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Abstract— In recent years, the number of Peer-to-Peer (P2P)
applications has increased significantly. One important problem
in many P2P applications is how to efficiently disseminate data
from a single source to multiple receivers on the Internet. A
successful model used for analyzing this problem is a graph
consisting of nodes and edges, with a capacity assigned to each
edge. In some situations however, it is inconvenient to use this
model. To that end, we propose to study the problem of efficient
data dissemination in a source constraint network. A source
constraint network is modeled as a graph in which, the capacity is
associated with a node, rather than an edge. The contributions
of this paper include (a) a quantitative data dissemination in
any source constraint network, (b) a set of topologies suitable
for data dissemination in P2P networks, and (c) an architecture
and implementation of a P2P system based on the proposed
optimal topologies. We will present the experimental results of
our P2P system deployed on PlanetLab nodes demonstrating that
our approach achieves near optimal throughput while providing
scalability, low delay and bandwidth fairness among peers.

I. Introduction

Many Internet applications such as video distribution [1][2]
rely on IP multicast [3] for efficient data dissemination from
a single source to a large number of destinations. The pri-
mary motivations of IP multicast are (a) to avoid wasted
bandwidth incurred in point-to-point data transfer and (b) to
scale with the number of receivers. IP multicast, however is
not widely deployed due to the incompatibility issues among
the autonomous systems (AS) in the Internet. This has led
to a number of overlay multicast systems [4] where end
hosts themselves form a multicast tree for delivering data.
The advantage of overlay multicast is that routers do not
need to support complex multicast operations. Instead, packet
routing and forwarding are logically done at the application
layer, which leads to easy deployment across different AS(es).
However, one drawback of an overlay multicast system is
that a leaf peer does not contribute its bandwidth since by
definition, it does not forward data to any other peer.

That said, good topologies are ones that enable all the peers
to contribute their bandwidth. Most of the P2P networks such
as Gnutella [5], KaZaA [6], Swarmcast[7], and BitTorrents
[8] allow a peer to contribute its bandwidth to the system.
However, these P2P topologies are formed almost randomly
as each peer can decide to join at an arbitrary place in the
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network. As a result, data dissemination in these overlay
networks are often suboptimal in terms of throughput. Our
work aims to build a structured P2P network organized in such
a way to enable all the peers to contribute their bandwidth to
the system, resulting in larger overall throughput.

An integral factor to our work is the model of the underlying
network. Traditionally, a network is typically modeled as a
graph whose edges are associated with capacities. Therefore,
the time required to disseminate the data from a source to a
specified set of destinations depends on the routes that the data
flow on. In his classic paper, Edmonds et al. [9] formulated
and solved the well-known min-cut max-flow problem that
established the flow capacity between two nodes in a network.

While this traditional model has been successfully applied
to many practical problems, it does not reflect many networks,
e.g., overlay networks of DSL subscribers. In a lightly loaded
P2P network consisting of DSL subscribers, the bandwidth
constraint on a peer is its upload physical bandwidth, e.g.,
250 Kbps. A peer may choose to send data at different rates
to different peers, but its total transmission rate can never be
larger than its physical bandwidth. Thus, in this case, it is more
appropriate to model the network of DSL peers as a source
constraint network whose the constraints are placed on the
node’s capacities rather than the edges. A direct implication
of the source constraint network is that the constraint is placed
on the sender not the receiver, i.e., if the sender is able to send
data at X Mbps, the receiver should be able to receive data
at X Mbps, assuming no loss.

Unlike the traditional model in which a graph is given, in
the source constraint model, our goal is to generate the edges
to connect these nodes in such a way to optimize the data
dissemination process. That said, we would like to construct
a P2P system that achieves the followings:

1) Bandwidth usage of all the nodes is optimal in the sense
of average useful throughput, a quantity to be defined in
Section II.

2) End-to-end delay from the source to any node is small
in order to support real-time applications.

3) Nodes can join and leave without causing much disrup-
tion to other nodes. This can be directly translated to
the out-degree of a node, i.e., the number of neighbors
of each node. If a node connects to many neighbors, its
leaving will affect many nodes.

4) Bandwidth is fairly distributed among nodes, i.e., the
total receiving and sending rates of a node are equal to
each other.

Our paper is organized as follows. In Sections II we will
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present the notion of throughput efficiency, which is used to
design our topologies. In Section III, we present a number
of topologies that maximize the throughput efficiency while
maintaining a reasonable trade-off between delay and node
management. Section IV is devoted to the design of a practical
P2P system based on the proposed topologies. In Section
V, we show the experimental results from (a) our proposed
P2P system deployed over Planetlab nodes and (b) large scale
simulations. Finally, we list a few representative related work
in Section VI, and summarize our contributions in Section VII.

