
1

Distributed Data Replenishment
Kien Nguyen, Thinh Nguyen, Member, IEEE, Yevgeniy Kovchegov, Viet Le

Abstract—We propose a distributed data replenishment
mechanism for some distributed peer-to-peer based storage
systems that automates the process of maintaining a
sufficient level of data redundancy to ensure the availability
of data in presence of peer departures and failures. The
dynamics of peers entering and leaving the network are
modeled as a stochastic process. A novel analytical time-
backward technique is proposed to bound the expected
time for a piece of data to remain in P2P systems.
Both theoretical and simulation results are in agreement,
indicating that the data replenishment via random linear
network coding (RLNC) outperforms other popular strate-
gies. Specifically, we show that the expected time for a piece
of data to remain in a P2P system, the longer the better, is
exponential in the number of peers used to store the data
for the RLNC-based strategy, while they are quadratic for
other strategies.

Index Terms—Stochastic Process, Absorption Time, Dis-
tributed Storage, Network Coding

I. INTRODUCTION

Recent development of Peer-to-Peer (P2P) networks
opens a new possibility for building large scale dis-
tributed systems over the Internet. Typically in such
systems, data are replicated across multiple nodes (peers)
at different network locations such that network failures
in some parts of the Internet will not prevent a user from
accessing the data stored in other parts of the Internet.
To that end, many recent research efforts have been
focused on using P2P platforms to build reliable, large
scale distributed systems for Internet services [1], [2],
[3], [4]. In this paper, we investigate some theoretical
underpinnings and examine the simulated performance
for a class of large scale distributed systems based on a
randomized P2P approach via coding techniques.

In a nutshell, a distributed system over the Internet
is an overlay network of storage and computing nodes,
linked together in such a way to allow computational,
storage, and bandwidth resources to be shared. Popular

Kien Nguyen, Thinh Nguyen, and Viet Le are with the
School of Electrical Engineering and Computer Science, Ore-
gon State University, Corvallis, OR, 97331 USA (e-mail:
{nguyenki,thinhq,lev}@eecs.oregonstate.edu).

Yevgeniy Kovchegov is with the Department of Mathematics,
Oregon State University, Corvallis, OR 97331-4605, USA (e-mail:
kovchegy@math.oregonstate.edu).

P2P networks such as BitTorrent [5] and KaZaA [6]
for example, are distributed systems that enable their
users to share data and bandwidth. Since the overlay
nodes are located geographically apart, each node has a
different network access, and data are replicated across
multiple nodes, these systems are less susceptible to the
bottleneck failures. However, if not properly designed,
they will incur substantial communication/coordination
overheads among nodes. For a distributed storage sys-
tem, one of the main challenges is to design efficient
coordination mechanisms among nodes in order to main-
tain the integrity and availability of data in the system
while minimizing the communication overheads.

Data replenishment. Distributed storage system re-
search have been focused on indexing, maintaining, and
retrieving data correctly and efficiently. In this paper,
we will not discuss various aspects of indexing and
retrieving data. These topics have been well investigated
in [1], [2], [7], [8], [9], [10], [11], [12], [13]. Rather, we
will focus on theoretical analysis of scalable methods for
maintaining data in a highly volatile environment such
as P2P networks. Specifically, in a P2P network, the data
is stored on a peer’s hard drive. Consequently, when a
peer departs the network, so does the data it carries.
Therefore, it is preferable to employ some form of
data replenishment mechanism which ensures that at any
time, the requested data is available at one or multiple
peers collectively. Furthermore, the data replenishment
mechanism should be simple and preferably distributed
for it to be effective in highly dynamic environments.
Data replenishment mechanism is the focus of this paper.

Approach Overview. Traditionally in a distributed
storage system, a file is replicated in its entirety at one or
multiple locations. However, for the same overall storage
redundancy, a more robust approach is to break up a
single file into many pieces, code these pieces properly,
then disperse them to multiple nodes in a network [14],
[15], [16], [17]. A user recovers the file by downloading
its many pieces simultaneously from different locations.
In this paper, we consider the following variant of the
setup described in [16], [18], [19]. In this setup, a file
to be stored, is first broken up into multiple pieces or
packets, coded using either Reed-Solomon, repetition, or
random linear network codes (RLNC), then dispersed to
a number of peers in the network. Now, any peer can

2

depart the network along with its data. If a new peer
joins, it can be recruited to help replenish the missing
data.

There are many ways to replenish the missing data.
We will show that the data replenishment via RLNC is
much more efficient than the strategies using repetition
and traditional channel code. We do not consider other
coding schemes such as turbo and convolution codes
since they are perhaps more suitable for communication
applications. We note that the concept of data replen-
ishment is very much similar to data repair as termed
in [18]. Thus, our work is not new in the sense of
using RLNC for distributed data storage. In [16], [17],
[18], [19], the authors examined the fundamental trade-
off between the replenishment bandwidth and storage
capacity in a static setting. Our work on the other hand,
does not consider this fundamental tradeoff. Instead, we
focus on the analysis of different data replenishment
techniques and their effects on data recoverability over
time. Specifically, we show that RLNC-based storage
technique in P2P environments will, on average, result in
higher data availability over time than other techniques.

The outline of our paper is as follows. In Section II,
we provide a brief review on the recent advances in
distributed storage with an emphasis on network coding.
In Section III, we describe different replenishment strate-
gies for a synchronous network model. In Section IV,
we model the evolution of a piece of data through time
for different replenishment schemes as discrete stochas-
tic processes. These processes however are intractable,
therefore we propose a time-backward model based on
which, we are able determine an approximate closed
form expression for the elapsed time that a piece of data
is expected to remain in the system. We call this expected
time the absorption time. Our analytical results show that
using the data replenishment via RLNC, the absorption
time is exponential in the number of peers used to
store the data. This is much more robust than other
data protection strategies based on repetition or channel
coding techniques whose absorption times are quadratic
in the number of peers. As an extension, in Section
VIII, we present an analysis for an asynchronous model
which describes peer arrivals and departures as Poisson
processes. Our results indicate that the performance of
the asynchronous model depends critically on the peer
arrival and departure rates.

II. RELATED WORK

In their seminal paper, Ahlswede et al. showed that
it is possible to maximize the transmission rate from
a source to multiple receivers (multicast capacity) by
allowing the intermediate nodes to perform coding, i.e.,

mixing data from different flows [20]. Since then, net-
work coding has found its way to many applications,
ranging from efficient wireless communication and net-
working to distributed storage systems. Our work is
motivated by the recent advances in network coding for
distributed storage systems.

