 6(a), the network traffic significantly decreases
by using the proposed MJPM compared with the existing
approaches. The migration costs are depicted in Fig. 6(b).
As we can see, the existing methods which just solve VM
placement problem only do not consume energy on migrating

4Without loss of generality, we choose this value based on the evarage
power consumption per server class as listed in [40].

5CPU state is not migrated.
6We assume that applications utilizes RAM and HDD maximally.
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Fig. 6: Performance comparison with different ∆t vs. number
of servers: (a) communication load, (b) migration cost, and (c)
power consumption

VMs. This is because once a VM is placed onto a host, it will
stay there until the VM is terminated. On the other hand, the
proposed MJPM jointly solves both placement and migration
problems, and as expected, it consumes energy on migrating
VMs from one physical server to another. The amount of en-
ergy used for migration depends on initial assignment scheme
as well as data center configurations. Fig. 6(c) shows the total
power consumption of all physical servers in data centers. As
expected, the proposed MJPM results in the lowest total power
consumption despite of additional energy for migration. In our
simulations, the overall capacity of the data center is chosen
to stay the same; thus, capacity of each server decreases when
we increase the number of servers. As a result, more physical
servers are needed to serve the same number of VMs. As
expected, the total power consumption increases linearly with
the number of servers for all approaches as shown in Fig. 6(c).
The same observations of power consumption versus W can
also be seen in Fig. 7 where our proposed scheme significantly
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reduces the total power consumption.
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Fig. 7: Performance comparison of different schemes with
different W vs. number of servers: (a) communication load,
(b) migration cost, and (c) power consumption
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Fig. 8: Migration cost of different schemes vs. ∆t

Fig. 8 shows the relationship between migration cost of
MJPM with the optimization period ∆t. As we can see, when
value of ∆t is small, the migration cost is small as well. This
is because the energy saved on inter-server communication is

much smaller compared to the energy needed to migrate VMs.
Thus, in the case of small ∆t, e.g., less than 200 (s), MJPMs
only reassigns a few small-size VMs. On the contrary, when
∆t increases, MJPM considers larger number of VMs with
bigger size. This is because the energy saved on communi-
cation will now surpass the energy needed for migration. We
also observe that MJPM using nuclear norm migrates more
VMs resulting in fewer number of running PMs. As a result,
MJPM requires the least energy consumption compared with
other approaches as shown in Fig. 5. Interestingly, we also
observe that the migration cost will stable when value of ∆t
is larger a threshold, e.g., 600 (s). Our intuition is that when the
value of ∆t is sufficiently large, MJPM algorithms can achieve
the optimal solution by identifying and migrating all VMs to
appropriate PMs. As a result, the system achieves a minimum
inter-server communication. Thus, when ∆t increases larger
than this threshold, the migration cost will be stable as no
more VMs need to be migrated.

Fig. 9 shows the comparison of the ranks of assignment ma-
trices X’s (solutions) of different methods. In our calculation,
rank(X) is the total number of physical servers needed by
assignment schemes produced by corresponding algorithms.
Conventional algorithm always uses all available servers. On
the other hand, MJPMs tries to minimize the total number
of physical servers needed to assign all VMs. It also migrates
VMs from one physical host to another in order to create more
idle hosts.
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Fig. 9: Matrix rank of different ∆t vs. number of servers
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Fig. 10: Elapsed time comparison using different window size
W

Finally, Fig. 10 shows the comparison in total time elapsed
by the simulation program for each method. Apparently, FFD,
RR, and random take constant time to making decision on VM
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TABLE IV: Large data center simulation setup.

#VMs #Servers #Cells
3840 360 30
5120 480 40
6400 600 50
7680 720 60
10240 960 80
20480 1920 160
40960 3840 320

assignment so they are excluded from the graph. In general,
when window size W is increased, the total elapsed time is
decreasing. This can be explained by the decreasing in the
number of optimization iterations when W increases , i.e.,
more VMs are made decision per iteration.

Moreover, MJPM using nuclear norm which produce the
best solutions takes longer time to solve optimization problem.
Meanwhile, MJPM using attractive force take much less time.
This can be explained by the computation complexity of
each objective function. Evaluating nuclear norm involves in
computing the matrix product XTX in addition to computing
the eigenvalues of the N × N matrix. However computing
edges cut of a graph via Tr(XT (DM−AM )X) is much more
efficient. Although MJPM based on nuclear norm optimization
produce better results, its high complexity prevent it to be
applicable in practical data center. On the other hand, MJPM
based on dummy attractive force achieve good performance
with lower complexity and could be applied for practically
large data centers. In the next section, we will show the
scalability of Att-force based MJPM in large data centers.

D. Large Size Data Centers

In order to further show the scalability of the Attr-force
based MJPM algorithm 7, we simulate data centers varying in
size. Specifically, the total number of VMs, servers and cells
are chosen as listed in Table IV. Again, we assume that there is
no maintenance plan during simulation period. Fig. 11 shows
simulations results for large-size data centers with different
VM graph sizes. Although, having migration costs, MJPM still
outperforms conventional algorithms in terms of overall power
consumption. This can be explained by the placements and
migrations decided to consolidate VMs onto less PMs as well
as co-locate VMs with strong communication needs on the
same or closer PMs.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed two Multi-level Joint VM
placement and migration algorithms (MJPMs) for optimizing
energy consumption in cloud data centers. We formulated
and solved a multi-objective function for optimal solution.
Leveraging both theoretical analysis and extensive simulations
on different topologies, we show that the proposed MJPM
algorithm is effective and efficient in improving data center
energy consumption. Although we focused on VM placement
and migration problem as the target problem, MJPMs can

7Nuclear norm based MJPM is prohibitively expensive and not applicable
for large VM graphs.

also be applied in many similar resource allocation problems
such as assigning/scheduling tasks or application instances to
servers.

For future work, we will explore MJPMs further such as
developing an algorithm to determine optimal W ’s based on
data center configurations; develop a more efficient algorithm
for the first phase of MJPMs, e.g., detecting communities
and flexibly clustering into cells. In addition, we will com-
pare MJPMs with other state-of-the-art approaches. Finally, a
parameter selection scheme will be studied and proposed in
order to best apply MJPMs in different cloud providers with
different data center configurations.
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