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In recent years, multimedia applications over the Internet become increasingly popular. However,

packet loss, delay, and time-varying bandwidth of the Internet have remained the major prob-

lems for multimedia streaming applications. As such, a number of approaches, including network

infrastructure and protocol, source and channel coding have been proposed to either overcome

or alleviate these drawbacks of the Internet. In this paper, we propose the MultiTCP system,

a receiver-driven, TCP-based system for multimedia streaming over the Internet. Our proposed

algorithm aims at providing resilience against SHORT TERM insufficient bandwidth by using
MULTIPLE TCP connections for the same application. Our proposed system enables the appli-

cation to achieve and control the desired sending rate during congested periods, which cannot be
achieved using traditional TCP. Finally, our proposed system is implemented at the application

layer, and hence, no kernel modification to TCP is necessary. We analyze the proposed system,
and present simulation and experimental results to demonstrate its advantages over the traditional
single TCP based approach.

Categories and Subject Descriptors: C.2 [Computer-Communication Networks]: General

General Terms: Design, Algorithm

Additional Key Words and Phrases: Multimedia streaming

1. INTRODUCTION

In recent years, there have been an explosive growth of multimedia applications over
the Internet. All major news networks such as ABC and NBC now provide news
with accompanying video clips. Several companies, such as MovieFlix [MovieFlix ],
also offer video on demand to broadband subscribers. However the quality of videos
being streamed over the Internet is often low due to insufficient bandwidth, packet
loss, and delay. To view a DVD quality video from an on demand video service,
a customer must download either the entire video or a large portion of the video
before starting to playback in order to avoid pauses caused by insufficient bandwidth
during a streaming session. Thus, many techniques have been proposed to enable
efficient multimedia streaming over the Internet. The source coding community has
proposed scalable video [Tan and Zakhor 1999][Reyes et al. 2000], error-resilient
coding, and multiple description [Reibman 2002] for efficient video streaming over
the best-effort networks such as the Internet. A scalable video bit stream is coded
in such a way to enable the server to easily and efficiently adapt the video bit rate
to the current available bandwidth. Error-resilient coding and multiple description
are aimed at improving the quality of the video in the presence of packet loss and
long delay caused by retransmission. Channel coding techniques are also used to
mitigate long delay for real-time applications such as video conferencing or IP-
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telephony [Ma and Zarki 1998]. The main disadvantages of these approaches are
first, specialized codecs are required and second, their performances are highly
affected by the network traffic conditions.

From a network infrastructure perspective, Differentiated Services [Blake et al.
1998][Wang 2001] and Integrated Services [White 1997][Wang 2001] have been pro-
posed to improve the quality of multimedia applications by providing preferen-
tial treatments to various applications based on their bandwidth, loss, and delay
requirements. More recently, path diversity architectures that combine multiple
paths and either source or channel coding have been proposed to provide larger
bandwidth, and to combat packet loss efficiently [Nguyen and Zakhor 2004][Apos-
tolopoulos 2001][Apostolopoulos 2002]. Nonetheless, these approaches cannot be
easily deployed as they require significant changes in the network infrastructure.

The most straightforward approach is to transmit standard-based multimedia via
existing IP protocols. The two most popular choices are TCP and UDP. A single
TCP connection is not suitable for multimedia transmission because its congestion
control may cause a large fluctuation in the sending rate. Unlike TCP, an UDP-
based application is able to set the desired sending rate. If the network is not
too much congested, the UDP throughput at the receiver would approximately
equal to the sending rate. Since the ability to control the sending rate is essential
to interactive and live streaming applications, majority of multimedia streaming
systems use UDP as the basic building block for sending packets over the Internet.
However, UDP is not a congestion aware protocol since it does not reduce its
sending rate in presence of network congestion, and therefore potentially results
in a congestion collapse. Congestion collapse occurs when a router drops a large
number of packets due to its inability to handle a large amount of traffic from many
senders at the same time. TCP-Friendly Rate Control Protocol (TFRC) has been
proposed for multimedia streaming, using UDP however it also incorporates TCP-
like congestion control mechanism [Floyd et al. 2000]. Another drawback of using
UDP is its lack of reliable transmission and hence the application must deal with
the packet loss.

Based on these drawbacks of UDP, we propose a new receiver-driven, TCP-based
system for multimedia streaming over the Internet. The first version of this work
was published in [Nguyen and Cheung 2005]. In particular, our proposed system,
called MultiTCP, is aimed at providing resilience against short-term insufficient
bandwidth by using multiple TCP connections for the same application. Further-
more, our system enables the application to achieve and control the sending rate
during congested period, which in many cases, cannot be achieved using a single
TCP connection. Finally, our proposed system is implemented at the application
layer, and hence, no kernel modification to TCP is necessary. We note that our
proposed MultiTCP is not designed for interactive applications such as video con-
ferencing applications. The main difficulties in designing interactive applications
over the Internet such as video conferencing are not only sufficient bandwidth, but
also the stringent delay requirement. If a packet loss occurs, there may not be
time to retransmit the lost packet due to long round trip time, e.g., 100 ms for
two typical computers in the North America. Therefore, FEC or appropriate con-
cealment schemes at the receiver are often used in conjunction with UDP to avoid
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retransmissions. That said, our system is most appropriate for live and non-live
video streaming applications in which, the user can tolerate some initial delay.
The rest of the paper is organized as follows. In Section 2, we describe other

related works that utilize multiple network connections. In Section 3, we describe
the two major drawbacks of using TCP for multimedia streaming: short-term in-
sufficient bandwidth and lack of precise rate control. These drawbacks motivate
the use of multiple TCP connections in our proposed system, which is described
in Section 4. In Section 5, we demonstrate the performance of our system through
NS simulations [Information Sciences Institute ] and actual Internet experiments.
Finally, we summarize our contributions in Section 6.

