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Abstract: This paper proposes a stochastic framework for detecting anomalies or
gathering events of interest in a noisy environment using a network consisting of bi-
nary sensors. A binary sensor is an extremely coarse sensor, capable of measuring data
to only 1-bit accuracy. Our proposed stochastic framework employs a large number of
inexpensive binary sensors operating in a noisy environment, yet collaboratively they
are able to obtain accurate measurements. The main contributions of this paper are:
(a) The theoretical accuracy analysis of the proposed stochastic binary sensor net-
work in noisy environments, (b) an adaptive data collection framework based on the
current measurements in order to reduce the energy consumption, and (c) a novel cod-
ing scheme for energy-efficient routing. To quantify the performance of our proposed
stochastic approach, we present the simulation results of two stochastic binary sensor
networks for anomaly detection using our proposed coding scheme and adaptive data
gathering framework. We demonstrate that our proposed framework can potentially
reduce the energy consumption over the traditional approach by an order of magnitude.

1 Introduction

In recent years, sensor networks have emerged as an impor-
tant class of networks for many military and commercial
applications (1)(2)(3). A sensor network is a collection
of wireless communication nodes. Each node is capable of
sensing the environment and communicating the measured
data to the neighboring nodes, and eventually to the exter-
nal users. The majority of sensor networks are designed to
collect data (4)(5) or to perform anomaly detection (6)(7).
They are designed to achieve accuracy, robustness, and en-
ergy efficiency.

Because of the constraints on the energy consumption

and/or the technologies, a sensor may be forced to reduce
its sampling resolution either in time or in amplitude. This
process results in lower accuracy of the measured data.
Furthermore, the accuracy of the measured data can also
be affected by the environmental noise. A special and
important situation arises when all the sensors measure
the same underlying signal x. However due to the envi-
ronmental noise, each sensor i measures a different value
xi = x + ni where ni is an additive noise sample. In this
scenario, the objective of a sensor network is to accurately
determine the underlying value x through collaboration
among the sensors. For example, the nodes in a sensor
network for anomaly or intrusion detection can exchange
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correlated data among each other to increase the detection
accuracy. A higher correlation of measured data at differ-
ent sensors leads to a stronger belief about the accuracy of
the data.

Beside the accuracy issue, a sensor network must also
be robust against sensor’s failures since these sensors typ-
ically operate in an outdoor environment where they are
subjected to harsh conditions. A straightforward approach
to improve the robustness is to increase the number of sen-
sors. However, it is desirable to construct a sensor network
such that the accuracy of the collected data degrades grace-
fully in the presence of sensor failures.

Finally, since a sensor is a battery-operated device, min-
imizing energy consumption should also be considered.
There have been many contributions in the area of proto-
col and system design for energy-efficient sensor networks
(8)(9)(10)(11). If the measured data among the nodes are
spatially correlated, a node can jointly compress its data
and its neighbor’s data in order to decrease the transmis-
sion energy (12)(13). A higher correlation of data mea-
sured among the sensors results in more energy saving.

In this paper, we present a stochastic binary sensor
network that (a) achieves good accuracy, (b) enables the
graceful degradation of data quality in the presence of sen-
sor’s failures, and (c) reduces the energy due to the adap-
tive data collection technique and a novel coding scheme.
In the proposed approach, each sensor transmits only 1 bit
of information per measurement, but collectively, accurate
data measurements can be obtained. By allowing only 1-
bit measurement, the sensors can be made at low cost and,
therefore, are easy to replace or to discard. Furthermore,
the proposed sensor network employs the stochastic ap-
proach which allows a graceful degradation of data quality
(accuracy) in the presence of sensor failures. While we ar-
gue for robustness in terms of graceful degradation of data
accuracy, the robustness of a sensor network ultimately de-
pends on the routing algorithms to route the data around
the failed sensors. Due to the limited scope of the paper,
we do not discuss such routing algorithms. Instead, we re-
fer the readers to many existing robust routing algorithms
in the literature (5)(14)(15).

Our paper is organized as follows. In Section 2, we dis-
cuss some related work on sensor networks. In Section 3,
we present our proposed model of stochastic binary sensor
network. Since our model is not a typical sensor network
model, we will motivate the use of such model with an
intrusion detection application that employs inexpensive
magnetic sensors. Section 4 is devoted to the accuracy
analysis of our proposed stochastic binary sensor network
in a variety of environments. In Section 5, we present a
novel coding scheme to be used for energy-efficient routing.
Section 6 provides the simulation results for two binary
sensor networks that employ the adaptive data collection
technique and the coding scheme to reduce energy con-
sumption. Finally, we provide a few concluding remarks
in Section 7.

2 Related Work

Since sensors are battery-operated devices, energy effi-
ciency is one of the key considerations in designing a long-
lived sensor network. As such, in recent years, there has
been a vast literature on techniques for achieving good
trade-offs between energy usage and the accuracy of the
collected data. One approach to minimize energy con-
sumption is the use of in-network processing. (16)(17)(18).
This technique assumes that the measured data are spa-
tially correlated, thus the sensors can jointly compress
the data to result in fewer transmissions. For example,
Cristescu et al. recently propose a simple model of the
measured data based on the correlation coefficient. Using
this model, the authors devise the data compression and
routing algorithms in order to minimize the energy con-
sumption in a network. (12)(17)(19). These algorithms
aim to maximize data accuracy (or minimize the distor-
tion) under the communication energy constraints. They
are also designed with the assumption that each sensor
is able code the data at a high resolution. On the other
hand, our approach uses a large number of extreme coarse
sensors, yet collaboratively these sensors can obtain high
resolution data in noisy environments.

