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Capacity Achieving Quantizer Design for Binary
Channels

Thuan Nguyen, Graduate Student Member, IEEE and Thinh Nguyen, Senior Member, IEEE

Abstract—We consider a communication channel with a binary
input X being distorted by an arbitrary continuous-valued noise
which results in a continuous-valued signal Y at the receiver.
A quantizer Q is used to quantize Y back to a binary output
Z. Our goal is to determine the optimal quantizer Q∗ and the
corresponding input probability mass function p∗X that achieve
the capacity. We present a new lower bound and a new upper
bound on the capacity in terms of quantization parameters and
the structure of the associated channel matrix. Based on these
theoretical results, we propose an efficient algorithm for finding
the optimal quantizer.

Index Terms—Quantization, mutual information, capacity.

I. INTRODUCTION

A primary goal of a communication system is to transmit
the information reliably and fast over an error-prone channel.
The fastest rate with a vanishing error for a given channel is
equal to the maximum mutual information I(X;Z) between
two random variables X and Z used to model the input
and the output of channel. For a given discrete memoryless
channel (DMC) specified by a channel matrix A, it is well-
known that the mutual information is a concave function in
the input probability mass function pX [1]. Consequently,
determining the capacity achieving optimal input distribution
p∗X that maximizes I(X;Z) for a given A is not difficult
using existing convex optimization algorithms or other iterative
algorithms [2]. Furthermore, under some special conditions
on A, it is possible to obtain closed-form expressions for the
capacities of many DMCs [1], [3], [4], [5].

On the other hand, rather than using a given channel matrix
A, one assumes a given input distribution pX . The goal is to
design an optimal quantizer Q∗, which is equivalent to selecting
an optimal channel matrix A∗ subject to a certain structure that
maximizes the mutual information between the input X and
the quantized output Z [6]–[10]. We note that this is not the
same as designing a quantizer that achieves the capacity since
the input distribution pX is given. Our goal is to determine
the optimal quantizer Q∗ together with the optimal input
distribution p∗X that achieves the channel capacity. To the best
of our knowledge, this problem still remains a hard problem
for a general setting [11]–[14]. In [13], Singh et al. provided
an algorithm for multilevel quantization, which gave near-
optimal results. In [12], the author proposed a heuristic near-
optimal quantization algorithm which alternatively maximizes
the mutual information for a given quantizer and minimizes the
probability of error for a given input distribution. However, this
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algorithm only works well when the signal-to-noise ratio of
the channel is high. For 2-level (1-bit) quantization of general
additive channels, Mathar and Dorpinghaus proved that the
optimal mutual information could be achieved by using an input
distribution between two support points [11]. However, it is
worth noting that the result in [11] is limited for single threshold
quantizers and the truly optimal quantizer may contain more
than one threshold [15]. In [14], the author gave a near-optimal
algorithm to find the optimal value of mutual information for
binary input and an arbitrary number of the quantized output,
however, this algorithm may declare a failure outcome. There
are also several recent works on finding the channel capacity
for Gaussian channels with quantized output. In [16], Vu et
al. investigated the problem of designing the optimal signaling
schemes together with capacity-achieving input distribution for
Gaussian channels under the assumption of a low-resolution
output quantization. In [17], Ranjbar et al. constructed the
capacity region and capacity-achieving signaling schemes for
1-bit quantization with two users communicating in Rayleigh-
fading channels. These works focus on finding the optimal
input distribution for a pre-specified channel (Gaussian and
Rayleigh) and under a given quantization scheme. In contrast,
our work is more general as our focus is on obtaining both
an optimal quantization scheme and optimal input distribution
simultaneously. Furthermore, our results can be applied to any
communication channel specified by an arbitrary conditional
density of the received output given the transmitted input.

In this paper, we consider a special case where the channel
matrix A is a 2 × 2 matrix. In particular, we consider a
communication channel with a binary input X being distorted
by a given arbitrary continuous-valued noise which results in
a continuous-valued signal Y at the receiver. A quantizer Q
is used to quantize Y back to a binary output Z. Our goal
is to determine the optimal quantizer Q∗, and therefore, an
induced optimal A∗ that achieves the capacity. Importantly, we
do not assume that pX is given. Rather, after the optimal A∗

is determined, the optimal p∗X then can be obtained using any
classic method. The main contributions of this paper include
the new lower bound and upper bound of the capacity in terms
of the quantization parameters, together with the structure of
the associated channel matrix. Based on these, we propose an
efficient algorithm for finding Q∗.