In [21], Dimakis et al. provided a survey on re-
cent network coding techniques for distributed storage.
Much research in this area have been focused on (1)
the fundamental trade-off between the repair bandwidth
and the storage capacity of nodes and (2) techniques
for constructing capacity-achieving network codes. In a
distributed storage system, if a node fails, a new node is
recruited and attempts to reconstruct the missing data
from the failed node by downloading the data from
other nodes. The codes for this type of setting is called
regenerating codes, and the amount of downloaded data
required for reconstructing the missing data is called the
repair bandwidth. For example, suppose a 1MB portion
of a file is lost, then to repair the file, the exact missing
portion is needed to repair the file. So 1 MB is the
repaired bandwidth. This scenario is only possible if
there is the original copy of the file exists. In many
distributed settings, there is no central server to keep the
original copy, so it might not be possible. However, if
more redundancy of the file is used in the beginning,
then it is possible to reconstruct any missing portion
from the remaining parts. For example, if RS (7,4) is
used, i.e., for every 4 original parts (1MB each), we
store 3 redundancy parts (parity). Furthermore, suppose
there are 7 peers each stores one part. Then, for any
3 missing parts (peers), one can reconstruct the entire
file from the remaining 4 parts (peers). Even for one
missing part, using RS(7,4) one still needs to using all
4 remaining parts to regenerate the missing part. The
repair bandwidth in this case is 4 MBs. It has been shown
that the repair bandwidth using network coding can be
substantially smaller than that of using traditional MDS
(Maximum Distance Separable) codes provided that the
storage capacities of nodes in the systems are sufficiently
large [17]. In [22], Wu et al. showed techniques that
can reduce the repair bandwidth in the case where there
is only a single node failure. Wu et al. also proposed
techniques for constructing MDS codes that achieve the
fundamental bounds on the minimum repair bandwidth
and storage capacity [23], [24].

Li et al. also considered joint design of regenerating
codes and network topology for efficiently utilizing
network links and reducing repair bandwidth [25]. Their
design called RCTREE, is able to produce efficient code
regeneration, even in dynamic environments where nodes
enter and depart the network frequently. In [26], Dumin-

3

uco and Biersack studied computational, communication,
and storage costs of a real implementation of random
linear regenerating codes in peer-to-peer systems. They
concluded that with a small increase in storage cost and
computation, a significant reduction of the communica-
tion cost can be achieved.

Regenerating codes also finds security applications in
distributed storage systems. In [27], Pawar et al. derived
the fundamental bounds on the storage capacity that
guarantee against eavesdropping and adversarial attacks.

We want to point out a few differences between this
work and the existing works. First, all the existing works
focus on the constructing regenerating codes optimally.
This requires detail information (which packets each
node has) exchange between the newly joined node
and the nodes it connects to for repairing the data. In
contrast, our work is focused on a randomized approach
in which a newly joined node connects to a few nodes
at random and download data from these nodes. This
method is suboptimal but is scalable since the infor-
mation exchange between nodes is kept to minimal.
Second, in many existing works, the authors examined
the fundamental tradeoff between the repair bandwidth
and storage capacity in a static setting, while our work
considers the dynamics of data replenishment of different
techniques and their effects on data recoverability over
time. Specifically, we show that RLNC-based storage
technique in P2P environments will, on average, result
higher data availability over time than other techniques.

III. SYNCHRONOUS NETWORK MODEL AND DATA

REPLENISHMENT STRATEGIES

Our distributed storage systems of interest are the
types whose files are not stored in their entirety at a
specific location. Rather, they are broken up into many
pieces, coded for redundancy, and dispersed to multiple
locations in a P2P network. When a particular file
is requested, its pieces are downloaded simultaneously
from multiple locations. It can be shown that this method
increases data availability and reduces congestion bottle-
necks [14], [15].

When a peer leaves the network, so does its data. This
effectively reduces the robustness of the system if the
peer never rejoins or rejoins without its data. To avoid
this, a peer can transfer its data to some other peers
before its departure. However, if the data is large, a
peer is less willing to wait until the transfer completes.
Thus, without any proactive data replenishment, the
redundancy level of a piece of data in the network is
continuously reduced. After some period of time, the
data of interest is not likely to be recoverable.

Theoretically, if one is to replace the exact missing
data in the network, the redundancy level would remain
the same. However, this requires global knowledge.
Specifically the system needs to know the departed peer
and its data. Then, a precise coordination and commu-
nication mechanism is needed to reproduce the equiva-
lent state of the network prior to the peer’s departure.
This potentially creates significant communication and
coordination overheads. Instead, we study a more scal-
able, randomized approach that aims to approximately
reproduce the state of the network prior to a peer’s
departures, i.e. data replenishment. In this paper, we
explore techniques for this approach to maintain the data
in the network for as long as possible while minimizing
the coordination and communication overheads.

To capture how data redundancy in the network
evolves over time, it is important to model the peer
arrival and departure processes. For the majority of the
paper, we will study a synchronous model for peer arrival
and departure. In this synchronous model, for every peer
that leaves the network, the system can find another peer
to take over the responsibility of the departed peer. Under
certain setting, this model approximates the dynamics
of a network with constant number of peers since the
departures and arrivals are synchronized. This is the most
interesting model as the advantage of RLNC technique
can be clearly demonstrated over other popular channel
and repetition coding techniques. A brief analysis of a
more general model with Poisson arrival and departures
will also be discussed.

We will describe three replenishment strategies in this
paper. Each strategy has to follow the basic rules which
model the limited communication and storage capacities
of the peers. We abstract the replenishment process as
the following game:

The game involves N peers. The objective of the game
is for the N peers to collectively maintain some given
data, e.g., a file of C bits for as long as possible, subject
to the following rules:

1) Each peer is allowed to carry a maximum of T
bits.

2) At every time step, a peer is selected uniformly at
random to leave the game. Thus the T bits that it
carries will also be deleted.

3) A new peer is recruited to replace the departed
peer. It is allowed to communicate with a maxi-
mum of M peers in an attempt to replenish the
data.

4) Peers can modify the data in any way, as long as
they do not exceed their storage capacity of T bits.

Given these rules, what is the optimal strategy for the
system to maintain a piece of data for as long as

4

possible?
Note that, if M = N − 1, i.e., the new peer is

able to communicate with every other peers, thus it
will know exactly what the missing data is, and will
be able to restore the missing data quite easily. When
M < N − 1, it is impossible to know with certainty
what data is missing. However, some form of data
replenishment might be sufficient to maintain certain
level of redundancy in the system. We now describe three
replenishment strategies:

Repetition Code Based Strategy: To be specific,
suppose a file to be stored is C bits long, and there are
N peers, each can store up to C/2 bits. The repetition
strategy divides the peers into two groups. Peers in one
group are assigned to store the first half of the file, while
peers in the other group store the remaining half. Note
that the redundancy ratio is the total storage divided by
the file size. In this particular case, the redundancy is
NC/2
C = N/2. Whenever a peer departs, a new peer joins,

and communicates with M = 2 other peers selected
uniformly at random. Since the new peer’s capacity is
only C/2 bits, even it contacts two peers, it will only
copy the data from one of these peers, or effectively,
M = 1. The game is played repeatedly until all the
peers have the same piece of data which is either the
first half or the second half of the file. It is not hard to
see that this will happen with probability 1. When this
happens, the file is no longer recoverable even with the
help of all the peers. But before this happens, all the
peers collectively will be able to provide the file.

Reed-Solomon Code Based Strategy: Intuitively, a
better strategy is to employ the standard channel coding
techniques such as the Reed-Solomon code. Using this
strategy, a file of C bits is first divided into three
equal parts, which are then channel coded to produce
N codewords of length C/3 bits. Each peer then keeps
a codeword. The redundancy in this case is N/3. The
property of RS(N, 3) code ensures that a file can be
recovered using any of three distinct codewords [28],
[29]. Now, the game is played in exactly the same way
as before. When a peer departs, the new peer joins, and
is allowed to communicate with M = 2 peers in an
attempt to replenish the missing data. With M = 2,
the new peer would not be able reconstruct the entire
file. Therefore, its best strategy is to choose one of the
codewords from the two contacted peers at random, and
copies this codeword to itself to increase data redundancy
in the system.