2. RELATED WORK

Our work has its root in the earlier work done by Crowcroft [Crowcroft and P.Oeschlin
1998]. In this work, the receiver window size is adjusted to achieve weighted propor-
tional fair sharing web flows in order to provide end-to-end differentiated services.
In similar spirit, the authors in [Semke et al. 1998] propose a technique for auto-
matic tuning of receiver window size in order to increase the throughput of TCP.
Our work is similar to these work in the sense that our algorithm also employs
the receiver window size to achieve the desired throughput using multiple TCP
connections for a multimedia streaming session.
There have been previous work on using multiple network connections to transfer

data. For example, path diversitymultimedia streaming framework [Apostolopoulos
2001][Apostolopoulos 2002][Nguyen and Zakhor 2004] provide multiple connections
on different path for the same application. These work focus on either efficient
source or channel coding techniques in conjunction with sending packets over mul-
tiple approximately independent paths. On the other hand, our work aims to
increase and maintain the available throughput using multiple TCP connections on
a single path.
In a similar approach, Chen et al. use multiple connections on a single path

to improve throughput of a wired-to-wireless streaming video session [Chen and
Zakhor 2004][Chen and Zakhor 2005]. This work focuses on obtaining maximum
possible throughput and is based on TFRC [Floyd and Fall 1999] rather than TCP.
In subsequent work [Chen and Zakhor 2006], Chen et al. use multiple TCP con-
nections to maximize the throughput for wireless network. On the other hand, our
work focuses on eliminating short term throughput reduction of TCP due to burst
traffic and providing precise rate control for the application. As such, the analysis
and rate control mechanism in our paper are different from those in [Chen and
Zakhor 2004][Chen and Zakhor 2005][Chen and Zakhor 2006].
Another related work is Streaming Control Transmission Protocol (SCTP)[Internet

Engineering Task Force 2000], designed to transport PSTN signaling messages over
IP networks. SCTP allows user’s messages to be delivered within multiple streams,
but it is not clear how it can achieve the desired throughput in a congestion sce-
nario. In addition, SCTP is a completely new protocol, as such the kernel of the
end systems need to be modified.
There are also other work related to controlling TCP bandwidth. For example,

the works in [Mehra and Zakhor 2003][P.Mehra and A.Zakhor 2005] focus on al-
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locating bandwidth among flows with different priorities. This work assumes that
the bottleneck is at the last-mile and that the required throughput for the desired
application is achievable using a single TCP connection. On the other hand, our
work does not assume the last-mile bottleneck, and the proposed MultiTCP system
can achieve the desired throughput in variety of scenarios.
The work in [Dong et al. 2002] uses the receiver advertised window to limit the

TCP video bandwidth in VPN link between video and proxy servers. The authors
in [Liang et al. 2002] proposed an approach that leads to real-time applications
that are responsive to network congestion, sharing the network resources fairly
with other TCP applications.

3. DRAWBACKS OF TCP FOR MULTIMEDIA STREAMING

TCP is unsuitable for multimedia streaming due partly to its fluctuating throughput
and its lack of precise rate control. TCP is designed for end-to-end reliability
and fast congestion avoidance. To provide end-to-end reliability, a TCP sender
retransmits the lost packets based on the packet acknowledgment from a TCP
receiver. To react quickly to network congestion, TCP controls the sending rate
based on a window-based congestion control which works as follows. The sender
keeps track of a window of maximum number of unacknowledged packets, i.e.,
packets that have not been acknowledged by the receiver. In the steady state,
the sender increases the window size W by 1/W upon successfully receiving an
acknowledged packet, or equivalently, it increases the sending rate by one packet
per round trip time. Upon encountering a loss, the window size is reduced by half,
or equivalently, the sending rate is cut in half. In TCP, the receiver has the ability
to set a maximum window size for the unacknowledged packets, hence imposing a
maximum sending rate. Thus, in a non-congestion scenario, the application at the
receiver can control the sending rate by setting the window size appropriately. On
the other hand, during congestion, the actual throughput can be substantially low
as the maximum window size may never be reached.
Based on the above discussion, we observe that a single packet loss can drop

the TCP throughput abruptly and the low throughput lingers due to the slow in-
crease of the window size. If there is a way to reduce this throughput reduction
without modifying TCP, we can effectively provide higher throughput with proper
congestion control and reliable transmission. In addition, if there is a way to con-
trol the TCP sending rate during congestion, then TCP can be made suitable for
multimedia streaming. Unlike non real-time applications such as file transfer and
email, precise control of sending rate is essential for interactive and live streaming
applications due to several reasons. First, sending at too high a rate can cause
buffer overflow in certain receivers with limited buffer such as mobile phones and
PDAs. Second, sending at a rate lower than the coded bit rate results in pauses
during a streaming session, unless a large buffer is accumulated before playback.
In the following section, we propose a system that can dynamically distribute

streaming data over multiple TCP connections per application to achieve higher
throughput and precise rate control. The control is performed entirely at the re-
ceiver side and thus, suitable for streaming applications where a single server may
serve up to hundreds of receivers simultaneously.
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Fig. 1. MultiTCP system diagram.