II. PROBLEM DESCRIPTION

We consider the setting shown in Fig. 1. The binary input
modeled as a random variable X ∈ {0, 1}, is transmitted over a
channel that distorts X into a continuous valued signal modeled
as a random variable Y at the receiver. The channel distortion
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Figure 1: A binary input X = {0, 1} is transmitted over a
noisy channel which results in a continuous-valued y ∈ Y at
the receiver. The receiver attempts to recover X by quantizing
Y to a discrete binary signal Z = {0, 1}.

is modeled by a conditional density of Y given X: fY |X(y|x).
To recover X , the receiver uses a quantizer Q that quantizes
Y to a binary signal Z ∈ {0, 1}. Formally,

Q(y) =

{
z = 0 if y ∈ H,
z = 1 if y ∈ H̄,

(1)

where H ∩ H̄ = ∅ and H ∪ H̄ = R. For a given conditional
density fY |X(y|x), our goal is to design an optimal quantizer
Q∗ together with an optimal input distribution p∗X such that the
mutual information I(X;Z) between X and Z is maximized:

Q∗,p∗X = argmax
Q,pX

I(X;Z). (2)

III. PRELIMINARIES

We consider the setting in Fig. 1. Let pX = (p0, p1) is the
input probability mass distribution and fY |X(y|x) is the con-
ditional density function of Y given X . For given fY |X(y|x),
let φ0(y) = fY |X(y|x = 0) and φ1(y) = fY |X(y|x = 1) and
define:

u(y) =
p1φ1(y)

p0φ0(y) + p1φ1(y)
. (3)

Definition 1. A binary quantizer Qu is called a convex
quantizer if it has the following structure:

Qu(y) =

{
z = 0 if u(y) ≤ u,
z = 1 if u(y) > u,

(4)

where 0 < u < 1.

Burshtein et al. [18] and Kurkoski and Yagi [15] showed
that the optimal binary quantizer is indeed a convex quantizer
as stated in Theorem 1 below.

Theorem 1. [18], [15] For a given p0 and p1, the optimal bi-
nary quantizer that maximizes the mutual information I(X;Z)
is a convex quantizer Qu∗ for some optimal threshold u∗.

We should make an important remark about Theorem 1.

Remark 1. Qu∗ is not a capacity achieving quantizer even
though it maximizes I(X;Z). This is because Qu∗ assumes
a given input distribution pX . On the other hand, our goal is
to find the capacity achieving quantizer Q∗ which maximizes
I(X;Z) over all the possible pX . A straightforward way of
applying Theorem 1 to find Q∗ is to search over all possible
values of p0, p1, and u∗ that maximizes I(X;Z). This is
however still a 2-dimensional search.

Next, instead of given pX , suppose a quantizer Q is given,
we want to determine the capacity C = maxpX

I(X;Z). The
given Q induces a channel matrix:

A =

[
a11 a12

a21 a22

]
,

where a12 = 1− a11 and a21 = 1− a22. We will show how
A is related to Q shortly. The capacity of this binary DMC is
given in Theorem 2 below [3].

Theorem 2. [3] The capacity of a binary DMC for a given
channel matrix A is:

C = log2

(
2
−
a22H(a11) + (a11 − 1)H(a22)

a11 + a22 − 1

+ 2
−
(a22 − 1)H(a11) + a11H(a22)

a11 + a22 − 1
)
, (5)

where H(w) = −w log2(w)− (1− w) log2(1− w).

We will use Theorems 1 and 2 to describe a more efficient
procedure for finding the capacity achieving Q∗.

IV. DESIGN OF CAPACITY ACHIEVING QUANTIZER

Theorem 3 below is a variant of Theorem 1 which will be
used to design a capacity achieving quantizer.

Theorem 3. (Structure of optimal quantizer)
For given φ0(y) and φ1(y), define:

r(y) =
φ0(y)

φ1(y)
. (6)

Let Qr be a convex quantizer with the following structure:

Qr(y) =

{
0 if r(y) ≥ r,
1 if r(y) < r,

(7)

for some 0 < r < ∞, then there exists a capacity achieving
convex quantizer Qr∗ for some optimal threshold r∗.

Proof. For any pX , we have:

u(y)=
p1φ1(y)

p0φ0(y)+p1φ1(y)
=

1

p0

p1

φ0(y)

φ1(y)
+1

=
1

p0

p1
r(y)+1

. (8)

Thus,

r(y) =
p1(1− u(y))

p0u(y)
. (9)

Now using Theorem 1, and writing u(y) in terms of r(y),
we obtain:

r∗ =
p1(1− u∗)
p0u∗

. (10)

Furthermore, for any valid p0 > 0, it is straightforward
to show that 0 < r∗ < ∞. It is important to note that p0

and p1 need not to be given, even though they are related
to r(y) through (9) for some p0 and p1. Instead, r(y) is

defined as r(y) =
φ0(y)

φ1(y)
. If there is a method to find the

optimal r∗ directly, then the corresponding p∗0 and p∗1 can be
found based on r∗. Importantly, since Qr∗ maximizes I(X;Z)
(by Theorem 1) without given p0 and p1, Qr∗ is a capacity
achieving quantizer.