Random Linear Network Code Based Strategy:
A yet intuitively better strategy is to employ Random
Linear Network Coding (RLNC) technique [20][30].
Using this strategy, a file of C bits is first divided into

three equal parts. N codewords are produced, each is
a random linear combination of the three original parts
of the file. The N codewords are distributed to each
peer, each keeps a codeword. This process is done at the
beginning when a file is first stored in the network. Note
that the redundancy is N/3, identical to that of RS code
strategy. Mathematically, an n−bit pattern (n << C/3)
can be viewed as an element from a finite field. Thus,
a codeword of C/3 bits which consists of a vector of
n− bit patterns, can be viewed as a vector of elements
from a finite field. Most practical implementations of
network coding use n = 16 or 32. A codeword A is a
random linear combination of codewords B and C, then

A = c1B + c2C, (1)

where ci’s are elements drawn uniformly at random from
a finite field. All the operations in the equation above
are finite field operations. Assuming that coefficients
ci’s are known, it is clear that if all peers have at
least three independent codewords (which are formed
by three linear independent equations), then the file
can be recovered. Note that the number of bits that
represents the coefficients is included in the codewords,
and is negligible for sufficiently long codewords. Now,
the game for RLNC is played a bit different from
the previous two. When a peer departs, the new peer
randomly chooses M = 2 peers, then copies their data.
However, since the new peer’s storage capacity is only
C/3 bits, it generates and stores only one new codeword
as a random linear combination of the two codewords it
just copied, following the Equation (1). Note that RLNC
is performed at the beginning when the a file is stored,
and also at each replenishment.

The game ends at the moment when all the peers
together cannot recover the original file. We will show
theoretically that the RLNC based strategy is much better
than the others, i.e., it will take longer to play the game.
In practice, one can view the distributed storage system
based on the RLNC strategy as letting individual peers
to perform a simple task in a random manner. However
after some time, the data might no longer be recoverable.
Thus, a practical system will allow simple replenish-
ments to continue until the level of redundancy is deemed
to fall below a certain threshold, then a more expensive,
full-blown replenishment is performed to restore the
full level of redundancy. This kind of systems is more
scalable than ones that perform expensive replenishment
at every single peer departure.

Remark: We note that the RLNC-based strategy pre-
serves data in the network exponentially longer, it is
the least efficient of the three in terms of replenishment

5

(repair) bandwidth. This is because the amount of down-
load data is more than a peer’s storage capacity . To a
certain extend, this is related to the unavoidable trade-
off between repair bandwidth and storage capacity as
discussed in [21].

IV. DISCRETE STOCHASTIC MODEL FOR RANDOM

LINEAR NETWORK CODING BASED REPLENISHMENT

STRATEGY

In this section, we describe a discrete stochastic model
for the RLNC based replenishment strategy. This model
is analytically intractable due to a large number of states.
However, it serves as a motivation for the proposed time-
backward technique that approximates the expected time
until the file is no longer recoverable.

As described in Section III, each replenished code-
word can be viewed as a row in a matrix, and is linearly
dependent on the other rows that were used to generate
it. Therefore, over time one would expect the number
of linearly independent rows decreases. Eventually, the
rank of the matrix will reduce below the number of
original data packets. At this point, even when all rows
are used, the data cannot be recovered. Our objective is
to determine the average time until this happens.

To help with the modeling process, we start with the
following claim:

Claim 4.1: Given N codewords, each is a vector of L
elements in a finite field F. A new codeword of the same
length is generated with the elements drawn uniformly at
random from the same field. The probability that this new
codeword is linearly independent from any combination
M codewords from the given N codewords is almost
unity if L and |F| are sufficiently large. 1

Another way to view this is that if the elements are
drawn from R, then a randomly drawn row will definitely
be independent from any other M equations because |R|
is infinite. We will make this approximation to model the
replenishment process as follows.

For simplicity, we will focus on the following simple
scenario. A file is broken up into K parts, then N
codewords are generated by linearly combining these
three parts (codewords) at random. Now, at every time
step, a new peer is chosen uniformly at random to depart.
A new peer joins. Two distinct remaining peers (M = 2)
are then uniformly chosen at random to have their
codewords copied to the new peer. The new peer then
generates its new codeword by linearly combining these
two codewords with random coefficients. In general, if
M ≥ K, it will almost always be possible to recover

1It is straightforward to show that the lower bound for this

probability is 1− (NM)
|F|L−1 .

t= 0, n = 4, k = 5

codeword

1 2 3 4 5 6 7

Time

t= 1, n = 3, k = 4

t= 2, n = 2, k = 5

t= 3, n = 1, k = 6

t= 4, n = 0, k = 7

Fig. 1. Progression of codewords for seven peers, N = 7, M = 2
in discrete time steps. The index t represent time-forward process
while the index n represent time-backward process. Codewords are
represented by the circles. A circle in the current time step that
is connected to two circles in the previous time step, represents a
codeword that is a linear combination of two codewords. Solid circles
are parent codewords that are part of the linear combinations in the
current codewords, while non-solid circles are not part of the linear
combinations of the current codewords.

the file, independent of the number of replenishments.
This is because we can almost always get K linearly
independent codewords, unless with a small probability,
the generated codeword happens to be linearly dependent
on some M ′ < K codewords.

We use the diagram in Figure 1 to visually depict
how the dependencies among the codewords progress
in discrete time steps. The meanings of the solid and
non-solid circles will become clear shortly when we
discuss the time-backward process. For now, at time step
t = 0, there are 7 codewords. Any of these codewords
can be represented as a linearly combination of any
three other codewords due to the initial mixing. At
time step t = 1, the codeword 6 is replaced by a
random linear combination of codewords 5 and 7. At
this stage, the file can be recovered using any triplet of
codewords except (5,6,7) since these three codewords
are not linearly independent. At t = 2, codeword 2 is
replaced by a random linear combination of codewords
1 and 3. As such, one cannot use triplets (5,6,7) or
(1,2,3) to recover the file at this time. The process
repeats, and eventually, all codewords will be some linear
combinations of some two codewords, and the file will
no longer be recoverable.

A discrete time Markov chain representation, specifi-
cally a transition probability matrix can be used describe
this replenishment process. However, a direct application
of this method requires an exponentially large number
of states where a state denotes a configuration in the
diagram. For example, at any time step, there are ap-
proximately N ×

(
N
2

)
states that the chain can transition

6

to, making this approach analytically intractable.
Our contribution is a modeling technique that pro-

duces an approximate but closed form solution for the
expected number of time steps to get from any state
to any other, including the state in which the file is no
longer recoverable. Furthermore, we can bound the error
on this approximate time by a factor of 2. The key to
this modeling technique is to consider a more tractable
time-backward model in which the replenishments are
performed backward in time.