Other significant theoretical contributions on achieving
trade-off between data accuracy and the number of bits
used to represent data (i.e., energy consumption) is the
work of Ishwar et al. on the principle of bit conservation
(18). In this work, Ishwar et al. address the general prob-
lem of sampling bandlimited sensor fields in a distributed,
limited-precision, communication-constrained, processing
environment. In particular, conservation of bits principle
states that “the bit budget per Nyquist-interval (the rate)
can be distributed along the amplitude-axis (sensor preci-
sion) and space (sensor density) in an almost arbitrary
discrete-valued manner, while retaining the same error-
rate characteristics.” The paper proposes methods that
employ interpolating function to enable low precision sen-
sors to achieve high resolution data when a large number of
these sensors are used. Thus, our proposed binary stochas-
tic sensor network is a special case of such formulation in
which, the sensor precision is extremely coarse. On the
other hand, Ishwar et al. focus exclusively on the data ac-
curacy with respect to sensor precision and sensor density
trade-offs without taking into consideration of the noisy
measured data due to the environment. In our work, we
incorporate the environmental noise, specifically the uni-
form and Gaussian noises, to derive the optimal estimators
under such conditions. Luo also proposes similar method
for estimating a corrupted signal due to random noise (20).
In this method, each sensor collects one noise-corrupted
sample, performs a local data quantization according to
some probabilistic rule, and transmits the discrete mes-
sages to its neighbors. These discrete messages are dis-
persed through the network. Each sensor then uses these
messages to compute its own minimum mean squared error
(MMSE) estimate of the sample.

Other contributions on aggregation of correlated data
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in sensor networks have been advanced by Enachescu and
Sharaf in (21)(22). In (21), Enachescu et al. propose a
simple randomized algorithm for routing data on a grid of
sensors in a way that promotes data aggregation. They
show that their randomized algorithm is a constant-factor
approximation to the optimal aggregation tree. This work
mainly focus on energy efficient routing rather than achiev-
ing trade-off between the data accuracy and energy con-
sumption of the network.
In terms of estimating the data under uncertainty, our

work is probably most related to the recent work by Xiao
et al. (23). In this work, the authors propose a distributed
scheme to estimate the measured signal based on the aver-
age consensus. The objective of this distributed scheme is
for every sensor to obtain the accurate measurements after
exchanging data among each other for a number of rounds.
On the other hand, our work focuses on data gathering
from all the sensors to a processing node. Furthermore, un-
like (23), our work makes use of coarse binary sensors, and
provides the adaptive data gathering and coding schemes
for reduction in energy consumption.
From the signal processing community, our work is most

related to the work of Cvetkovic and Daubechies (24). This
work provides an algorithm for achieving high resolution
data by oversampling the data using only 1 bit resolution.
In terms of applications, our work is related to sensor

networks for detecting the presence of intruders or chemi-
cal agents. In this scenario, a single sensor node often can-
not detect the movement of intruders with high accuracy
due to the noise induced in the measurement process or
by the environment. However, if a sensor’s neighbors also
report similar results, the probability of having an intruder
increases substantially. In (7), Vercauteren et al. propose
to increase the accuracy of target tracking and classifica-
tion using collaborative sensor networks. The literature
also numbers several contributions in which, the sensors
collaborate with each other to localize anomalies (6). In
(6), Du et al. propose a number of metrics and meth-
ods for localizing the location attacks in sensor networks.
The location attacks aim to alter the location information
of the sensor nodes by sending out incorrect location in-
formation. Since each sensor node relies on the relative
location of other sensors to compute its location, such an
attack can potentially cause much damage in the entire
network. Du et al. devise some heuristic algorithms for
computing the difference between a node’s actual location
and the measured location based on other node’s informa-
tion. An attack is present if this difference is greater than
a certain threshold. Similarly, our proposed sensor net-
work also uses a threshold for determining anomalies. On
the other hand, our work focuses on the trade-off between
energy consumption and accuracy.

3 Network Model and Rationale

In this section, we discuss the mathematical model of data
estimation in a stochastic binary sensor network and pro-
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Figure 1: A simple sensor network. Measured data are
relayed to node 4.

vide a specific motivation for such model.

3.1 Mathematical Model

For the purpose of illustration, we use a simple network
consisting of four nodes in a straight line as shown in Fig-
ure 1. We assume that the data x(t) at time t is identical
(or highly correlated) within the coverage of the sensors.
In other words, the data may vary temporally but not spa-
tially. Each node i is to measure the underlying data x(t)
at time t. Theoretically, without noise, all the nodes would
obtain identical measurements at time t. However, in non-
ideal situations where either internal or external noise is
present, an accurate measurement cannot be obtained us-
ing only a single node. Instead, the measured data at each
sensor at time t is

xi(t) = x(t) + ni(t), (1)

where ni(t) is independent and identically distributed noise
at node i. The measurements from different nodes are for-
warded to a processing node whose task is to accurately
determine the value x(t). For example, if node 4 is chosen
to be the processing node, then it is responsible for deter-
mining the value of x(t) based on all the measurements it
receives from nodes 1, 2, and 3. Figure 1 shows how mea-
surements are forwarded from nodes 1, 2, and 3 to node
4.
A popular method for estimating value of x(t) (25) is

given by

x̂(t) =
1

N

N
∑

i=1

xi(t). (2)

where N is the number of sensors. The larger the value of
N , the higher accuracy of the estimate.
This method assumes an accurate representation of

xi(t). Theoretically, if we have an infinite precision
representation of xi(t), then the mean estimated error
√

E[(x− x̂)2] using the classical method would decrease
by a factor of 1√

N
. However, an accurate representation

of xi(t) implies that each sensor must be able to resolve a
small difference in the measured data. For example, when
measuring the temperature, a sensor node must be able
translate temperatures to electrical signals in a fairly pre-
cise manner, e.g., 68.2F and 68.5F would result in two elec-
trical signals of 0.90 volts and 0.92 volts, respectively. In
addition, an accurate representation xi(t) requires a larger
number of bits, whence more bits must be transmitted per
measurement per sensor.
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Our proposed framework eliminates the need for high
resolution sensors. In particular, each sensor only makes
a decision whether its measured data is greater or smaller
than a certain threshold. This simplification allows one
to build a sensor network consisting of cheap and simple
sensors. This simplification also implies that each measure-
ment is represented by only 1 bit, resulting in a reduction
of transmission energy per node. Formally, we make the
following assumptions:

1. Signal x(t) is a random process with zero mean. The
zero-mean assumption is for ease of analysis. It is not
critical as any random process can be converted to a
zero-mean process by simply subtracting its mean.