4. MULTITCP OVERVIEW AND ANALYSIS

As mentioned in Section 3, the throughput reduction of TCP is attributed to the
combination of (a) reduction of the sending rate by half upon detection of a loss
event and (b) the slow increase of sending rate afterward or congestion avoidance.
To alleviate this throughput reduction, one can modify TCP to (a) reduce the
sending rate by a small factor other than half upon detection of a loss, or (b)
speed up the congestion avoidance process, or (c) combine both (a) and (b). There
are certain disadvantages associated with these approaches. First, these changes
affect all TCP connections and must be performed by recompiling the OS kernel of
the sender machine. Second, changing the decreasing multiplicative factor and the
additive term in isolated machines may potentially lead to instability of TCP in a
larger scale of the network. Third, it is not clear how these factors can be changed
to dynamically control the sending rate.

As such, we propose a different approach: instead of using a traditional, single
TCP connection, we use multiple TCP connections for a multimedia streaming ap-
plication. Our approach does not require any modification to the existing TCP
stack or kernel. Figure 1 shows a diagram of our proposed MultiTCP system. The
MultiTCP control unit is implemented immediately below the application layer and
above the transport layer at both the sender and the receiver. The MultiTCP con-
trol unit at the receiver receives the input specifications from streaming application
which include the streaming rate. The MultiTCP control unit at the receiver mea-
sures the actual throughput and uses this information to control the rate precisely
by using multiple TCP connections and dynamically changing receiver’s window
size for each connection. In the next two sections, we show how multiple TCP
connections can mitigate the short term throughput reduction problem in a lightly
loaded network and describe our mechanism to maintain the desired throughput in
a congested network.

4.1 Alleviating Throughput Reduction In Lightly Loaded Network

In this section, we analyze the throughput reduction problem in a lightly loaded
network and show how it can be alleviated by using multiple TCP connections.

When there is no congestion, the receiver can control the streaming rate in a single
TCP connection quite accurately by setting the maximum the receiver’s window
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Fig. 2. Illustrations of throughput reduction for (a) one TCP connections with single loss; (b) two
TCP connections with single loss; (c) two TCP connections with double losses.

size Wmax. The effective throughput during this period is approximately equal to

T =
WmaxMTU

RTT
(1)

where RTT denotes the round trip time, including both propagation and queuing
delay, between the sender and the receiver. MTU denotes the TCP maximum
transfer unit, typically set at 1000 bytes. If a loss event occurs, the TCP sender
instantly reduces its rate by half as shown in Figure 2(a). As a result, the area
of the inverted triangular region in Figure 2(a) indicates the amount of data that
would have been transmitted if there were no loss event. Thus, the amount of data
reduction D equals to

D = (
1

2
)(
WmaxMTURTT

2
)(
Wmax

2RTT
) =

W 2
maxMTU

8
(2)

Note that the time it takes for the TCP window to increase fromWmax/2 toWmax

equals to WmaxRTT/2 since the TCP window increases by one every round trip
time. Clearly, if there are a burst of loss events during a streaming session, the
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total throughput reduction can potentially be large enough to deplete the start up
buffer, causing pauses in the playback.
Now let us consider the case where two TCP connections are used for the same

application. Since we want to keep the same total streaming rate Wmax/RTT as
in the case of one TCP connection, we set W ′

max = Wmax/2 for each of the two
connections as illustrated in Figure 2(b). Assuming that only a single loss event
happens in one of the connections, the total throughput reduction would be equal
to

D
′

=
(W ′2

maxMTU)

8
=
(W 2

maxMTU)

32
=

D

4
(3)

Equation (3) shows that, for a single loss event, the throughput reduction of using
two TCP connections is four times less than that of using a single TCP connection.
Even in the case when there are simultaneously losses on both connections as indi-
cated in Figure 2(c), the throughput reduction is half of that of the single TCP. In
general, let N denote the number of TCP connections for the same application and
n be the number of TCP connections that suffer simultaneous losses during short
congestion period, the amount of throughput reduction equals to

DN =
nW 2

maxMTU

N2
(4)

As seen in Equation (4), the amount of throughput reduction is inversely propor-
tional to the square of the number of TCP connections used. Hence, using a only
small number of TCP connections can greatly improve the resilience against TCP
throughput reduction in lightly loaded network.

4.2 Control Streaming Rate in a Congested Network

In the previous section, we discuss the throughput reduction problem in a lightly
loaded network and show that using multiple TCP connections can alleviate the
problem. In a lightly loaded network condition, one can set the desired throughput
Td by simply setting the receiver window Wmax = TdRTT/MTU . However, in
a moderately or heavily congested network, the throughput of a TCP does not
depend on Wmax, instead, it is determined by the degree of congestion. This is
due to the fact that in a non-congested network, i.e. without packet loss, TCP
rate would increase additively until WmaxMTU/RTT is reached, after that the
rate would remain approximately constant at WmaxMTU/RTT . However, in a
congested network, a loss event would most likely occur before the sending rate
reaches its limit and cut the rate by half, resulting in a throughput lower than
WmaxMTU/RTT .
A straightforward method for achieving a higher throughput than the available