V. TIME-BACKWARD MODEL

To contrast the time-forward model, we use the index
n to denote time step for the time-backward process. In
Fig. 1 shows the time-backward walk begins with n = 0
and end with n = 4. The figure also shows two types of
circles. The solid circles denotes the parent nodes which
are the codewords involving in the linear combination
at different time steps. The non-solid circle represent
codewords that are not parent nodes. Now, let Xn denote
the number of parent nodes at time n where n denotes
the number of time steps from the initial state with the
number of parent nodes X0 = N . For example, in Figure
1, X0 = 7 and X4 = 5. Clearly, all the codewords at
time n = 0 are linearly dependent on the codewords
1,2,3,4,5,6 at time n = 1. All the codewords at time
n = 1, are linearly dependent on the codewords 1, 2, 3,
4, 6 at time n = 2, and so on. With this setup, one can
view the time-backward process as a one dimensional
random walk Xn on 2, 3, . . . , N . For the case where
M = 2, one can write down the following transition
probabilities:

P (Xn+1 = k − 1|Xn = k) =
k

N
(
k − 1

N − 1
)(

k − 2

N − 2
)

P (Xn+1 = k + 1|Xn = k) =
k

N
(
N − k

N − 1
)(
N − 1− k

N − 2
)

P (Xn+1 = k|Xn = k) = 1− k

N
(
k − 1

N − 1
)(

k − 2

N − 2
)

− k

N
(
N − k

N − 1
)(
N − 1− k

N − 2
)

Furthermore, when Xn = M , we can artificially stop
the process, i.e., setting the transition probabilities from
this state to all other states to 0. At this stage, the file
is no longer recoverable.

That said, Xn can only take on values between
M and N , so the size of the transition matrix P is
(N − M + 1) × (N − M + 1), thus is much more
manageable as compared to modeling the time-forward

process.

For example, with M = 2, N = 7, the corresponding
transition probability matrix is:

P =

1 0 0 0 0 0

1/35 4/5 6/35 0 0 0
0 4/35 27/35 4/35 0 0
0 0 2/7 2/3 1/21 0
0 0 0 4/7 3/7 0
0 0 0 0 1 0

Note that this matrix has one recurrent state Xn = 2

(the first row in the matrix), the rest of the states are
transient.

A. Mean Absorption Time

Based on P, one can immediately compute the mean
absorption time, i.e., the expected number of time steps,
starting from an initial transient state to a recurrent state,
using a standard technique. Specifically, let Q be the
submatrix of P that includes only the rows and columns
corresponding to the transient states, then by rearranging
the order of the states, one can write the transition
probability matrix P as:

P =

(
P̃ 0
S Q

)
.

Let
M = (I−Q)−1, (2)

Let Bi be the random variable denoting the absorption
time starting in a transient state i, the the mean absorp-
tion time is:

EBi =
∑
j

Mij (3)

We also include a recursive algorithm for computing the
variance of the absorption time in the appendix.

B. Bounding Absorption Time of Time-Forward Process
with Time-Backward Walk

We have shown that, in contrast to the time-forward
process, modeling the corresponding time-backward
walk is quite tractable. We now show that the expected
absorption time of the time-forward process can be
approximated well by that of the corresponding time-
backward walk. Specifically, we have the following
Proposition:

Proposition 5.1: Let Fi and Bi be the random vari-
ables denoting the absorption times of the time-forward

7

process and time-backward walk, starting in state i,
respectively, then

EBi ≤ EFi < 2EBi (4)

Proof: We first prove the lower bound. As shown in
Fig. 2(a), a sequence of forward walk that results in all
the codewords being the children of only two codewords
must contain a sequence of backward walk that reaches
these two codewords. Thus, EBi ≤ EFi.

Next, we prove the upper bound. First, we examine
the procedure that is used to recognize whether we have
reached the absorption state. The procedure starts with a
time-forward process. At every new time step, we trace
the parent nodes of the current nodes by tracing their
ancestors back in time. During this backward trace, if
at point in time, there are only two ancestors, then we
declare that Fi = n. Note that since we perform this
procedure at every new time step, n is the the first time
that we encounter the absorption state. This trace must
consist exactly one time-backward sequence that leads to
only two parent nodes. Otherwise, n would not be the
first time that the time-forward process encounters the
absorption time. Consequently, EFi < 2EBi.

Alternatively, suppose given that the time-forward pro-
cess is in the absorption state for the first time. We want
to bound how long ago the time-forward process has
started. We can do this by performing a backward walk
starting in the absorption state. During this backward
walk, at the first time that the number of parent nodes
is two, we reset the number of parent nodes to N , and
walk backward again until the number of parent nodes
is two again. Now we argue that the starting time of
the time-forward process cannot be larger than twice the
absorption time for the backward walk since it if is (as
shown in Figure 2(b)), the first time the time-forward
process is in the absorption state, is at the ”reset” state
(in the middle of the Figure 2(b)), contradicting our
assumption that it is at the bottom of the Figure 2(b).
Thus, EFi < 2EBi.

Although the theoretical upper bound on EFi is a bit
loose, simulation results in the Section VI-B reveal that
EFi is quite close to EBi.

VI. EXPONENTIAL RATE FOR DATA REPLENISHMENT

VIA RANDOM LINEAR NETWORK CODING

A. Analysis of Exponential Absorption Time

The time-backward model allows one to compute a
closed-form solution in matrix notations for the expected
absorption time starting from any state using standard
matrix techniques. The matrix notations however often
cannot be used to examine the asymptotic behavior of the

codeword

1 2 3 4 5 6 7

Starting

Two parent codewords

All codewords are linearAll codewords are linear

combination of two

parent codewords

(a)

2
T
a
b
s
o
r
b

Resett k = 7

(b)

Fig. 2. Illustrating diagrams for a) proof of lower bound; (b) proof
of upper bound showing the impossible starting point for a forward
walk .

absorption time as a function of N , K, and M . To this
end, we present a lower bound on the absorption time in
terms of N , K, and M with the following proposition:

Proposition 6.1: Given N , K, and M = 2, the mean
absorption time B for the time backward walk, starting
in the state X0 = N and ending in state Xn = K − 1,

8

is at least:

B >

(
2N−4
N−2

)
− 1−

∑K−1
i=1

(
N−2
i

)2(
N−2
K−1

)2 +
2N − 3

N − 3
. (5)

For a large N , B is bounded below by a simpler
exponential in N (assuming fixed K)

B >
22N−4 − (K − 1)(N − 2)2(K−1)

(N − 2)2(K−1)
. (6)

For K = 3, even a more simplified lower bound is:

B >
4N

16N4
(7)

Proof: We present a proof based on the classical
method for computing hitting time of a discrete Markov
chain. Denote hk as the mean absorption time starting
in the state X0 = k, for k = K,K + 1, . . . , N − 2, and
ending in state Xn = K − 1 for some n. Then, we can
write down the following recursion:

hk = 1 + hk−1
k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)
+ hk+1

k

N

(
N − k

N − 1

)(
N − 1− k

N − 2

)
+ hk

[
1− k

N

(
k − 1

N − 1

)(
k − 2

N − 2

)]
− hk

k

N

(
N − k

N − 1

)(
N − 1− k

N − 2

)
Letting yk = hk+1 − hk, and after some term re-
arrangements, we have

yk−1 = yk
(N − k)(N − 1− k)

(k − 1)(k − 2)
+

N(N − 1)(N − 2)

k(k − 1)(k − 2)

Now, this is a difference equation with the following
initial conditions:

yN−1 = hN − hN−1 = 1, yN−2 = hN−1 − hN−2 =
N

N − 3
.