2. Additive noise ni(t) at each sensor is independent
and identically distributed with zero mean. In other
words, the additive noise samples at each sensor is
independent and have the identical statistics.

3. Each sensor node is only able to detect the sign of
xi(t), i.e., binary sensor.

We also omit the discussion of scheduling and routing pro-
tocols. These issues can be found in (14)(26).
Accuracy Consideration. Our goal is to estimate x(t)

as x̂(t) = f(y1(t), ..., yN (t)) for some function f(.), where
yi(t) = sgn(xi(t)), given the statistics of x(t) and of the
noise ni(t). We do not make any assumption on temporal
correlation of the data, i.e., x(t − a) cannot be used to
estimate x(t). Thus, we shall omit the index t in all the
variables, e.g., xi(t) will become xi.
There are two important performance indicators for our

sensor network: the Mean Square Error (MSE) and the
Conditional Mean Square Error (CMSE) which are defined
as

MSE
∆
= E[(x− f(y1, y2, ..., yN ))

2].

CMSE(m)
∆
= E[(x− f(y1, y2, ..., ym))

2|y1, y2, ..., ym],

where m ≤ N . The MSE characterizes the measured
data accuracy of a sensor network, while CMSE(m) char-
acterizes the average amount of errors given a set of ob-
servations from m sensors. If fewer sensors are used, we
would expect a larger CMSE(m) value. MSE enables us
to characterize the average performance of our sensor net-
work in a certain environment. On the other hand, the
CMSE(m) is useful for adaptive data gathering to reduce
the energy consumption. Also, we shall drop the index m
from CMSE(m) when the outputs from all the sensors are
used.
Adaptive Data Gathering. To illustrate the energy

reduction based on adaptive processing, we consider the
following example. Suppose that a sensor network consist-
ing of N nodes is designed to continuously measure a signal
x and alarms the population whenever it detects x > a. In
a real world scenario, x > a may represent an anomaly
such as the presence of an intruder or a dangerous chem-
ical agent. Using all N data points, the processing node

sensor

Figure 2: Detection of an intruded submarine. Magnetic
signatures at different sensors are almost identical due to
the long distance of the submarine.

can estimate x as f(y1, y2, ..., yN ) and determine whether
f(y1, y2, ..., yN ) > a. Since f(y1, y2, ..., yN ) is an estimate
of x, it is also useful to determine the confidence level of
this estimate in order to reduce the number of false alarms
or to avoid missing an anomaly. As will be shown shortly,
the accuracy of the estimate depends on the current real-
ized value of x and on the number of data samples. Thus, if
after a number of transmissions m < N , the intermediate
nodes can estimate that x < a, i.e., no anomaly, with high
confidence, then subsequent transmissions will be not be
necessary, resulting in an overall energy reduction of the
network.
Energy Efficient Coding. Energy consumption can

be further reduced by employing our proposed coding
scheme which exploits the network topology. The main
idea is that, to estimate the signal, the processing node
only needs to know the summary information such as the
number of 1’s. Thus, each node can reduce the number of
transmitted bits accordingly based on its positions. We
discuss this technique in detail in Section 5. We now
provide the motivation for our proposed sensor network
model.

3.2 Model Rationale

While our model can be used in different applications, it is
primarily motivated by the characteristics of an intrusion
detection application using a network of cheap magnetic
sensors 1. Currently, the coarse magnetic sensors can be
made inexpensive to detect the presence of metallic materi-
als at reasonably long distance, e.g., up 400 meters. Figure
2 shows a scenario in which a submarine is detected by a
network of magnetic sensors at a long distance. Because
of the long distance, the magnetic signatures (strength)
at the sensors have approximate amplitude. Thus, x(t) in
our model above is assumed to be identical or highly corre-
lated. An inexpensive binary magnetic sensor detects the
presence of metallic materials by examining the polarity
of the magnetic field, e.g., either up or down. However, in
the typical situations, the thermal noise can flip its polar-
ity, thus the measurements can be inaccurate. The ther-
mal noise is an identically independent distributed (i.i.d)

1We are currently developing applications for these magnetic sen-

sors at OSU.
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noise and its affect on the magnetic strength is large as
compared to the true magnetic signatures of the metallic
objects. Therefore, we assume an i.i.d model for the noise
n(t). Furthermore, we will show that our sensor network
will achieve good accuracy when the additive noise n(t) is
relatively large.
One approach to eliminate the network aspect for binary

sensors is to put all the sensors on a single chip to make
an accurate sensor. However, this approach lacks robust-
ness since a single failure in its circuitry would potentially
halt the function of the sensor. We note that these sensors
are designed to operate under harsh conditions, and thus
one must take into account the possibility of sensor fail-
ure. Another consideration is the security issue. In many
applications, it is desirable to have the sensors deployed in
geographically dispersed locations so as to make it harder
for an attacker to disable the sensors. We now begin with
the accuracy analysis of the proposed stochastic binary
sensor network.

4 Accuracy Analysis

In this section, we analyze the accuracy of the MSE and
CMSE for the proposed binary stochastic sensor network
operating in a typical environment where the additive noise
is either uniformly or normally distributed. Since the
MSE and CMSE also depend on the distribution of the
signal, we also characterize MSE and CMSE for the sig-
nals having uniform distribution and normal distribution.
We first begin with the analysis of our proposed sensor
network in a uniform noise environment.