TCP throughput would be to use multiple TCP connections for the same applica-
tion. Using multiple TCP connections results in a larger share of the fair band-
width. Hence, one may argue that this is unfair to other TCP connections. On the
other hand, one can view this approach as a way of providing higher priority for
streaming applications over other non time-sensitive applications under resource
constraints. We also note that one can use UDP to achieve the desired throughput.
However unlike UDP, using multiple TCP connections can provide (a) congestion
control mechanism to avoid congestion collapse, and (b) automatic retransmission
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of lost packets. Assuming multiple TCP connections are used, there are still issues
associated with providing the desired throughput in a congested network.
In order to maintain a constant throughput during a congested period, one pos-

sible approach is to increase the number of TCP connections until the measured
throughput exceeds the desired one. This approach has a few drawbacks. First,
the total throughput may still exceed the desired throughput by a large amount
since the sending rate of each additional TCP connection may be too high. Sec-
ond, if only a small number of TCP connections are required to exceed the desired
throughput, this technique may not be resilient to the sudden increase in traffic
as analyzed in Section 4.1. A better approach is to use a larger number of TCP
connections but adjust the receiver window size of each connection to precisely con-
trol the sending rate. It is undesirable to use too many TCP connections as they
use up system resources and may further aggravate an already congested network.
In this paper, we consider two algorithms: the first(AdjustWindowSize()) algo-
rithm maintains a fixed number of TCP connections while varying the size of the
receiver windows of each TCP connection to achieve the desired throughput. The
second algorithm dynamically changes the number of TCP connections based on
the network congestion.

4.2.1 AdjustWindowSize Algorithm. Our AdjustWindowSize algorithm uses
a fixed, default number of TCP connections and only varies receiver window size
to obtain the desired throughput Td. Hence, the inputs to the algorithm are the
desired user’s throughput Td and the number of TCP connections. Below are the
steps of our algorithm.
We now discuss each step of the algorithm in detail and show how to choose
appropriate values for the parameters. In the initialization steps, we found empir-
ically, N = 5 works well in many scenarios. If user does not specify the number
of TCP connections, the default value is set to N = 5. In step 2, we assume that
the network is not congested initially, hence the total expected throughput and the
total receiver window size Ws would equal to Td and TdRTT/MTU respectively.
Note that the average RTT can be obtained easily at the receiver.
In the running steps, δ should be chosen to be several times the round trip time

since the sender cannot respond to the receiver changing window size for at least
one propagation delay, or approximately half of RTT. As a result, the receiver may
not observe the change in throughput until several RTTs later. In most scenar-
ios, we found that setting the measuring interval δ in the range of (6RTT, 8RTT )
works quite well in practice. In step 3, the algorithm tries to increase the through-
put by increasing the window size of each connection equally when the measured
throughput is still smaller than the desired throughput. In this step, we also place
a restriction on the maximum total receiver window size. In the congestion state,
increasing the receiver window size will not increase the throughput since a packet
loss is most likely to happen and thus, reduces the window by half before the the
size of the congestion window reaches the receiver window size. Therefore, increas-
ing the receiver window size much larger than Wmax =

4TmRTT
3MTU

[Kurose and Ross
2005]-the average congestion window size under congestion, would not increase the
TCP throughput. However, if we let wi increase without bound, there will be a
spike in throughput once the network becomes less congested. To prevent unnec-
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Algorithm 1 AdjustWindowSize(numConn)

1: N = numConn {Initialization steps}
2: wi =

TdRTT
(MTU)N for connection i

{Running steps: The actual throughput Tm is measured at at every δ second
and the algorithm dynamically changes the window size based on the measured
Tm.}

3: if Tm < Td and
∑N

i wi ≤
fTdRTT

MTU
then

4: Ds = d|Td − Tm|RTT/MTUe
5: Sort the connections in the increasing order of wi

6: while Ds > 0 do

7: wi = wi + 1
8: Ds = Ds − 1
9: i = (i+ 1) mod N
10: end while

11: else if Tm > Td + λ then

12: Sort the connections in the decreasing order of wi

13: while Ds > 0 do

14: wi = wi − 1
15: Ds = Ds − 1
16: i = (i+ 1) mod N
17: end while

18: else

19: keep the receiver window size the same.
20: end if

essary throughput fluctuation, our algorithm limits the sum of receiver window
size Ws to f

TdRTT
MTU

where f > 4/3 is used to control the height of the throughput
spike. Larger and small values of f result in higher and lower throughput spikes
respectively, as discussed later in Section 5.
Next, step 4 to ste 9, the algorithm tries to increase the window size wi for