The first initial condition is true because the first step
always reduces the number of parents nodes by 1. The
second condition is true because in the special state
Xn = N − 1, the chain can either go to (N − 2) or stay
at (N − 1). It will never go back to N . The probability
that the chain will go to N−2 given that it is currently in
N − 1 is the probability that all three selected nodes are
the parent nodes in the current time step. This probability
is (N−1)(N−2)(N−3)

N(N−1)(N−2) = N−3
N . Thus the expected number

of trials before moving to N − 2 is N
N−3 . The difference

equation is of the form:

yk−1 = akyk + bk, (8)

where

ak =
(N − k)(N − 1− k)

(k − 1)(k − 2)
, bk =

N(N − 1)(N − 2)

k(k − 1)(k − 2)
,

for k = K,K + 1, . . . , N − 2.
By performing a few recursions, starting at N −2, we

have

yN−2−k = aN−2aN−3 . . . aN−1−kyN−2 (9)

+ aN−3aN−4 . . . aN−1−kbN−2 + . . .

+ aN−1−kbN−k + bN−1−k,

Now, we have
N−3∑

j=K−1

yj = hN−2 − hK−1 = hN−2, (10)

since hK−1 = 0. The expected number of time steps
before the file is no longer recoverable starting from
X0 = N is therefore:

hN = hN−2 + 1 +
N

N − 3
=

N−3∑
j=K−1

yj + 1 +
N

N − 3
(11)

We now consider

zN−2−k = aN−2aN−3 . . . aN−1−k

+ aN−3aN−4 . . . aN−1−k + · · ·+ aN−1−k

for k = K − 1,K,K + 1, . . . , N − 2.
Note that zk is a modified version of yk as defined in

Equation (9). It is not hard to see that

yk > zk, (12)

since yN−2 > 1 and bk > 1. By (11) and (12), we have

hN > zK−1, (13)

and we will show that zK−1 has a lower bound shown
in Proposition 6.1.

First we note that

ak =
(N − k)(N − 1− k)

(k − 1)(k − 2)
>

(
N − 1− k

k

)2

Now let a′k =
(
N−1−k

k

)2
, we have

zK−1 = aK + aKaK+1 + · · ·+ aKaK+1 . . . aN−2

> a′K + a′Ka′K+1 + · · ·+ a′Ka′K+1 . . . a
′
N−2

=

∑N−2
i=1

∏
k = 1ia′k −

∑K−1
i=1

∏i
k=1 a

′
k∏K−1

k=1 a′k

=

∑N−2
i=1

∏i
k=1 (

N−1−k
k)2 −

∑K−1
i=1

∏i
k=1 (

N−1−k
k)2∏K−1

k=1 (N−1−k
k)2

=

(
2N−4
N−2

)
− 1−

∑K−1
i=1

(
N−2

i

)2(
N−2
K−1

)2 (14)

Adding additional time steps from X0 = N to Xt =
N − 2, to (14), we obtain the absorption time shown
in Proposition 6.1. Subsequent simpler bounds can be
obtained using the Stirling’s formula for large N and

9

noting that (N − 2)(N − 3) . . . (N − 2 − K + 1) <
(N − 2)K−1.
By Proposition 5.1, the absorption time for the time-
forward model must be as large as the absorption time
for the time-backward walk B.

An important result of Proposition 6.1 is that for
fixed K and large N , the absorption time is at least
exponential in N .

Remarks for the case M > 2: Computing the
absorption time for the case M > 2 is related to a very
hard problem in the study of Markov chains. Specifically,
characterizing the asymptotic behavior of a Markov
chain with a general transition probability P is an open
problem. This involves the computation of the second
largest eigenvalue of P which in general is hard to obtain
analytically (though it can be obtained numerically via
algorithms, e.g., eigendecomposition). For M = 2 and
fixed small K, we already showed that the absorption
time is exponential in N , then it is intuitive plausible that
for M > 2, the absorption time would be even longer
since there are more mixing involved. So the absorption
time must be at least exponential as well (perhaps with
higher exponent). While it is possible to obtain a tighter
bound for the case M > 2, we would like to investigate
this scenario in future work.

B. Simulation results for RLNC based data replenish-
ment

In this section, we show the simulation results that
demonstrate the theoretical exponential absorption time
in N for large N and fixed K (M = 2) using the RLNC-
based data replenishment. Furthermore, our simulation
results show that the absorption time of the time-forward
model is very close to that of time-backward model,
i.e. much smaller closer to the lower bound than the
upper bound given in Proposition 5.1. Therefore in many
settings, replacing the time-forward model with the time-
forward model would not sacrifice much accuracy on
how long a piece of data is to remain in the system.
Our specific goal is to examine how long a piece of
data is to remain in the system. Therefore, instead of
using an accurate simulator that reflects time-varying
bandwidth, packet loss, delay, etc. to examine other
performance metrics of a realistic system, we choose
to use a following simple simulation setting. A node
is picked uniformly at random to leave the system. M
out of N − 1 remaining nodes are picked uniformly at
random for data replenishment, i.e., one incoming node
will download data from these M nodes, mix (network
coding) and store the mixed data. In other words, our
simulator is simply an algorithm to simulate the random

processes of picking which nodes to leave and which
remaining nodes to use their data for mixing.

First, we want to show that the absorption time is
indeed exponential in N for fixed M . Figure 3 shows
the log of mean absorption time as a function of N
for both the time-forward and time-backward models,
with fixed M = 2 and K = 3. In this simulation, a
newly arrival node always connects to M = 2 existing
nodes chose uniformly at random (out of N−1 nodes) to
download and mix their data. Originally, there is a total
of three pieces of independent information (K = 3),
i.e., the redundancy ratio is N/3. The absorption time
is the expected time (the number of pairs of departures
and arrivals) until all the nodes collectively contain
exactly two pieces of independent information. From the
previous stochastic model, this happens when the number
of parent nodes equal to two. The graphs in Figure 3
shows two relatively straight line segments. Since the y-
axis is in log scale, this indicates that both the absorption
times of the time-forward and time-backward models are
exponential in the number of nodes used to store the data.
Furthermore, both absorption times are almost identical
in the log scale. This closeness also exhibits in the linear
scale graphs (not shown). It is noted that the absorption
time for the time-forward model is always larger than
that of the time-backward model, following the lower
bound in Proposition 5.1.

4 5 6 7 8 9
0

2

4

6

8

10

12

14

16

Number of storage nodes

Lo
g(

A
bs

or
pt

io
n

tim
e)

Time−forward
Time−backward

Fig. 3. Log of mean absorption time vs. the number of nodes for
N = 4, .., 9,M = 2, and K = 3 for the RLNC strategy.

Next, we investigate the absorption time as a function
of redundancy given a constant number of nodes N = 9.
Specifically, if at the start, there are K < N pieces
of independent information, then the absorption time
is the time that the number of parent nodes reduces
to K − 1. Every newly arrival peer still connects to
M = 2 peers for data replenishment. Figure 4 shows
log of mean absorption time versus K, the number of

10

parent nodes. Again, the absorption time for the time-
forward model is higher than that of the time-backward
model as predicted, but they are close to each other.

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

Number of parent nodes

Lo
g(

A
bs

or
pt

io
n

tim
e)

Time−forward
Time−backward

Fig. 4. Log of mean absorption time vs. the number of parent nodes
for N = 9,M = 2, and K = 2, . . . , 8, for the RLNC strategy.