II. Throughput Efficiency
We first consider the problem of how to quickly disseminate

data from a source to N destinations whose sending capacities
C are identical. One possible way is to construct the complete
graph in which every node is connected to all other nodes.
The data dissemination is as follows. The source divides the
data into N distinct partitions and sends each partition to
N destination nodes at an equal rate of C/N kbps. Each
destination node then broadcasts the data it receives to N − 1
other destination nodes at the equal rate of C/N kbps. One
can show that using this scheme, every node will receive the
complete file in the shortest time. On the other hand, if the
source does not employ data partition, i.e., it sends identical
packets at the rate of C/N kbps per node to all the destination
nodes in a round-robin fashion, then clearly, the destination
nodes have will identical data at every round. Therefore, there
is no use to exchange the data among the destination nodes.
This results in a reduction of overall useful throughput. We
now define the notion of useful sending rate of a node.

Definition 2.1: The useful sending rate Si is the total rate
that a node i sends the data to all its neighboring nodes,
provided that this data is disjoint with other data sent from
any other node to these neighboring nodes.
In the previous example, the useful sending rate of a destina-
tion node equals to (N−1)C/N when using the data partition
and equals to 0 when not using the data partition. In general,
the useful sending rate Si is dictated by the topology, the rate,
and data partition algorithms at each node. We now define
the notion of throughput efficiency to measure different data
dissemination schemes in source constraint networks:

Definition 2.2: Throughput efficiency is defined as

E
∆
=

∑i=N

i=0 Si

min(
∑i=N

i=0 Ci, NC0)
(1)

where i = 0 denotes the source node, i = 1...N denote N
destination nodes. Si and Ci denote the useful sending rate
and the sending capacity of node i, respectively.
The numerator in the Definition 1 is the total useful sending
rate of all the nodes, while the denominator is the minimum
of two quantities: (a) the total maximum sending capacity of
all the nodes and (b) the maximum receiving rate.

Let us consider a four node chain topology shown in
Figure 1. Their sending capacities Ci = 3, 1, 3, and 3 Mbps
respectively. To disseminate data to all the nodes, node 1 sends
data at its capacity of 3 Mbps. Node 2 receives data from node
1 and relays the data to node 3; however it can only send data

C=3 C=1 C=3 C=3

3 Mbps 1 Mbps 3 Mbps

1 2 3 4

Fig. 1. Chain topology with throughput efficiency of 0.55.

at its capacity of 1 Mbps. As a result, node 3 sends data at
1 Mbps since it receives data at only 1 Mbps from node 2,
even though the node 3’s capacity is 3 Mbps. The throughput
efficiency in this scenario, is therefore 3+1+1

3∗3 ≈ 0.55. Note
that a node can allocate different sending rates to different
neighbors as long as the total sending rate is less than its
capacity. Now, if node 2 is moved to the last position in
the chain, it is obvious that the throughput efficiency is now
3+3+3
3∗3 = 1. Clearly, to minimize the time to disseminate

data, the topology that results in higher efficiency is preferred.
The following proposition helps us determine the performance
bound for any topology and data partition algorithm.

Proposition 2.3: The throughput efficiency E ≤ 1 for any
topology and data dissemination algorithm.

Proof: Case 1: Assume min(
∑i=N

i=0 Ci, NC0) =
∑i=N

i=0 Ci, then since Ci ≥ Si, we have E =
∑

i=N

i=0
Si∑

i=N

i=0
Ci

≤ 1.

Case 2: Assume min(
∑i=N

i=0 Ci, NC0) = NC0, then E =∑
i=N

i=0
Si

NC0

. Now, we observe the following. A destination node
cannot receive the information at a rate faster than the infor-
mation rate being injected into the network. Since the source
node injects the maximum data rate of C0 into the topology,
the maximum total receiving rate of useful data for all N
destination nodes is NC0 kbps. Since the total sending rate
E =

∑i=N

i=0 Si and the total receiving rate must be equal
(we assume no packet loss), it is less than or equal to the
maximum total receiving rate of all the nodes NC0. Hence,
E =

∑
i=N

i=0
Si

NC0

≤ 1.
An efficiency E = 1 implies that all nodes are able to
send data at their capacities or the injected source rate,
thus resulting in the highest throughput. Note that since the
receiving rate is dictated by the injected data rate by the source,
the min term in the denominator of the Definition 2.2 ensures
that efficiency is not reduced for a network topology with large
capacity but having a small injected data rate.

III. Optimal Topologies

In general, finding a scheme that results in throughput
efficiency E = 1 for a set of nodes of arbitrary capacities is a
NP-hard problem [10]. However, to stream a video of C kbps
from a source to multiple destinations, one can consider each
peer having identical capacity C. This is used to reflect the
bandwidth fairness in which all peers should send data at the
same rate. Hence, for simplicity, our problem becomes: Given
a set of all the nodes having identical capacities, what is the
optimal scheme (include both data partition and topology) to
achieve E = 1.

One can show that the throughput efficiency of a complete
graph using the data partition scheme in Section II is indeed
1. Thus, it is optimal. However, this topology cannot be used
to construct a practical P2P network since the number of
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connections per node (out-degree of a node) grows linearly
with the number of peers. When a peer leaves, all other
peers are affected. Another extreme case is to have all the
peers form chain. One can show that this topology is also
optimal in terms of throughput efficiency, however, it results
in long delay. We now show a few simple topologies that
achieve optimal throughput while maintain a reasonable trade-
off between delay and node’s out-degree.