4.1 Uniform Noise

We assume that the noise samples at different sensors are
independent and identically distributed. Let us consider
the problem of estimating a signal x ∈ [−1, 1] with addi-
tive uniform noise ni over the interval [−0.1, 0.1]. If only
one bit is used to determine the value of x at each sensor,
then one possible scheme is for each sensor to output 1 if
its measured data xi = x + ni > 0 and -1 otherwise. The
processing node can then estimate x as the average of 1’s
and -1’s from all the sensors. However, in this particular
scenario, regardless of the number of sensors used in the
estimation, a constant signal x = 0.5 will always be quan-
tized to 1 because xi = x+ ni > 0 for all i. Subsequently,
the estimated output will always be equal to 1, which is
0.5 off the actual value. This problem results directly from
having a small noise power. It is interesting to note that
traditionally small noise, or, equivalently, high signal to
noise ratio (SNR), leads to a better estimation of the sig-
nal. However, using a binary sensor, small noise carries
no useful information due to the coarse quantization, thus
resulting in a largeMSE. In general, to achieve high accu-
racy using binary sensors in a uniform noise environment,
the noise range must be equal to or larger than the range
of the signals.

Given a signal x and the observations at different nodes
y1, y2, ..., yN , we must determine a good estimator x̂ =
f(y1, y2, ..., yN ) for x, where yi = sgn(x + ni). While
the optimal estimator for a random variable is the min-
imum mean square estimator (MMSE). The MMSE esti-
mator, however, is complex since one needs to compute
E[X|Y = y] which requires an integration of the explicit
conditional probability function over all possible value of
x for every observed y2. Instead, when the signal and
noise distributions are uniformly distributed over [−α, α]
and [−β, β], respectively, and β ≥ α, we employ a lin-
ear estimator since this estimator uses only equation for
all possible observed values which is suitable technique for
simple sensor network. We have the following results.

Theorem 4.1. The least square linear estimator x̂ is

x̂ =
γ

N

N
∑

i=1

yi =
α2β

α2(N − 1) + 3β2
N
∑

i=1

yi. (3)

and the corresponding MSE and CMSE are:

MSE
∆
= E[(x− x̂)2] =

(3β2 − α2)α2

3[α2(N − 1) + 3β2] (4)

CMSE
∆
= E[(x− x̂)2|x̂] = A

B
, (5)

where

A =
j
∑

k=0

N−j
∑

i=0

(−1)i
γi+k

(

j

k

)(

N − j

i

)

α
i+k+1

×
(

α
2 1 + (−1)i+k

i+ k + 3
+ 2γα

(

2j

N
− 1
)

(−1)i+k − 1
i+ k + 2

+γ2

(

2j

N
− 1
)2
1 + (−1)i+k

i+ k + 1

)

(6)

and

B =

j
∑

k=0

N−j
∑

i=0

(−1)i
γi+k

(

j

k

)(

N − j

i

)

1 + (−1)i+k
i+ k + 1

αi+k+1.

(7)
with j denoting the number of 1’s in the outputs, and is
directly related to x̂.

Proof. Let fn(x) and f(x) be the probability density func-
tions of the noise and of the signal, respectively. Also
denote the number of non-negative samples as j, then
x̂ = γ( 2j

N
− 1). We want to show that

γ =
Nα2β

α2(N − 1) + 3β2 (8)

Now,

E[(x− x̂)2|x] = E[x2|x]− 2E[xx̂|x] + E[x̂2|x]

= x2 − 2xγE
[(

2j

N
− 1

) ∣

∣

∣

∣

x

]

+γ2E

[(

2j

N
− 1

)2∣
∣

∣

∣

x

]

(9)

2We can compute the MMSE estimate using numertical ntegration

or summations of many variables. However, these solutions are still

computational expensive
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Given x, j is a binomial random variable, hence

E[j|x] = Nq, (10)

E[j2|x] = (Nq)2 +Nq(1− q), (11)

where q is the probability that sgn(x+ni) > 0 which equals

q =
1

2

(

x

β
+ 1

)

. (12)

Now, substitute E[j|x] and E[j2|x] into Equation (9), we
obtain

E[(x− x̂)2|x] = 4γ2(Nq(1− q) + (Nq)2)/(N2)

−4γ2q + γ2 − 4γxq + 2γx+ x2(13)

Next, the mean square error taken over the input range
[−α, α] with the the uniform distribution density function
f(x) = 1/2α is

MSE = E[(x− x̂)2] =

∫ ∞

−∞

E[(x− x̂)2|x]f(x)dx

=

∫ α

−α

E[(x− x̂)2|x] 1
2α

dx

= − α2γ2

3Nβ2
+
α2γ2

3β2
− 2α

2γ

3β
+
α2

3
+
γ2

N
(14)

Now, to obtain the least square estimate, we take the
derivative of (14) with respect to γ, and set it to zero to
solve for γ which is equal to:

γ =
Nα2β

α2(N − 1) + 3β2 (15)

The corresponding MSE can be obtained by substituting
(15) into (14).
The proof for CMSE is provided in the Appendix.

From Theorem 4.1, for large N , γ ≈ β, thus the least
square linear estimator depends only on the noise range,
and not on the range of the signal. Theorem 4.1 also states
that the MSE is inversely proportional to N . This result
agrees with our intuition that a larger N leads to a smaller
estimation error. Also, when a few sensors fail, the MSE
will increase only slightly. In general, this approach enables
a graceful degradation of data accuracy in the presence of
failed sensors.
Figure 3(a) shows theMSE as a function of the number

of sensors for three different uniform noises with different
ranges: [-1, 1], [-1.1, 1.1], and [1.2, -1.2]. As seen, the
MSE for the noise having the range [−1, 1] is smallest.
In fact, it is easy to show that the the minimum MSE is
achievable when α = β, i.e., the noise range equals pre-
cisely the signal range. Furthermore, the MSE becomes
larger as the gap between the noise range and the signal
range increases. One important observation is that the
MSE asymptotically vanishes as the number of sensors N
increases. This is important since we can guarantee an ar-
bitrarily small estimation error, even in an arbitrarily large

noise environment when using an appropriate number of
sensors. Figure 3(a) shows this asymptotical decrease of
MSE as the number of sensors increases.