Figure 5 shows the absorption times (minimum, max-
imum, and median) for the time-forward and time-
backward models when the number of nodes N varies
from 6 to 9, M = 2, and K = 3. Again, they are
very much in agreement with each other. Finally, we

Min

Median

Max

0

2

4

6

8

10

12

14

16

18

20

FW6 BW6 FW7 BW7 FW8 BW8 FW9 BW9

L
o

g
 o

f
a

b
so

rp
!

o
n

 !
m

e

Fig. 5. Log of absorption time vs number of original nodes for
N = 6, .., 9,M = 2, and K = 3 for the RLNC strategy.

also investigate the performance of the RLNC-based
data replenishment scheme when M ≥ 2 connections
are used. Specifically, a newly arrival peer chooses two,
three, or four peers uniformly at random to download the
data and perform replenishment. Figure 6 shows the log
of the absorption time time-backward vs. k, the number
of parent nodes, for the case of N = 8 nodes.

The simulation results show that for larger values of
M , one can expect a longer absorption time. This is
intuitively plausible as a larger M would reduce the
chance of creating dependency at each replenishment
steps.

2 3 4 5 6

0

5

10

15

20

25

Number of parent nodes

Lo
g(

A
bs

or
pt

io
n

tim
e)

2 connections
3 connections
4 connections

(a)

2 3 4 5 6

0

5

10

15

20

25

Number of parent nodes

Lo
g(

A
bs

op
tio

n
tim

e)

2 connections
3 connections
4 connections

(b)

Fig. 6. Log of mean absorption time and its standard deviation vs
number of parent nodes for N = 8,M = 2, 3, 4, and K = M + 1,
for the RLNC strategy with (a) Time-forward model and (b) Time-
backward model.

VII. QUADRATIC RATE FOR DATA REPLENISHMENT

VIA RS AND REPETITION CODES

In this section, we show that using replenishment
based on the RS and repetition codes, the number of
time steps before a file is no longer recoverable is of
O(N2), and thus is less effective than that of the RLNC
based strategy. We begin with the RS based strategy.

A. Absorption Time for RS-based Strategy

A file is divided into three parts, coded using
RS(N, 3). Each peer keeps a codeword, resulting in a
redundancy level of N/3. A new peer is allowed to con-
tact with M = 2 peers. Since with M = 2, the new peer
cannot recover the file, thus it will randomly copy the
codeword from one of the two peers. In this special case,
it is just as good as communicating with only M = 1
peer. Note that it is also straightforward to analyze the
general case where RS(N,K) with (2 < M < K)
is used. In this general case, the new peer still cannot

11

n = 0

n = 1

n = 2

n = 3

n = 4

k = 4

k = 4

k = 5

k = 6

k = 7

codeword

1 2 3 4 5 6 7

Fig. 7. Progression of codewords for seven peers, N = 7, M = 2
in discrete time step n. At each time step, a codeword is replaced by
another.

reconstruct the file, however it is potentially better to
copy the data that is least duplicated among the M
peers, so as to increase the diversity. For simplicity, let us
consider the case where M = 2, or effectively M = 1.

Using the time-backward model, it is straightforward
to model the RS-based strategy as shown in Fig. 7.

Similar to the RLNC strategy, let k denote the num-
ber of parent nodes. A file is then irrecoverable when
k = 2. We can write the mean absorption time using the
recursion as

hk =
k

N
(
k − 1

N − 1
)hk−1 + (1− k

N

k − 1

N − 1
)hk + 1

hk = hk−1 +
N(N − 1)

k(k − 1)
(15)

for k = 3, 4, . . . , N .
Now h2 = 0 hence,

hN =

N−1∑
k=2

N(N − 1)

k(k + 1)

= N(N − 1)

N−1∑
k=2

(
1

k
− 1

k + 1

)
=

(N − 1)(N − 2)

2
(16)

By Proposition 5.1, the absorption time of the time-
forward process cannot be more than hN .

Note that if RS(N, 2) is used, i.e., redundancy is
increased to N/2. Then, using the same method, we have
hN = (N − 1)2. Thus, the absorption time for the time-
forward walk cannot be more than 2hN . For large N , this
is a small improvement over the repetition code strategy
for the same redundancy as shown below.

B. Absorption Time for Repetition Code Strategy

Suppose a file is split into two parts and there are
N peers, each containing either parts of the file. For this
strategy, whenever a peer leaves and a new peer enters, a
peer is picked uniformly at random out of N−1 existing
peers, and its data is copied to the new peer. The process
above is of birth-and-death type on {0, 1, . . . , N} with
two absorbing states, 0 and N . We would like to estimate
the mean absorption time.

In the above birth-and-death process the forward prob-
abilities are given by

pk =
k(N − k)

N(N − 1)
for k = 1, 2, . . . N, and p0 = 0

and the backward probabilities are

qk =
k(N − k)

N(N − 1)
for k = 0, 1, . . . N − 1, and qN = 0.

The expected absorption time hk = Ek[T0 ∧ Tn] solves
the following recurrence equation: For k = 1, 2, . . . , N−
1,

hk = 1 +
k(N − k)

N(N − 1)
hk−1 +

k(N − k)

N(N − 1)
hk+1

+

(
1− 2k(N − k)

N(N − 1)

)
hk

h0 = hN = 0 (17)

The above equation can be rewritten as follows

yk = −(N − 1)

(
1

k
+

1

N − k

)
+ yk−1,

where yk = hk+1 − hk.
Thus

yk = −(N − 1)

(
1 +

1

2
+ · · ·+ 1

k

)
(18)

− (N − 1)

(
1

N − k
+ · · ·+ 1

N − 1

)
+ y0.

Now, by symmetry,

−y0 = yN−1 = −2(N−1)

(
1 +

1

2
+ · · ·+ 1

N − 1

)
+y0

and therefore

y0 = (N − 1)

(
1 +

1

2
+ · · ·+ 1

N − 1

)
. (19)

Plugging y0 into (18), and after some algebraic ma-
nipulations, we obtain:

hk+1 = (N − 1)k

(
1 +

1

2
+ · · ·+ 1

N − 1

)
−(N − 1)(k + 1)

(
1 +

1

2
+ · · ·+ 1

k

)
(20)

+(N − 1)(N − k − 1)

(
1

N − k
+ · · ·+ 1

N − 1

)
.

12

Taking k + 1 = N
2 , we obtain

h

(
N

2

)
≈ ln 2 ·N2 (21)

Remarks on performance of different schemes as
N grows:

To provide some quantitative performance gain of
RLNC over the RS and repetition coding replenishments,
Fig. 8 plots the analytical lower bound of the mean ab-
sorption times (Proposition 6.1) for the RLNC replenish-
ment together with the lower bound of mean absorption
times using the RS coding and the mean absorption time
using the repetition coding replenishments (Eq. (16) and
Eq. (21)).

7 8 9 10 11 12 13 14 15 16 17
0

5000

10000

15000

N

A
bs

or
pt

io
n

tim
e

Random Network Coding Replenishment
Reed−Solomon Coding Replenishment
Repetition Coding Replenishment

Fig. 8. Lower bounds of the mean absorption times vs. the number
of nodes N for different schemes, K = 3.

As seen for large N , RLNC-based strategy outper-
forms the other two strategies significantly. However, one
must caution again that RLNC uses more replenishment
bandwidth than the other two.