Remark 2. The use of r(y) in Theorem 3 rather than u(y)
in Theorem 1 is an important step in designing a capacity
achieving quantizer. r(y) as defined in (6), does not depend on
p0 and p1. Therefore, to find a capacity achieving quantizer, one
can employ an exhaustive search to find the optimal threshold
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r∗. Specifically, for each value of the threshold r, a quantizer Q
can be constructed based on Theorem 3 in which one compares
r(y) with r. This comparison does not need p0 and p1. On
the other hand, using u(y) and search for the optimal u∗ in
Theorem 1, one is required to know p0 and p1 since u(y) is
defined in terms of p0 and p1.

We now derive the channel matrix A for a given quantizer
Qr in Theorem 3. Define:

Hr = {y : r(y) =
φ0(y)

φ1(y)
≥ r}, (11)

H̄r = {y : r(y) =
φ0(y)

φ1(y)
< r}. (12)

Thus,

Qr(y) =

{
z = 0 if y ∈ Hr,

z = 1 if y ∈ H̄r.
(13)

The channel matrix A that corresponds to quantizer Qr is:

A =

[
a11(r) a12(r)
a21(r) a22(r)

]
,

where
a11(r) =

∫
y∈Hr

φ0(y)dy, (14)

a22(r) =

∫
y∈H̄r

φ1(y)dy, (15)

and a12(r) = 1− a11(r), a21(r) = 1− a22(r).
Using Theorem 2 and Theorem 3, the capacity in (5) is a

function of r:

C(r) = log2

(
2
−
a22(r)H(a11(r)) + (a11(r)− 1)H(a22(r))

a11(r) + a22(r)− 1

+ 2
−
(a22(r)− 1)H(a11(r)) + a11(r)H(a22(r))

a11(r) + a22(r)− 1
)
. (16)

We note that each value of r corresponds to a different
channel matrix A associated with a different Qr. Therefore,
based on (16), an exhaustive search can be used to find r∗

that maximizes C(r). This is a one-dimensional search on r
which is more efficient than searching for u, p0, and p1 as
discussed earlier. Furthermore, we will derive an upper and
lower bound on r to increase the search efficiency. Lemma
1 below describes the structure of the channel matrix that
corresponds to a convex quantizer Qr.

Lemma 1. (Structure of the channel matrix induced by Qr)
For ∀ r ∈ (0,+∞),
(1) a11(r) ∈ (0, 1) and is a monotonic decreasing function.
(2) a22(r) ∈ (0, 1) and is a monotonic increasing function.
(3) 1 < a11(r) + a22(r) ≤ a11(1) + a22(1).

Proof. Please see the proof in Appendix A.

Theorem 4. (Capacity bounds)
Define δ = a11(1) + a22(1), then the maximum capacity

C(r∗) over all possible channel matrices induced by all convex
quantizers Qr is bounded by:

1−H(
2− δ

2
) ≤ C(r∗) ≤ log2 δ. (17)

Proof. From Lemma 1, ∀r, we have:

a11(r) + a22(r) > 1 = a11(r) + a12(r), (18)
a11(r) + a22(r) > 1 = a21(r) + a22(r). (19)

Thus,

a22(r) > a12(r), (20)
a11(r) > a21(r). (21)

Upper bound: The Boyd-Chiang’s upper bound [19] of the
channel capacity associated with a given channel matrix A is:

CA ≤ log2(
∑
j

max
i
aij). (22)

For a binary channel associated with a convex quantizer Qr,
using (22), we have:

C(r) ≤ log2

(∑
j=1

max
i
aij(r)

)
=log2

(
a11(r)+a22(r)

)
(23)

≤ log2

(
a11(1) + a22(1)

)
= log2 δ, (24)

where (23) is due to (20) and (21), (24) is due to (3) in Lemma
1. Since the upper bound in (24) holds for every r, it must
hold for r∗.