Figure 3(b) shows the CMSE as a function of the esti-
mates. Clearly, the CMSE depends on x̂ (x̂ = γ( 2j

N
− 1))

and N . In particular, for a uniform signal and a uniform
noise, the CMSE increases when the magnitude of x̂ de-
creases, and vice versa. Thus, to reduce energy consump-
tion, a sensor can operate as follows. An intermediate
sensor can compute x̂ after collecting a number of sam-
ples from other sensors. Based on the current value of x̂
and the corresponding estimation error CMSE, it can de-
cide whether or not to continue relaying the data to next
sensor. If the corresponding CMSE is too high (low con-
fidence level), the network would continue to collect more
samples. On the other hand, if the CMSE is small (high
confidence level), the network will stop collecting data and
thus reduce the amount of energy consumption. This de-
cision is application dependent, and will be discussed in
Section 6.

We note that computing the CMSE is rather compli-
cated; however, it can be computed once for all the possible
values of x̂ and the results are stored in a table at each sen-
sor. When the adaptive data collection technique is used,
each sensor can determine the corresponding CMSE given
x̂ using a look-up table. We now consider a Gaussian signal
in the presence of uniform noise. Similar to the uniform
signal and uniform noise case, we assume that the range
of the signal x is smaller than that of noise. However,
this is not possible since the range of a Gaussian signal
extends to infinity. Therefore, we assume that the signal
standard deviation, σ, is much smaller than the range of
the noise range, β in order for our binary sensor network
to achieve reasonable performance. The following theorem
characterizes the accuracy of our binary sensor network.

Theorem 4.2. If the signal is normally distributed with
mean 0 and variance σ2, and the additive noise is uni-
formly distributed in the interval [−β, β], with σ << β
and large N , then we have

MSE ≈ β2 − σ2

N
, (16)

CMSE ≈ A

B
, (17)

where

A =
j
∑

k=0

N−j
∑

i=0

(−1)i
βi+k

(

j

k

)(

N − j

i

)

σ
i+k+1

√
2π

2

×
(

(i+ k + 1)!!σ2
(

1 + (−1)i+k
)

− 2β

(

2j

N
− 1
)

(i+ k)!!σ
(

1− (−1)i+k
)

+ β
2

(

2j

N
− 1
)2

(i+ k − 1)!!
(

1 + (−1)i+k
)

)

(18)
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Figure 3: Performance of a binary sensor network with
uniform signal over [−1, 1] under the different uniform
noises. (a) MSE as a function of number of sensors;
(b) CMSE as a function of x̂, with the number of nodes
N = 110.

and

B =

j
∑

k=0

N−j
∑

i=0

(−1)i
βi+k

(

j

k

)(

N − j

i

)

σi+k+1

×
√
2π

2
(i+ k − 1)!!(1 + (−1)i+k) (19)

with j denoting the number of 1’s in the outputs.

Proof. When N is large, the least square linear estimator
can be approximated as

x̂ = β
N
∑

i=1

yi. (20)

Using (20) and after a few algebraic manipulations, we
obtain

E[(x− x̂)2|x] = β2 − x2

N
.

Therefore,

E[(x− x̂)2] =

∫ β

−β

β2 − x2

N
f(x)dx, (21)

where f(x) = 1
σ
√
2π
e−

x2

2σ2 . Since σ << β, we can approx-

imate
∫ β

−β
f(x)dx ≈

∫∞

−∞
f(x)dx = 1 and

∫ β

−β
x2f(x)dx ≈

∫∞

−∞
x2f(x)dx = σ2. Substituting these approximations

into Equation (21), we obtain the desired MSE.
The proof regarding CMSE is provided in the Ap-

pendix.

Figure 4(a) shows the MSE as a function of the num-
ber of sensors for signal with standard deviation. α = 1
under different noise ranges: [-4, 4], [-6, 6], -8, 8]. Similar
to the uniform signal-uniform noise case, the MSE of the
Gaussian signal and uniform noise vanishes as the num-
ber of sensors increases. Figure 4(b) shows the CMSE as
a function of the current estimates of the signal. Unlike
in the uniform signal-uniform noise case, the CMSE is
small when x̂ is small, and vice versa. As seen, a different
assumption on signal distribution can lead to a very differ-
ent curve for CMSE, which in turn affect the operations
of the network. Therefore, the estimate must be designed
carefully, taking into consideration of the signal and noise
distributions.

4.2 Gaussian Noise

In many real-world scenarios, the noise often follows a nor-
mal distribution. Thus, it is important to characterize the
MSE and CMSE in these environments. While a linear
estimator in Equation (3) results in high accuracy in an
environment having an additive uniform noise, it is not
optimal in the presence of additive Gaussian noise. We
now derive an estimator for the signal x in the environ-
ment where the noise is normally distributed. First, let
us consider the average of the quantized samples at the
sensors

wN =
1

N

N
∑

i=1

sgn(x+ ni). (22)

When N →∞,

w
∆
= lim

N→∞
wN =

∫ ∞

−∞

sgn(x+ z)fn(z)dz

= −
∫ −x

−∞

fn(z)dz +

∫ ∞

−x

fn(z)dz

= 2

∫ x

0

fn(z)dz, (23)

where fn(z) is the probability density function of the noise.

For Gaussian noise, fn(z) =
1√
2πσ

e−
z2

2σ2 , and therefore

w = erf(
x√
2σ
), (24)

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt.
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Figure 4: Performance of a binary sensor network with
signal X ∼ N(0, 1) under different uniform noises. (a)
MSE as a function of the number of sensors; (b) CMSE
as a function of x̂, with number of nodes N = 110.