VIII. EXTENSION: ASYNCHRONOUS NETWORK

MODEL

In Section III, we consider the network model in
which, peer departures and arrivals are synchronized.
In this section, this assumption is relaxed. Instead, we
model the peer arrivals and departures as Poisson pro-
cesses with rates Nλ and Nµ 2 where N denotes the
current number of peers in the network. It is not hard
to show that when λ < µ, the number of peers will
reduce to zero quickly (linear with N) so that any form
of replenishment will be ineffective in this scenario.

2One can also make the peer arrival rate as λ instead of Nλ to
reflect that the peer arrival rate is independent of the number of
existing peers. However, this implies that no peer will survive after
a short period of time (order of logN), and thus this scenario is not
interesting.

On the other hand, if λ ≥ µ, a piece of data will
be almost certain to remain in the network even when
using the repetition coding technique, a weaker form
of data replenishment. Intuitively, this is because the
amount of storage increases with time outweighs the
data dependency due to replenishment. Therefore, in this
section, we will mainly address this model under the
repetition coding technique for the case when λ ≥ µ,
and show that there is a chance that the data will be
disappeared , but this probability is exponentially small
with N , the number of peers.

In particular, suppose the data is divided into r distinct
equal-sized parts to be replicated at multiple nodes. We
consider a system of m ≥ r peers, each peer stores
exactly one part of the data. Redundancy is created by
having multiple peers store the same part of the data.
Peer arrivals and departures follows Poisson processes.
Whenever a new peer arrives, it picks uniformly at
random a peer from the existing peers and copies its
data. Clearly, the data cannot be recovered if at least one
part of the data is missing in system. We are interested
in computing this irrecoverable probability given that a
distributed storage system begins with N peers.

Remarks: It is important to note that in this setting
(λ ≥ µ), the mean absorption time is infinite. Therefore,
we do not consider the absorption time as a metric in
this setting. To see why, we note that the absorption state
is a transient state, i.e., there is a probability strictly less
than 1 that the chain will reach to the absorption state
(any state in which the number of peers is less than
the number of distinct parts in the file), or equivalently
there is a non-zero probability that the chain will never
reach the absorption state. Clearly, when the chain never
reaches the absorption state (this happens with non-
zero probability), then the absorption time is infinite, so
the mean absorption time is infinite. A simple classical
example to illustrate this is to imagine a particle moving
on a line with probability p to the left and 1 − p to
the right. Suppose the particle starts 4, we ask does it
ever reach 0? The answer depends on p. If p > 1/2, the
answer is ”yes”, i.e. with probability 1 that the particle
will eventually reach 0. On the other hand, if p ≥ 1/2,
then the particle might reach 0 with a positive probability
but it is not 1. Thus, there is a positive probability that
the particle will move to infinity without ever returning
to 0. Therefore the absorption time is infinite.

One important observation is that this problem can be
viewed as a classical parallel queuing system consisting
of r statistically independent queues with different arrival
and service rates. The number of packets in each distinct
queue represent the number of peers storing the same
parts of the data. Specifically, let n1, n2, . . . , nr be

13

the queue sizes, i.e., the number of peers carrying the
data parts 1 to r at any point in time. Then, it is
sufficient to analyze the occupancy of any one queue.
The departure rate of peers storing parts i is kiµ/N .
The arrival rate of peer of type i is then kiλ/N . We
now analyze only one queue of interest, say queue i.
To simplify the notation, let us denote n = ni as the
number of packets in the queue i. Then, the number of
packets in the queue (number of peers carrying the same
parts of the data) evolves according to a birth-and-death
process on {0, 1, . . . } with the recurrence state 0. It has
the transition probabilities:

p(n, n− 1) =
nµ

nλ+ nµ
=

µ

λ+ µ
(22)

and
p(n, n+ 1) =

nλ

nλ+ nµ
=

λ

λ+ µ
(23)

Let a(n) be the probability that the system starting at
state n ever reach state 0. Note that a(0) = 1 and the
values of a(n) is the same whether one considers the
continuous-time or discrete-time system. It is satisfied
the following recursive equation:

a(n) = a(n− 1)p(n, n− 1) + a(n+ 1)p(n, n+ 1)

= a(n− 1)
µ

λ+ µ
+ a(n+ 1)

λ

λ+ µ
, n ≥ 1 (24)

Equation 24 can be rewritten as

a(n)− a(n+ 1) =
µ

λ
[a(n− 1)− a(n)], n ≥ 1 (25)

We obtain

a(n)− a(n+ 1) =
µn

λn
[a(0)− a(1)] (26)

Hence,

a(n+ 1) = a(n+ 1)− a(0) + a(0)

=

n∑
j=0

[a(j + 1)− a(j)] + a(0)

= [a(1)− 1]

n∑
j=0

(µ
λ

)j
+ 1 (27)

where the j = 0 term of the sum equals 1 since the
chain starts in the ending state 0. We can find a non-
trivial solution if the sum converges, i.e. the system is
transient if and only if

∞∑
j=0

(µ
λ

)j
< ∞ (28)

The sum converges if and only if µ < λ. For the case
of µ ≥ λ, the system is recurrent with recurrent state 0,

and the data will disappear quickly (linear with n). Thus
we only consider the case λ > µ.

We note that in this case the mean absorption time is
infinite since the Markov chain is transient. So a better
metric is the probability that the number of packets in
the queue will reach zero, given that there are n packets
initially.

Since a(n) is the probability of absorption, we look
for a solution of the form a(n) = θn, where 0 ≤ θ ≤ 1.
Substitute this into Equation 24 we have:

θn = qθn−1 + pθn+1 (29)

where
q =

µ

λ+ µ

and
p =

λ

λ+ µ

Cancel out the power θn−1, the Equation 29 now be-
comes

θ = q + pθ2

which has 2 roots
θ1 = 1

and
θ2 =

q

p
=

µ

λ
< 1

Thus

a(n) = c1θ
n
1 + c2θ

n
2 = c1 + c2θ

n
2 = c1 + c2

(µ
λ

)n
(30)

We can find the value of c1 and c2 based on two initial
conditions:

1 = a(0) = c1 + c2

and
0 = a(N) = c1 + c2

(µ
λ

)N

where N is very large. Then,

c1 = −
(µλ)

N

1− (µλ)
N

≈ 0

c2 =
1

1− (µλ)
N

≈ 1

Therefore,
a(n) =

(µ
λ

)n
(31)

Note that this probability is exponentially small with n,
the initial number of peers. Now, consider a system of
r queues, each queue contains nk pieces of data type
k, where N =

∑r
k=1 nk is the total number of data

pieces stored in the system. Since all the queues are

14

independent, the probability that a piece of data is not
recoverable is:

P =

r∑
i=1

(
r

i

) i∏
k=1

a(nk) =

r∑
i=1

(
r

i

) i∏
k=1

(
µk

λk

)nk

(32)

IX. CONCLUDING REMARKS

In conclusion, we suggest that, to maintain data for
as long as possible in a distributed setting with limited
peer communication and storage, it is better to mix the
data as proposed in the RLNC strategy. We show that
the average number of replenishments before a file is no
longer recoverable is exponential in the number of peers
used store the data distributedly for RLNC-based strategy
and quadratic for other traditional strategies. We also
propose a novel time-backward technique to approximate
the mean absorption time. We believe this technique is
general as such, it can be applied to other problems
such as gene population in which, it is intractable to
directly model an exponentially large number of states
using Markov chain representations.

REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker,
“A scalable content addressable network,” in Proceedings of
ACM SIGCOMM, August 2001.