Lower bound: Recall that the Fano’s inequality [1] with
alphabet size of |X| = 2 is:

H(X|Z) ≤ H(pe) + pe log(|X| − 1) = H(pe), (25)

where pe is the probability of error when transmitting a signal
over the channel and using a quantizer Qr for recovering
the signal. Next, using the uniform input distribution pX i.e.,
p0 = p1 = 1/2 and the convex quantizer Q1 (r = 1), we have:

pe = p0a12(1) + p1a21(1) =
1

2
(a12(1) + a21(1)) (26)

=
1

2
(2− a11(1)− a22(1)) =

2− δ
2

, (27)

and H(X) = 1.
Now, since the maximum capacity C(r∗) is at least as large

as the mutual information using p0 = p1 = 1/2, and r = 1,
from (25) and (27), we have:

C(r∗) ≥ I(X;Z) = H(X)−H(X|Z) (28)

≥ H(X)−H(pe) = 1−H(
2− δ

2
). (29)

Remark 3. We note that the lower bound reaches to the upper
bound when δ → 2 or δ → 1 as illustrated in Fig. 2. Moreover,
a larger value of δ implies a smaller overlapped area between
the noise density φ0(y) and φ1(y) or a higher probability of
correct decoding. In an additive channel with an identical noise
for transmitting symbols 0 and 1, φ0(y) and φ1(y) are shifted
versions of each other. The larger shift results in a larger value
of δ and a higher probability of correct decoding. Thus, our
bounds are tighter for low noise regimes. The upper and lower
bounds as functions of δ are visualized in Fig. 2.
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Figure 2: Upper bound and lower bound of channel capacity
as functions of δ.

Also, as an extension, if the input size is more than two,
then using the identical proof, the δ in the upper bound in
Theorem 4 is:

δ =

∫
y∈Y

max
i
φi(y)dy, (30)

where φi(y) = fY |X(y|xi), i = 1, 2, . . . , N with N being the
size of the input alphabet.

Next, we will use Theorem 4 to narrow down the range to
search for the optimal r∗. We have the following theorem.

Theorem 5. (Bound on optimal r∗)

Let 0 < v ≤ 1

2
be a positive number such that:

H(v) = H(1− v) = 1−H(
2− δ

2
). (31)

If Qr∗ is optimal, then:

a11(r∗) ≥ v, (32)
a22(r∗) ≥ v. (33)

Furthermore, r∗ ∈ [r2, r1] where a11(r1) = a22(r2) = v.

Proof. Suppose that a quantizer Qr produces H(Z), and

H(Z) ≤ 1−H(
2− δ

2
) = H(v) = H(1− v) (34)

for some v ∈ (0, 0.5]. Since 1 − H(
2− δ

2
) ≥ H(Z) ≥

I(X;Z), based on the lower bound of Theorem 4, Qr cannot
be an optimal quantizer.

We will show that if:

a11(r) < v, (35)
a22(r) < v, (36)

then Qr is suboptimal.
Since the binary entropy is symmetric i.e., H(v) = H(1−v)

and v ≤ 1/2, then v ≤ 1/2 ≤ 1− v. From (21),

p(Z=0) = p0a11(r)+p1a21(r) ≥ p0a21(r)+p1a21(r)

= a21(r) = 1− a22(r). (37)

Since the binary entropy is monotonically increased over
[0, 0.5] and monotonically decreased over [0.5, 1], if 1 −
a22(r) > 1− v or a22(r) < v, then:

H(Z) = H(p(Z = 0)) < H(1− v) = 1−H(
2− δ

2
). (38)

r

0 2 4 6 8 10 12

I(
X

;Z
) r

0.2

0.4

0.6

0.8

Figure 3: Mutual information I(X;Z)r as a function of r.

From (34) and (38), a quantizer that produces a22(r) < v is
not the optimal one. Therefore, a22(r∗) ≥ v. A similar proof
can be constructed to show that a11(r∗) ≥ v.

Next, due to δ > 1 (Lemma 1-(3)), we have 0 < 1 −
H(

2− δ
2

) ≤ 1. Therefore, there exists v ∈ (0, 1/2] that
satisfies (31). From Lemma 1, there exists two positive numbers
r1 and r2 such that a11(r1) = v and a22(r2) = v. Moreover,
a11(r) and a22(r) are monotonic decreasing and increasing
functions, respectively (Lemma 1), thus r∗ ∈ [r2, r1].