Now, for a finite number of sensors N , a good estimate of
x in terms of w is

x̂ =
√
2σerf−1 (w) =

√
2σerf−1

(

2j

N
− 1

)

, (25)

where j is the number of non-negative samples. If the noise
distribution has mean µ, then the estimator is simply:

x̂ =
√
2σerf−1

(

2j

N
− 1

)

− µ. (26)

Using the estimator in Equation (25), we obtain the fol-
lowing results:

Theorem 4.3. If the signal is normally distributed with
mean µs and variance σs and the additive noise is also nor-
mally distributed with mean µ and variance σ, then using
the estimator in Equation (26), the MSE can be approxi-

mated as

σ2√π
2Nσs

√
2

∫

∞

−∞

(

1− erf
2

(

x+ µ

σ
√
2

))

e
(
(x+µ)2

σ2 −
(x−µs)

2

2σs2
)
dx

(27)
and the CMSE as

∫∞

−∞
(x− x̂)2qj(1− q)N−je

−
(x−µs)

2

2σs2 dx

∫∞

−∞
qi(1− q)N−je

−
(x−µs)2

2σs2 dx

, (28)

where

x̂ = σ
√
2erf−1

(

2j

N
− 1

)

,

and

q =
1

2
erf

(

x+ µ√
2σ

)

+
1

2
.

Proof. The proof is provided in the Appendix.

Figure 5(a) shows the MSE of a signal x having Gaus-
sian distribution with stdev. σ = 1 as a function of the
number of sensors for different Gaussian noises. As seen,
the MSE vanishes as the number of sensors increases.
Through simulations, we also observe that when the sig-
nal and noise have equal variances, the MSE appears to
be minimum. Since we can prove this for the uniform sig-
nal and uniform noise case, we conjecture that the MSE
is minimum whenever the signal and noise have identical
distributions and parameters, regardless of the distribution
types.
Figure 5(b) shows the CMSE as a function of x̂ un-

der different Gaussian noises. Unlike the uniform signal-
uniform noise case, the CMSE is small when abs(x̂) is
small. This is intuitively plausible since the probability
of having small x is large due to the signal having a nor-
mal distribution, and hence a small x̂ is probably a better
estimate of x. Again, knowing the signal and noise distri-
bution is critical in designing the good estimate.
Finally, Figure 6 shows the CMSE as a function of the

number of sensor N for the signal and noise having iden-
tical normal distribution with σ = 1 and µ = 0. Clearly,
the larger N results in a smaller CMSE. In Section 6,
we discuss in detail how an intermediate node can use the
estimated CMSE based on the current x̂ and the number
of sensors m < N to save energy.

5 Energy Efficient Coding

In this section, we present the energy efficient coding. Most
often, the energy saving is obtained through efficient rout-
ing. In this paper, we assume that the route for gathering
data is already established. Our objective is to further im-
prove energy efficiency through coding. We also assume
that the energy consumption by the sensor nodes is pro-
portional to the number of transmitted bits. Our objective
is to minimize the number of bits sent in the network.
To illustrate our approach, we consider a sensor network

consisting of four sensors arranged in a straight line as
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Figure 5: Performance of a binary sensor network with sig-
nal X ∼ N(0, 1) under the different Gaussian noises. (a)
MSE as a function of the number of sensors; (b) CMSE
as a function of x̂, with number of nodes N = 110.
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Figure 6: CMSE as a function of x̂ for different number
of nodes N .

shown in Figure 1. In our network, a sensor sends one
bit per its measured sample x(t). Depending on a sensor’s
position, it also relays many bits from other sensors. Thus,
without coding, the total number of transmitted bits in this
simple network is 1 + 2 + 3 = 6 bits.
Now, one observes that the processing node 4 only needs

to know the number of non-negative samples. In other
words, to estimate x, node 4 does not need to know
whether the measured values at each node is -1 or 1. Thus,
instead of sending all 6 bits, node 3 may need to send
to node 4 only 2 bits (4 possible patterns) to represent
whether the number of non-negative samples is 0, 1, 2, or
3. Given this topology, it is impossible for node 4 to re-
ceive more than 4 non-negative samples. Similarly, node 2
needs to send only 2 bits to node 3 to indicate whether the
number of non-negative samples is 0, 1, or 2. In general,
by knowing its position in the topology, each sensor can
code data adaptively to reduce the number of bits to be
sent. We note that our technique is a variant of the method
of type coding (27).
As an example, suppose that the quantized data mea-

sured at nodes 1, 2, 3 are -1, 1, and 1, respectively. Using
our proposed coding scheme, sensor 1 would send a bit
“0” to node 2 to indicate that no non-negative sample is
observed. Sensor 2 then sends the bit pattern “01” to sen-
sor 3 to indicate that 1 non-negative sample is observed so
far. Node 3 then sends the bit pattern “10” to node 4 to
indicate that the number of non-negative samples is now
2. Thus, the total number of bits sent in this case is 1 +
2 + 2 = 5 bits, one bit fewer than non-coding approach.
In general, assuming that the data is relayed according to
the increasing order of node id, then a node n will need to
send only dlog2(n+ 1)e bits to node n+ 1.
Although the previous example shows a modest energy

reduction, for a sensor network consisting of a large number
of nodes, this coding technique can result in substantial
energy reduction. We have the following results:

Theorem 5.1. Given N sensors arranged in a straight
line with the processing node at one end, then the maximum
number of bits which needs to be sent per sample in the
stochastic binary sensor network with coding is:

B1 = N(m+ 1) + 1− 2m+1, (29)

and without coding is

B2 =
N(N − 1)

2
, (30)

where m = blog2Nc.

Proof. Assume that node N is the processing node. With-
out loss of generality, we have 2m ≤ N < 2m+1, for
m = blog2Nc. Then, the total number of bits sent by
nodes 1 to 2m − 1 is

A1 =
m
∑

i=1

i2i−1. (31)

9



Also, the total number of bits sent by the remaining nodes
is

A2 = (N − 2m)(m+ 1). (32)

Now, taking the derivative of
∑m

i=1 x
i = xm+1−1

x−1 − 1 with
respect to x, we have

m
∑

i=1

ixi−1 =
(m+ 1)xm(x− 1)− (xm+1 − 1)

(x− 1)2 . (33)

Replacing x = 2, we have

A1 = (m+ 1)2
m − 2m+1 + 1. (34)

Adding A1 and A2, we obtain B1. B2 is easily obtained
using arithmetic sum

Theorem 5.1 indicates that when using coding in a
straight-line topology, the energy consumption is on the
order of (N/ logN) times smaller than that required with-
out coding. Note that one can use multiple straight-line
topologies to construct a large network, e.g., a network
of sensors on concentric circles with the data transmission
taking place along the radius (straight-line) of these circles.
However, a straight-line topology may incur a high delay

overhead. To reduce the delay, we propose to use a tree
topology for data gathering. Figure 7 shows a binary tree
topology for data gathering. Unlike the usual notation of
a tree level, our tree level notation is reversed, namely, the
leaf node is at level 1, the processing node is at level m.
We prove the following theorem for data gathering in a tree
with k branches. Data gathering starts from the nodes in
the lowest to highest level. We have the following result
for tree topology.