[2] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet
applications,” in Proceedings of ACM SIGCOMM, September
2001.

[3] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and
J. Kubiatowicz, “Tapestry: A resilient global-scale overlay
for service deployment,” IIEEE Journal on Selected Areas in
Communications, January 2004.

[4] D.G. Andersen, Resilient overlay networks, Master Thesis,
Massachusetts Institute of Technology, 2001.

[5] http://www.bittorrents.com.
[6] http://www.kazaa.com.
[7] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed ob-

ject location and routing for large-scale peer-to-peer systems,”
in IFIP/ACM International Conference on Distributed Systems
Platforms, November 2001.

[8] A. Rowstron, A-M. Kermarrec, M. Castro, and P. Druschel,
“Scribe: The design of a large-scale event notification infras-
tructure,” in NGC, November 2001.

[9] A. Gupta, D. Agrawal, and A. Abbadi, “Approximate range
selection queries in peer-to-peer systems,” in VLDB Conference
on Innovative Data Research, 2003.

[10] K. Sankaralingam, S. Sethumadhavan, and J. C. Browne, “A
peer-to-peer framework for caching range queries,” in IEEE In-
ternational Symposium on High-Performance Distributed Com-
puting, June 2003.

[11] C. Schmidt and M. Parashar, “Flexible information discovery
in decentralized distributed systems,” in IEEE International
Symposium on High-Performance Distributed Computing, June
2003.

[12] O. Sahin, A. Gupta, D. Agrawal, and A. Abbadi, “A peer-to-peer
framework for caching range queries,” in IEEE International
Conference on Data Engineering (ICDE), 2004.

[13] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weahter-
spoon, and J. Kubiatowicz, “Maintenance-free global data
storage,” IEEE Internet Computing, 2001.

[14] Kien Nguyen, Thinh Nguyen, and Sen-Ching Cheung, “Video
streaming with network coding,” Journal of Signal Processing
Systems, vol. 59, pp. 319–333, 2010, 10.1007/s11265-009-
0342-7.

[15] Kien Nguyen, Thinh Nguyen, and Y. Kovchegov, “A p2p video
delivery network (p2p-vdn),” in International Conference on
Computer and Communication Networks, 2009, pp. 1 –7.

[16] S. Acendanski, S. Deb, M. Medard, and R. Koetter, “How good
is random linear coding based distributed networked storage?,”
in NetCod, 2005.

[17] A.G. Dimakis, P.B. Godfrey, Yunnan Wu, M.J. Wainwright,
and K. Ramchandran, “Network coding for distributed storage
systems,” Information Theory, IEEE Transactions on, vol. 56,
no. 9, pp. 4539 –4551, Sept 2010.

[18] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decen-
tralized erasure codes for distributed networked storage,” IEEE
Transactions on Information Theory, June 2006.

[19] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. Wainwright, and
K. Ramchandran, “Network coding for distributed storage
systems,” submitted for publication.

[20] R. Ahlswede, N. Cai, R. Li, and R. W. Yeung, “Network
information flow,” IEEE Trans. Inform. Theory, vol. 46, pp.
1204–1216, July 2000.

[21] Alexandros G. Dimakis, Kannan Ramchandran, Yunnan Wu,
and Changho Suh, “A survey on network codes for distributed
storage,” Proceedings of the IEEE, vol. 99, no. 3, March 2011.

[22] Yunnan Wu and Alexandros G. Dimakis, “Reducing repair traf-
fic for erasure coding-based storage via interference alignment,”
in Proceedings of the 2009 IEEE international conference on
Symposium on Information Theory - Volume 4, Piscataway, NJ,
USA, 2009, ISIT’09, pp. 2276–2280, IEEE Press.

[23] Yunnan Wu, Ros Dimakis, and Kannan Ramch, “Deterministic
regenerating codes for distributed storage,” in in Allerton Con-
ference on Control, Computing, and Communication, (Urbana-
Champaign, IL, 2007.

[24] Yunnan Wu, “Existence and construction of capacity-achieving
network codes for distributed storage,” IEEE J.Sel. A. Commun.,
vol. 28, pp. 277–288, February 2010.

[25] Jun Li, Shuang Yang, Xin Wang, and Baochun Li, “Tree-
structured data regeneration in distributed storage systems with
regenerating codes,” in Proceedings of the 29th conference
on Information communications, Piscataway, NJ, USA, 2010,
INFOCOM’10, pp. 2892–2900, IEEE Press.

[26] A. Duminuco and E. Biersack, “A practical study of regen-
erating codes for peer-to-peer backup systems,” in Distributed
Computing Systems, 2009. ICDCS ’09. 29th IEEE International
Conference on, 2009, pp. 376 –384.

[27] Sameer Pawar, Salim Y. El Rouayheb, and Kannan Ram-
chandran, “Securing dynamic distributed storage systems
against eavesdropping and adversarial attacks,” CoRR, vol.
abs/1009.2556, 2010.

[28] S. Lin and D. Costello, Error Control Coding (2nd Edition),
Prentice Hall, 2004.

[29] S. Wicker, Error Control Systems for Digital Communication
and Storage, Prentice Hall, 1994.

[30] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi,
and B. Leong, “A random linear network coding approach to
multicast,” IEEE Transactions on Information Theory, vol. 52,
no. 10, October 2006.

15

Kien Nguyen received the B.S. degree from Hanoi University
of Technology, the M.S. from National University of Singapore in
2005, and the Ph.D. in Electrical Engineering from the Oregon
State University in 2010. His research interests are video streaming,
distributed storage and streaming systems, peer-2-peer networks,
network coding, wireless ad-hoc and sensor networks, and wireless
communications.

Thinh Nguyen received the B.S. degree from the University
of Washington, Seattle, in 1995 and the Ph.D. degree from the
University of California, Berkeley, in 2003. He is currently an
Associate Professor with the School of Electrical Engineering
and Computer Science, Oregon State University, Corvallis. He
is interested in all things stochastic with applications to signal
processing, distributed systems, wireless networks, network coding,
and quantum walks. Dr. Nguyen has served as Associate Editor
for the IEEE Transactions on Circuits and Systems for Video
Technology and the IEEE Transactions on Multimedia.

Yevgeniy Kovchegov received a BA degree in mathematics from
NYU in 1997, MS degree in mathematics from Stanford in 2000, and
a Ph.D in mathematics from Stanford in 2002. After spending three
years at UCLA math department as a visiting faculty, Kovchegov
joined Oregon State University (OSU) Department of Mathematics
as a tenure-track assistant professor. In 2011 Kovchegov was
promoted to the rank of associate professor with indefinite tenure.
Yevgeniy Kovchegov works in the field of probability and stochastic
processes. His research interests include the mathematical models
of statistical mechanics, interacting particle systems, quantum
computation, self-similarity, reinforced processes, and percolation.
Kovchegov’s work is centered around the following topics: mixing
times; extending the probabilistic coupling method; orthogonal
polynomials in stochastic processes, probability and statistics;
quantum walks and quantum computation; occupation times; hitting
times; chaos and fractals; applications of probability theory in
computer and wireless networks, network coding, economics,
chemistry, and environmental sciences.

Viet Le received the B.S. degree from Hanoi University of
Technology and the M.S in Computer Science from the Oregon
State University in 2010. He’s interested in database and distributed
systems. He is currently a software engineer at IBM.