Exhaustive search. The proposed algorithm is to search
for r in the range of [r2, r1]. Since a11(r) and a22(r) are
monotonic decreasing and increasing functions, finding r1 and
r2 such that a11(r1) = v and a22(r2) = v can be performed
efficiently using existing root-finding algorithms, for example,
the bisection method. For each value of r in the range [r2, r1],
we determine the channel matrix A then use (16) to compute
the corresponding capacity. The algorithm outputs the largest
mutual information in this range together with r∗. From r∗,
Qr∗ can be found. Next, based on [3], p∗0 can be obtained as:

p∗0 = a21(r
∗)[a21(r

∗)− a11(r
∗)]−1

− [a21(r
∗)− a11(r

∗)]−1
[
1 + 2

H(a21(r
∗))−H(a11(r

∗))

a21(r∗)− a11(r∗)
]−1

,

where H(x) = −[x log2(x)+(1−x) log2(1−x)] is the binary
entropy function.

V. NUMERICAL RESULTS

Consider a channel having φ0(y) = N(µ0 = −1, σ0 = 0.5)
and φ1(y) = N(µ1 = 1, σ1 = 0.6). One wants to find the
optimal quantizer together with the input distribution such that
the mutual information is maximized.

Now, for r = 1, δ = 1.9299, v = 0.2316, and r2 = 0.11,
r1 = 11.08. By performing an exhaustive search with the
resolution ε = 0.01 over r ∈ [r2, r1], the optimal of mutual
information is I(X;Z)∗ = 0.7847 at r∗ = 0.78. The
corresponding channel capacity upper and lower bounds using
Theorem 4 are 0.9479 and 0.7787, respectively. Fig. 3 illustrates
I(X;Z)r as a function of r.

VI. CONCLUSION

We presented both a new lower bound and a new upper
bound on the capacity in terms of quantization parameters
and the structure of the associated channel matrix for binary
quantization channel. Based on these theoretical results, we
propose an efficient algorithm for finding the optimal quantizer.
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APPENDIX

A. Proof of Lemma 1

Proof for (1) and (2). From the definition in (14), a11(r)
represents the quantized bit “0" which is the integral of φ0(y)
over the set of y such that r(y) ≥ r. Thus, if r increases, the
set of y reduces. Since φ0(y) ≥ 0 and the set of y reduces,
a11(r) must decrease.

Moreover, if r → 0, r(y) ≥ r ∀y then a11(r)→ 1. On the
other hand, if r → +∞, then r(y) < r ∀y and a11(r) → 0.
Thus, a11(r) ∈ (0, 1).

A similar proof can be constructed for a22(r).
Proof for (3). From the definition of r(y), Hr and H̄r, we

have
φ0(y)

φ1(y)
≥ r, ∀y ∈ Hr and

φ0(y)

φ1(y)
< r,∀y ∈ H̄r. Next, we

consider two possible cases: r > 1 and r ≤ 1. In both cases,
we show that a11(r) + a22(r) > 1.
• If r > 1, φ0(y) > φ1(y) for ∀ y ∈ Hr. Therefore,

a11(r) + a22(r) =

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ1(y)dy

>

∫
y∈Hr

φ1(y)dy +

∫
y∈H̄r

φ1(y)dy

= 1. (39)

• If r ≤ 1, φ1(y) > φ0(y) for ∀ y ∈ H̄r. Therefore,

a11(r) + a22(r) =

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ1(y)dy

>

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ0(y)dy

= 1. (40)

Combining (39) and (40), a11(r) + a22(r) > 1, ∀r.
Next, we show that a11(1) + a22(1) ≥ a11(r) + a22(r), ∀r.

Indeed, from the definition of H1 and H̄1,
φ0(y)

φ1(y)
≥ 1,∀y ∈ H1

and
φ0(y)

φ1(y)
< 1,∀y ∈ H̄1. Thus,

φ0(y) ≥ φ1(y),∀y ∈ H1, (41)

φ0(y) < φ1(y),∀y ∈ H̄1. (42)

From the definition of a11(r) and a22(r) in (14) and (15),

a11(r) + a22(r) =

∫
y∈Hr

φ0(y)dy +

∫
y∈H̄r

φ1(y)dy

≤
∫
y∈Hr

max
(
φ0(y), φ1(y)

)
dy

+

∫
y∈H̄r

max
(
φ0(y), φ1(y)

)
dy

=

∫
y∈Hr∪H̄r=R

max
(
φ0(y), φ1(y)

)
dy

=

∫
y∈H1

max
(
φ0(y), φ1(y)

)
dy

+

∫
y∈H̄1

max
(
φ0(y), φ1(y)

)
dy

=

∫
y∈H1

φ0(y)dy +

∫
y∈H̄1

φ1(y)dy (43)

= a11(1) + a22(1) (44)
= δ, (45)

where (43) due to (41) and (42), (44) and (45) due to the
definitions of a11(r), a22(r) and δ. The equality happens if
r = 1.
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