a subset of connections if the measured throughput is smaller than the desired
throughput. There exists an optimal way for choosing a subset of connections for
changing the window size and the corresponding increments in order to achieve the
desired throughput. If the number of chosen connections for changing the window
size and the corresponding window increments are small, then the time for achieving
the desired throughput maybe longer than necessary. On the other hand, choosing
too large a number of connections and increments may result in higher throughput
than necessary. For example, assuming we have five TCP connections, each with
RTT of 100 milliseconds, MTU equals to 1000 bytes, and the network is in non-
congestion state, then changing the receiver window size of all the connections
by one can result in a total change in throughput of 5(1000)/.1 = 50 Kbytes per
second. In a congested scenario, the change will not be that large, however, one
may still want to control the throughput change to a certain granularity. To avoid
these drawbacks, our algorithm chooses the number of connections for changing
their window size and the corresponding increments based on the current difference
between the desired and measured throughput.
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The reasoning behind the algorithm is as follows. Consider the case when Tm <
Td. If there is no congestion, setting the sum of window size increments Ds from all
the connections to d(Td−Tm)RTT/MTUe would result in a throughput increment
of Td−Tm, hence the desired throughput would be achieved. If there is a congestion,
this total throughput increment would be smaller. However, subsequent rounds
of window increment would allow the algorithm to reach the desired throughput.
This method effectively produces a large or small total window increment at every
sampled point based on a large or small difference between the measured and desired
throughput, respectively. Steps 6 to 9 in the above algorithm ensure the total
throughput increment is equally contributed by all the connections. On the other
hand, if only one connection j is responsible for all the throughput, i.e. wi =
0 for j 6= i, then we simply have a single connection whose throughput can be
substantially reduced in a congested scenario. We note that using our algorithm,
wi’s for different connections at any point in time differ from each other at most
by one. The scenario where Tm > Td is similar.

4.2.2 Adjust Number of Connections. While using a fixed number connections,
e.g. 5 works well in many scenarios, nevertheless, in a lightly loaded network,
this number of connections maybe unnecessary large. In this section, we introduce
a new algorithm that changes the number of connections dynamically depending
upon the congestion in the network.
Our algorithm is based on the following observations. If the congestion in the

network is reduced, the algorithm can reduce the number of connections and adjust
the congestion window size of the remaining connections. Similarly, if the network
congestion increases, the algorithm can increase the number of connections to ob-
tain the desired throughput while avoid causing too much congestion. There are
many indicators for the change in congestion, e.g. the change in RTT. In our algo-
rithm we use the Congestion ratio. The congestion ratio is given by Ws/Wn where
Ws =

∑
i wi and Wn denotes the window size of single connection when there is

no congestion, i.e, Wn = TdRTT/MTU . If the congestion ratio is one or less then
we say that there is no congestion in the network. But if it increases over one then
we say that there is congestion in the network. The algorithm for increasing and
decreasing number of connections is based on the congestion ratio. In particular,
we store the value of congestion ratio for every iteration in prevcongR (previous
congestion ratio), and compare the current congestion ratioprevconR. If the cur-
rent value is greater than prevongR, the congestion level must have increased. On
the other hand, if the opposite is true, then the network congestion must have
decreased. The below algorithm is used to dynamically adjust the number of con-
nections. We now discuss each cases in the AdjustNumConnections. In the first
case, the congestion ratio decreases by β, thus we can say that the congestion in
the network reduces. If the measured throughput, Tm, is greater than the desired
throughput, Td, we reduce the number of connections being used for streaming by
one. Note that we only decrease the number of connections when Tm > Td. These
steps aim to minimize the number of used connections when the network becomes
less congested.
In the second case, the congestion ratio increases by β, thus we can say that the

congestion in the network increases. If the current congestion ratio, Ws/Wn, is less
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Algorithm 2 AdjustNumConnections()

1: if (Ws

Wn

< prevcongR− β) and (Tm > Td) then

2: prevcongR = Ws

Wn

3: stop one connection
4: end if{cf is a congestion factor to be discussed shortly}
5: if (Ws

Wn

> prevcongR+ β) and (Tm < Td) and (
Ws

Wn

< cf) then

6: prevcongR = Ws

Wn

7: start one connection
8: end if

9: if Ws

Wn

≥ cf then

10: prevcongR = Ws

Wn

11: stop one connection
12: end if

13: return number of connections

than the congestion factor, cf , and if the measured throughput, Tm, is less than
the desired throughput, Td, we increase the number of connections being used for
streaming by one. cf is a special factor which is used to determine if the network
is slightly congested or severely congested. If the congestion factor is smaller than
cf , the network is not severely congested, and the algorithm is allowed to start a
new TCP connection.
In the third case, the current congestion ratio, is greater than or equal to the

congestion factor, cf , we decrease the number of connections being used for stream-
ing. This step 3 is used when the congestion in the network increases to a level
that even by increasing the number of connections we cannot achieve the desired
throughput, Td. This means that the network is severely congested. So we have
to reduce the network congestion by stopping as many connections as possible. If
none of the three cases above are true, the the number of connections remain the
same, and the AdjustWindowSize algorithm is the only mechanism to control the
desired bandwidth.
Once the appropriate number of connections has been determined, it is used as

the input to the AdjustWindowSize algorithm to control the desired throughput.
Note that the value β is used to control the frequency of starting and stopping

Algorithm 3 VariedConnVariedWinSize()

1: N = AdjustNumConn()
2: AdjustWindowSize(N)

connections. If β is small, the fluctuation of throughput increases, and vice versa.
In our Red Hat Linux implementation of the MultiTCP system, we note that setting
β = 1 works well in most situations.

4.2.3 Remarks on Sender. At the sender, data is divided into packets of equal
size. These packets are always sent in order. The MultiTCP system chooses the
TCP connection to send the next packet in a round robin fashion. If a particular
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Fig. 3. Simulation topology.

TCP connection is chosen to send the next packet, but it is blocked due to TCP
congestion mechanism, the MultiTCP system chooses the first available TCP con-
nection in a round robin manner. For example, suppose there are 5 connections,
denoted by TCP1 to TCP5. If none of TCP connection is blocked, packet 1 would
be sent by TCP1, packet 2 by TCP2, and so on. If TCP1 is blocked, then TCP2
would send packet 1 and TCP3 would send packet 2, and so on. When it is TCP1’s
turn again and if TCP1 is not blocked, it would send packet 5. This is similar to
socket striping technique in [Leigh et al. 2001].