Theorem 5.2. Using coding, the maximum number of
transmitted bits per sample in a tree topology with k
branches is

Bk = km−1 +
m−1
∑

i=2

⌈

log2
ki − 1
k − 1

⌉

km+1−i, (35)

where m is the number of levels. For k = 2,

B2 = 2(2
m −m− 1). (36)

Proof. For anm-level tree, there are km−1 leaf nodes. Each
leaf node sends 1 bit of data. Therefore, the total number
of bits sent by the leaf nodes is km−1 bits. Now, each
internal node needs to relay data for all its predecessors.

If a node is at level i > 1, it has ki−1
k−1 − 1 predecessors

(using the geometric sum). Since node i also needs to send
1 bit of its measured data, the maximum total number of

coded bits sent by node i is
⌈

log2
ki−1
k−1

⌉

. Finally, there are

km+1−i nodes at level i, hence the total number of coded
bits sent by all the nodes (excluding the processing node
at level m) is

Bk = km−1 +
m−1
∑

i=2

⌈

log2
ki − 1
k − 1

⌉

km−i. (37)

For k = 2, we have

B2 = 2m−1 +

m−1
∑

i=2

⌈

log2 (2
i − 1)

⌉

2m−i (38)

= 2m
m−1
∑

i=1

i2−i (39)

= 2(2m −m− 1). (40)

6 Simulation Results for Binary Sensor Networks

In this section, we characterize the trade-off between the
energy consumption and the accuracy of the stochastic bi-
nary sensor networks for detecting anomalies through sim-
ulations. In particular, we consider two special topologies
for simulations. The first topology is a straight-line topol-
ogy consisting of 128 binary sensor nodes arranged in a
straight line, with the processing node at one end. The
measured data flows from one end of the line to the pro-
cessing node at the other end. Data is accumulated along
the way so that the processing node has all the measured
data. The second topology is a tree topology consisting
of 127 binary sensor nodes. Data is relayed from the leaf
nodes to the internal nodes, and subsequently to the pro-
cessing node as shown in Figure 7.
The main idea for reducing energy consumption in these

networks is for a node to stop relaying data to the pro-
cessing node if it determines with high confidence that the
current estimated data is not anomalous. In particular, in
these simulations, we consider a data point x anomalous if
the estimated abs(x̂) ≥ a and CMSE = E[(x− x̂)2|x̂] < b
where a and b are some threshold values set by the appli-
cations. Using this framework, each node would estimate
the current data based on its own measurement and the
measurements relayed to it from other nodes. We note
that the CMSE is employed in the decision making of a
node to express the confidence level in the estimated data
x̂.
Using this model, a node in both straight-line and tree

sensor networks operates as follows.

1. Initially, if a node is a leaf node in a tree topology or
the first node in a line topology, it would send its data
to the next node.

2. An internal node may send data only if it receives
data from at least one node. This implies that, if
all the predecessor nodes of a node determine that no
further transmission is necessary, that node will honor
the predecessor’s decision.

3. If a node receives data from its predecessor node(s),
it estimates the current value x̂ and the CMSE =
E[(x− x̂)2|x̂] based on its own measurement and the
relayed measurements from other node(s). If abs(x̂) <
a and CMSE < b, it stops relaying data to the next
node. Otherwise, it sends data to the next node.

10
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Figure 7: Tree topology for data gathering.

To characterize the energy reduction due to our proposed
coding technique and the adaptive data collection, for each
topology, we perform the simulations using coding and
without coding. The measured signal x has a normal dis-
tribution with µ = 0 and σ = 1. The additive noise is also
normally distributed and has identical statistics to the sig-
nal. The threshold value a is set to 1, while b is varied to
characterize the trade-off between the energy consumption
and the data accuracy. Figure 8(a) shows the number of
transmitted bits per data measurement as a function of
CMSE for the straight-line topology. It is noticed that,
using coding reduces the number of transmitted bits ap-
proximately by a factor of 10 compared to without using
coding. Also, if an application allows a larger estimation
error, further energy reduction can be obtained, e.g., the
number of transmitted bits with the CMSE = 0.18 is 8
times smaller than that of using the CMSE = 0.01.
Similarly, Figure 8(b) shows substantial saving of using

coding in the tree topology. On the other hand, the adap-
tive data collection technique does not reduce the energy
consumption as much. We note that the tree topology is
much more energy efficient that the straight-line topology.
This is because a bit in a tree topology does not have to
be relayed many times as in the line topology.
Although we present the simulation results for the line

and tree topologies, we note that our coding technique can
be applied to other topologies as well. The fundamental
idea is to allow each sensor to code the data based on its
position. When a sensor fails, the topology information
must be disseminated to all the nodes to allow a new cod-
ing scheme. Even though sensor failures are allowed in
our scheme, we believe that the failure frequency is small
enough to warrant the overhead bandwidth for dissemina-
tion of topology information to all the sensors.