5. RESULTS

In this section, we show simulation results using NS and the results produced using
actual network to demonstrate the effectiveness of our MultiTCP system in achiev-
ing the required throughput as compared to the traditional single TCP approach.

5.1 Results for AdjustWindowSize Algorithm

5.1.1 NS Simulation. Our simulation setup consists of a sender, a receiver, and
a traffic generator connected together through a router to form a dumb bell topology
as shown in Figure 3. The bandwidth and propagation delay of each link in the
topology are identical, and are set to 6 Mbps and 20 milliseconds, respectively.
The sender streams 800 kbps video to the receiver continuously for a duration of
1000s, while the traffic generator generates cross traffic at different times by sending
packets to the receiver using either long term TCPs or short bursts of UDPs. In
particular, from time t = 0 to t = 200s, there is no cross traffic. From t = 200s
to t = 220s and t = 300s to t = 340s, bursts of UDPs with rate of 5.5 Mbps
are generated from the traffic generator node to the receiver. At t = 500s the
traffic generator opens 15 TCPs connections to the receiver, and 5 additional TCP
connections at t = 750s. We now consider this setup under three different scenarios:
(a) the sender uses only one TCP connection to stream the video, while the receiver
sets the receiver window size to 8, targeting at 800 kbps throughput, (b) the sender
and the receiver use our MultiTCP system to stream the video with the number
TCP connections limited to two, and (c) the sender and the receiver also use our
proposed MultiTCP system, except the number of TCP connections are now set to
five. Table I shows the parameters used in our MultiTCP system.
Figure 4(a) shows the throughput of three described scenarios. As seen, initially

without congestion, using the traditional single TCP connection can control the
throughput very well since setting the size of the receiver window to 8 achieves
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Sampling interval δ 300 ms

Throughput smoothing factor α 0.9

Guarding threshold λ 7000 bytes

Throughput spike factor f 6

Table I. Parameters used in MultiTCP system

the desired throughput. However, when traffic bursts occur during the intervals
t = 200s to t = 220s and t = 300s to t = 340s, the throughput of using a single TCP
connection reduces substantially to only about 600 kbps. For the same congested
period, using two TCP connections results in higher throughput, approximately
730 kbps. On the other hand, using five TCP connections produces approximately
the desired throughput, demonstrating that a larger number of TCP connections
results in higher throughput resilience in the presence of misbehaved traffic such as
UDP flows. These results agree with the analysis in Section 4.1. It is interesting
to note that when using two TCP connections, there are spikes in the throughput
immediately after the network is no longer congested at t = 221s and t = 341s.
This phenomenon relates to the maximum receiver window size set during the
congestion period. Recall that the algorithm keeps increasing the wi until either (a)
the measured throughput exceeds the desired throughput or (b) the sum of receiver
window size Ws =

∑
i wi reaches f

TdRTT
MTU

. In the simulation, using two TCP
connections never achieves the desired throughput during the congested periods,
hence the algorithm keeps increasing the wi. When network is no longer congested,
the Ws already accumulates to a large value. This causes the sender to send a
large amount of data until the receiver reduces the window size to the correct
value a few RTTs later. On the other hand, when using 5 TCP connections, the
algorithm achieves the desired throughput during the congestion periods, as such
Ws does not increase to a large value, resulting in a smaller throughput spike
after the congestion vanishes. Next, when 15 cross traffic TCP connections start
at t = 500s, the resulting throughput when using one and two TCP connections
reduce to 700 kbps and 350 kbps, respectively. However, throughput when using
5 TCP connections stays approximately constant at 800 kbps. At t = 750s, 5
additional TCP connections start, throughput are further reduced for the one and
two connection cases, but it remains constant for the five-connection case.
Figure 4(b) shows the average of the sum of window size Ws as a function of

time. As seen, Ws increases and decreases appropriately to respond to network
conditions. Note that using two connections, Ws increases to a larger value than
when using 5 TCP connections during the intervals of active UDP traffic. This
results in throughput spikes discussed earlier. Also, the average window size in
the interval t = 500s to t = 750s is smaller than that of the interval t = 750s to
t = 1000s, indicating that the algorithm responds appropriately by increasing the
window size under a heavier load.
We now show the results when the cross traffic has different round trip time from

that of the video traffic. In particular, the propagation delay between the router
and traffic generator node is now set to 40 milliseconds. All cross traffic patterns
stay the same as before. The new simulation shows the same basic results. As
seen in Figure 5.1.1, the throughput of 5 connections is still higher than that of
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Fig. 4. (a) Resulted throughput and (b) average receiver window size when using 1, 2 and 5 TCP

connections.
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Fig. 5. Resulted throughput when using 1, 2 and 5 TCP connections with cross traffic having

larger RTT than that of video traffic.
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Sampling interval δ 6*RTT ms

Throughput smoothing factor α 0.9

Guarding threshold λ 3000 bytes

Throughput spike factor f 10

Table II. Parameters used in MultiTCP system

two connections which, in turn is higher than that of one connection during the
congestion periods. The throughput of two connections in this new scenario is
slightly higher than that of the previous scenario during the congested period from
t = 500s onward. This is due to a well known phenomena that TCP connection
with shorter round trip times gets a larger share of bandwidth for the same loss
rate. Since the round trip time of the video traffic is now shorter than that of the
TCP cross traffic, using only two connections, the desired throughput of 800 kbps
can be approximately achieved during the period from t = 500s to t = 750s, which
is not achievable in previous scenario. So clearly, the number of connections to
achieve the desired throughput depends on the competing traffic.

5.1.2 Internet Experiments. We have implemented our MultiTCP system on
Redhat Linux with the options for using either fixed or varied number of TCP
connections. Our MultiTCP system is mostly transparent to the application layer.
The applications only need to specify the required bit rate. Every calls to the
current network library are intercepted and the equivalent MultiTCP functions are
invoked. Therefore, with minimal effort, any network program can be changed
to employ the MultiTCP system. We now show the results from actual Internet
experiments using Planet-Lab nodes [PlanetLab ]. In this experiment our setup
consists of a sender, planetlab1.netlab.uky.edu at University of Kentucky, and a
receiver, planetlab2.een.orst.edu at Oregon State University. The sender streams
the video to the receiver continuously for a duration of nearly 1000s, while the FTP
connections generate cross traffic at the client at different times. From time t = 0
to t = 400s, there is no cross traffic. From around t = 401s to t = 600s cross
traffic is generated using two FTP connections and after t = 601s two additional
FTP connections are opened for generating more traffic at the receiver. We now
consider performances under three different scenarios: (a) only one TCP connection
is used to stream the video, while the receiver sets the receiver window size targeting
at 480 kbps throughput, and (b) the sender and the receiver use the proposed
MultiTCP system, using the AdjustWindowSize algorithm with the number of
TCP connections set to four (c) the sender and the receiver use the proposed
MultiTCP system, using the AdjustWindowSize algorithm with the number of
TCP connections now set to eight. Table II shows the parameters used in our
MultiTCP system. Figure 6(a) shows the throughput of three described scenarios.
As seen, initially without congestion, using the traditional single TCP connection
can control the throughput very well since setting the size of the receiver window
achieves the desired throughput. So using either one, four or eight connections
does not make any difference during the interval t = 0s to t = 400s as there is
no cross traffic. However, when traffic bursts occur during the interval t = 401s
to t = 600s and after t = 601s, the throughput of using a single TCP connection
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Fig. 6. (a) Resulted throughput, (b) receiver window size when using 1, 4 and 8 TCP connections
with cross traffic.

reduces substantially from 480 kbps to 280 kbps. Using four TCP connections we
were able to achieve the desired throughput during the interval t = 401s to t = 600s.
But after t = 601, the throughput reduced from 480 kbps to 400kbps. For the same
congested period, using eight TCP connections results in higher throughput, which
is the desired throughput.
Figure 6(b) shows the average of the sum of window size Ws as a function of

time. As seen, Ws increases and decreases appropriately to respond to network
conditions. Note that using single connection, Ws increases to a larger value than
when using multiple TCP connections during the intervals of active FTP traffic.
This results in throughput spikes discussed earlier. Also, the average window size
in the interval t = 300s to t = 600s is smaller than that of the interval t = 601s
to t = 1000s for multiple TCP connections, indicating that the algorithm responds
appropriately by increasing the window size under a heavier load.

5.2 Results for the V ariedConnV ariedWinSize Algorithm
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Sampling interval δ 6*RTT ms

Throughput smoothing factor α 0 - 0.9

Guarding threshold λ 3000 bytes

Connection damping guarding threshold β 1

Congestion factor cf 5

Table III. Parameters used in MultiTCP system

5.2.1 Internet Experiments. We now show the results of the V ariedConnV ariedWinSize
algorithm. For this experiment our setup consists of a sender, a receiver, and fifteen
FTP connections to generate cross traffic. The machine used as server is planet-
lab1.csres.utexas.edu which is located at University of Texas. The setup under two
different scenarios is as follows: (a) the sender uses only one TCP connection to
stream the video, while the receiver sets the receiver window size targeting at 800
kbps throughput, and (b) the sender and receiver use our MultiTCP system to
stream the video. Table III shows the parameters used in our MultiTCP system.
Figure 7(a) shows the throughput of two described scenarios with cross traffic.
During the interval t = 0s to t = 400s there is no cross traffic. However, when
traffic bursts occur due to six FTP connections during the interval t = 401s to
t = 600s and nine more FTP’s after t = 601s, the throughput of using a single
TCP connection reduces from 800 kbps to 720 kbps. For the same congested pe-
riod, MultiTCP system is able to achieve the desired throughput. These results
demonstrate that a larger number of TCP connections results in higher throughput
resilience in the presence of misbehaved traffic. Figure 7(b) shows the average of
the sum of window sizeWs as a function of time. As explained before, Ws increases
and decreases appropriately to respond to network conditions.
Figure 7(c) shows how the number of connections vary depending upon the con-

gestion ratio for that particular scenario. When the window size increased the
number of connections used for streaming also increased. This implies that when
the congestion in the network increases and if we are not able to receive the desired
throughput, the number of connections to be used for streaming are increasing.
These results agree with the analysis in Section 4.1.
Now let us consider another experiment involving higher target bandwidth. For

this experiment our setup consists of a sender, a receiver, and eight FTP connections
to generate cross traffic. The machine used as server is planetlab1.cs.pitt.edu which
is located at University of Pittsburgh. The setup under two different scenarios is
as follows: (a) the sender uses only one TCP connection to stream the video, while
the receiver sets the receiver window size targeting at 1.6 Mbps throughput, and
(b) the sender and receiver use our MultiTCP system to stream the video. We used
the same parameters as in previous experiment. Figure 8(a) shows the throughput
of two described scenarios with cross traffic. During the interval t = 0s to t = 300s
there is no cross traffic. Even though there is generated cross traffic during that
period, the client was able to receive only 480 kbps 1. On the other hand, when
MultiTCP system is employed, the throughput increased to 1.6 Mbps and remain