7 Conclusions

We have proposed a stochastic framework for detecting
anomalies or gathering events of interest in a noisy envi-
ronment using a sensor network consisting a large number
of cheap binary sensors. We present the theoretical anal-
ysis of the accuracy of such sensor networks in different
environments. We also propose an adaptive data collec-
tion framework based on the current measurements and
a novel coding scheme in order to reduce the energy con-
sumption. The simulation results of two stochastic binary
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Figure 8: Number of transmitted bits per measurement as
a function of CMSE for (a) a straight line topology and
(b) a tree topology.

sensor networks for anomaly detection using our proposed
coding scheme and adaptive data gathering show that en-
ergy consumption can be reduced substantially, e.g., a fac-
tor of 10 for many scenarios.
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Proof. To obtain CMSE, let f(x|j) be the conditional
density function of x given j, the number of non-negative
samples, and f(x) be the signal’s probability density dis-
tribution, then we have

E[(x− x̂)2|x̂] = E[(x− x̂)2|j] (.41)

=

∫ ∞

−∞

(x− x̂)2f(x|j)dx (.42)

=

∫ ∞

−∞

(x− x̂)2f(j|x)f(x)
∫∞

−∞
f(j|x)f(x)dx dx

=

∫ α

−α
(x− x̂)2qj(1− q)

N−j
dx

∫ α

−α
qj(1− q)

N−j
dx

where q is the probability that sgn(x + ni) ≥ 0, which is
equal to

q =

∫ ∞

−x

1

2γ
dt =

1

2

(

x

γ
+ 1

)

. (.43)

Replacing q in Equation (.41), we have

E[(x− x̂)2|j] =
∫ α

−α
(x− x̂)2(1 + x

γ
)j(1− x

β
)
N−j

dx
∫ α

−α
(1 + x

γ
)j(1− x

γ
)
N−j

dx
.

(.44)

Now, letting A =
∫ α

−α
(x− x̂)2(1+ x

γ
)j(1− x

γ
)
N−j

dx and

B =
∫ α

−α
(1 + x

γ
)j(1− x

γ
)
N−j

dx, then E[(x− x̂)2|j] = A
B
,

Using binomial expansion, we have

A =

j
∑

k=0

N−j
∑

i=0

(−1)i
γi+k

(

j

k

)(

N − j

i

)
∫ α

−α

(x− x̂)2xi+kdx

=

j
∑

k=0

N−j
∑

i=0

(−1)i
γi+k

(

j

k

)(

N − j

i

)

αi+k+1

×
(

α2
1 + (−1)i+k
i+ k + 3

+ 2x̂α
(−1)i+k − 1
i+ k + 2

+x̂2
1 + (−1)i+k
i+ k + 1

)

. (.45)

Replacing x̂ = γ( 2j
N
− 1), we obtain A in Equation (6). B

in Equation (7) can be obtained in a similar manner.

Proof of Theorem 4.2

Proof. For the CMSE, we note that the integrations are
in the range of [−β, β]

E[(x− x̂)2|j] =
∫ β

−β
(x− x̂)2(1 + x

β
)j(1− x

β
)
N−j

f(x)dx
∫ β

−β
(1 + x

β
)j(1− x

β
)
N−j

f(x)dx

Using binomial expansion on (1 + x
β
)j(1− x

β
)
N−j

and re-

placing f(x) = 1
σ
√
2π
e−

x2

2σ2 in the expression above, we

obtain the numerator:

A =

j
∑

k=0

N−j
∑

i=0

(−1)i
βi+k

(

j

k

)(

N − j

i

)
∫ β

−β

(x− x̂)2xi+ke−
x2

2σ2 dx

(.46)

and the denominator:

B =

j
∑

k=0

N−j
∑

i=0

(−1)i
βi+k

(

j

k

)(

N − j

i

)
∫ β

−β

xi+ke−
x2

2σ2 dx.

(.47)
Given σ << β, we can approximate

∫ β

−β

xme−
x2

2σ2 dx ≈
∫ ∞

−∞

xme−
x2

2σ2 dx

=

√
2π

2
(m− 1)!!σm+1(1 + (−1)m).

Substituting the above approximation and x̂ = β
(

2j
N
− 1

)

into Equations (.46) and (.47), we obtain the desired result.

Proof of Theorem 4.3

Proof. To compute theMSE, from Equation (26), we have

x̂ =
√
2σerf−1

(

2j

N
− 1

)

− µ. (.48)

Denoting x̂ = g−1(w), we have

E[(x− x̂)2|x] = E[(x− g(w))2|x] (.49)

We can approximate g(w) by expanding at w = g−1(x)

x̂ ' g(g−1(x)) + (w − g−1(x))
dg(w)

dw

∣

∣

∣

∣

w=g−1(x)

= x+

(

w − erf

(

x+ µ

σ
√
2

))

σ
√
2π

2
e

(x+µ)2

2σ2 . (.50)

Thus,

E[(x− x̂)2|x] = E

[(

w − erf

(

x+ µ

σ
√
2

))2
πσ2e

(x+µ)2

σ2

2

∣

∣

∣

∣

x

]

=
πσ2e

(x+µ)2

σ2

2
E

[(

w − erf

(

x+ µ

σ
√
2

))2∣
∣

∣

∣

x

]

.

Recall that w = 2j
N
− 1, and

E[j|x] = Nq;

E[j2|x] = (Nq)2 +Nq(1− q), (.51)

(.52)

where q is the probability that the sign of a sample is 1,

q =
1

2
erf

(

x+ µ√
2σ

)

+
1

2
. (.53)

After a few derivations, we have

E[(x− x̂)2|x] = σ2π

2N

(

1− erf2
(

x+ µ

σ
√
2

))

e
(x+µ)2

σ2 . (.54)
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Given the pdf of the signal: f(x) = 1
σs
√
2π
e
−

(x−µs)
2

2σs2 , the

MSE will be:

E[(x− x̂)2] =

∫ ∞

−∞

E[(x− x̂)2|x]f(x)dx

=
σ2
√
π

2Nσs
√
2

∫ ∞

−∞

(

1− erf2
(

x+ µ

σ
√
2

))

×e(
(x+µ)2

σ2 −
(x−µs)

2

2σs2
)
dx. (.55)

Note that for special case σs = 1 and µs = µ = 0, the
MSE becomes

MSE =
σ2
√
π

2N
√
2

∫ ∞

−∞

(

1− erf2
(

x

σ
√
2

))

e
(2−σ2)x2

2σ2 dx.

(.56)
Finally, the CMSE can be obtained using the same ap-
proach.
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