1This is due to both the current actual traffic and the imposed bandwidth limit of the server per

TCP connection
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Fig. 7. (a) Throughputs and (b) variation of the receiver window size for the traditional and the

MultiTCP streaming systems; (c) Number of connections used for streaming in MultiTCP system.
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Fig. 8. (a) Throughputs and (b) variation of the receiver window size for the traditional and the

MultiTCP streaming systems; (c) Number of connections used for streaming in MultiTCP system.
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at this value. We then simulate heavy traffic by creating four FTP connections
during the interval t = 301s to t = 600s and four more FTP’s after t = 601s.
During this time, the throughput of using a single TCP connection reduced further
from 480 kbps to 400 kbps. For the same congested periods, the MultiTCP system
still maintains the desired throughput at 1.6 Mbps.
Figure 8(b) shows the average of the sum of window size Ws as a function of

time. As explained before, Ws increases and decreases appropriately to respond to
network conditions. But initially as it has to get to a high throughput the window
size went up to maximum and then got adjusted slowly. Figure 8(c) shows how the
number of connections vary depending upon the congestion in the network.
These results also agree with the analysis in Section 4.1. Recall that the algorithm

keeps increasing the wi until either (a) the measured throughput exceeds the desired
throughput or (b) the sum of receiver window sizeWs =

∑
i wi reaches f

TdRTT
MTU

. In
the results we have shown, using single TCP connection never achieves the desired
throughput during the congested periods, hence the algorithm keeps increasing the
wi and reaches maximum. When network is no longer congested, the Ws already
accumulates to a large value. This causes the sender to send a large amount of
data until the receiver reduces the window size to the correct value a few RTTs
later. On the other hand, when using eight or five TCP connections, the algorithm
achieves the desired throughput during the congestion periods, as such Ws does
not increase to a large value, which results in a smaller throughput spike after the
congestion vanishes.

5.3 Stream Buffer

In this section we present the performance of our MultiTCP system when pre-
buffering is used. Prebuffering is used to overcome temporary insufficient network
bandwidth during the streaming session by allowing the video player to accumulate
a large enough amount of data in a buffer before playing back. A larger buffer
results in fewer number of stops during the video streaming session. At one ex-
tremity, if the amount of data in the buffer equals to the size of the entire video,
then will be no stop during playback, but the user has to wait for the entire video
to be downloaded.
We perform the following experiment. A 720kbps video is streamed for a duration

of 200 seconds with a initial buffer of 10 seconds. At the same time, a random
number of FTP connections sharing the same bandwidth (from 0 to 8) also start and
stop at random times to emulate different levels of congestion. Once the video starts
playing, it will only stop when there is no more data in the buffer. This situation
happens when the playback rate is faster than the receiving rate for some period
of time. Once the video player stops, it would stop for 5 seconds to accumulate
data before playing back again. Using this scheme, Figure 9 shows the number
of stops when using our AdjustWindowSize algorithms with different number of
connections. As seen, there are 12 stops when using single TCP connection, 1 stop
for each of the 2, 3, 4 TCP connections and no stops when 5 TCP connections are
used. On the other hand, when the V ariedConnectionV ariedWinSize algorithm
is used, there is no stops since the algorithm can achieve the desired throughput
automatically by increasing and decreasing the number of connections.
These results demonstrate that our algorithm is able to achieve the desired
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Fig. 9. Resulted number of stops when using 1, 2, 3, 4 and 5 TCP connections with cross traffic

having same RTT as that of video traffic.

throughput and maintain precise rate control under a variety congested scenar-
ios with competing UDP and TCP traffic. We should emphasize again that, the
applications based on our system indeed obtain a larger share of the fair band-
width. However, we believe that under limited network resources, time-sensitive
applications like multimedia streaming should be treated preferentially as long as
the performance of all other applications do not degrade significantly. Since our
system uses TCP, congestion collapse is not likely to happen as in the case of using
UDP when network is highly congested. In fact, DiffServ architecture uses the same
principle by providing preferential treatment to high priority packets.

6. CONCLUSIONS

We conclude our paper with a summary of contributions. First, we propose and
implement a receiver-driven, TCP-based system MultiTCP for multimedia stream-
ing over the Internet using multiple TCP connections for the same applications.
Second, our proposed system is able to provide resilience against short-term insuf-
ficient bandwidth due to traffic bursts. Third, our proposed system enables the
application to control the sending rate in a congested scenario, which cannot be
achieved using traditional TCP. Finally, our proposed system is implemented at
the application layer, and hence, no kernel modification to TCP is necessary. The
simulation and Internet results demonstrate that using our proposed system, the
application can achieve the desired throughput in many scenarios, which cannot be
achieved by traditional single TCP approach.
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