A. Balanced Mesh

In this section, we seek a topology that simultaneously
optimizes both delay and out-degree. We call this topology
a balanced mesh [11][12]. In particular, we place a constraint
on the out-degree of each node and optimize the topology for
throughput and delay. We assume that all nodes have identical
capacities C kbps. A balanced mesh is first constructed as a
balanced tree with the source at the root. The leaf nodes of
the tree are then connected together, and also connected up to
their ancestors in a systematic manner to result in an efficiency
data dissemination mesh. Figure 2(a) shows an example of a
balanced mesh with the out-degree of 2.

In this example, the source partitions the data into two dis-
tinct groups and sends them down the left and right branches
of the tree at the rate of C/2 kbps per branch. Each internal
node then broadcasts the data it receives, to its children at the
rate of C/2 kbps per branch. Thus, all the nodes under the
same branch receive identical data at the rate of C/2 kbps. In
order for the leaf nodes to receive the complete data, each leaf
node is to connect to one other leaf node in the other group.
Figure 2(a) shows the pairs of nodes 7 and 11, 8 and 12, 9
and 13, 10 and 14 forwarding data to each other. As a result,
all the leaf nodes now receive the complete data at the rate of
C kbps.

As constructed so far, the internal nodes, e.g. nodes 3 and
4 have not received the data from the right branch. However,
one note that each leaf node currently sends data at only
C/2 kbps since it only forwards data to only one other leaf
node. To fully utilize the bandwidth, the leaf node forwards
the data from the other groups to its ancestors. For example,
node 7 forwards data from the right group to its parent (node
3). Since node 3 already receives that data from node 7, node
8 forwards its data from the right group to its grandparent
(node 1). Node 9 forwards the data to its parent (node 4)
while node 10 does not forward any data to its ancestor
since there is no node in need of data in its group. Similar
actions are taken by nodes in the right branch of the tree.
This process results in all the nodes receiving complete data.
We now present an algorithm for constructing a b-balanced
mesh with depth levels. To describe the algorithm, we first
label the nodes as shown in Figure 2(a). In particular, nodes
are labeled from low to high in a breadth-first manner. Within
a level, the node labels increase from left to right. We denote
each of the b subtrees of the balanced mesh as a group, and
the leftmost group as group 0 and the rightmost as group b−1.

Algorithm for constructing a balanced
mesh:

Source
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Fig. 2. (a) Illustration of balanced mesh construction; (b) A cascaded
2-balanced mesh.

1: Construct a balanced tree with source as the root and each
internal node with the out-degree of b.
{Constructing the cross-group links at the leaf nodes.}

2: for i = 0 to i ≤ b− 2 do
3: for each leaf node j in group i do
4: for m = i + 1 to m ≤ b− 1 do
5: k ← j + bdepth−1m §
6: Connect node j with node k.
7: Connect node k to node j.
8: end for
9: end for

10: end for
11: for i = 0 to i ≤ b− 1 do
12: Connect leftmost b − 1 of group i leaf nodes back to

its parent.
13: Connect the rightmost leaf node of each branch to its

closet ancestor that does not already have b incoming
connections.

14: end for
Given a balanced mesh, the source partitions the data into b

distinct groups and sends them down b branches of the mesh
at the rate of C/b kbps per branch. Each internal node in
turn broadcasts the data down to its children also at the rate
of C/b kbps per branch. Each leaf node forwards its data to
b− 1 other leaf nodes in other groups. Therefore, all the leaf
nodes receive the complete data (one partition from its parent
and b−1 partitions from different leaf nodes). All the internal
nodes also receive the complete data forwarded to it by its
descendants as described in previous example.

Proposition 3.1: For a balanced mesh of out-degree b with
N destination nodes, the following properties hold.
(a) E = 1.
(b) The maximum delay D = logb((b− 1)N + b) + 1.

Proof: (a) By construction, within a group, there is
exactly one rightmost leaf node which does not forward its
data to any of its ancestors. This rightmost leaf node forwards
its data to b − 1 leaf nodes at a total rate of C(b − 1)/b, i.e
C/b per link. Other nodes within each group is fully active,
and each forwards data at a total rate of C kbps to b other
nodes. Since there are b groups in a b-balanced mesh, the total
sending rate of the entire mesh equals the sum of the sending
rates of the source node, N − b “fully active” nodes, and b
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rightmost leaf nodes, or:
i=N∑

i=0

Si = C + (N − b)C + b(b− 1)C/b

= NC (2)

The denominator of E equals to min((N +1)C,NC) = NC.
Hence, the throughput efficiency is NC/NC = 1.
(b) Using geometric sum, the total number of nodes N + 1 =
(b(i+1) − 1)/(b − 1) where i is the number of levels in the
mesh. Thus, there are i = log((b − 1)N + b) − 1 hops from
the source node to a leaf node. Next, by construction, there
is exactly one hop from a leaf node to another leaf node in a
different group. There is also one hop from the leaf node to
an internal node. Therefore, the maximum delay for any node
is log((b− 1)N + b) + 1.
Note that in a balanced mesh, all the nodes have out-degree
of b, except the b rightmost leaf nodes from each group which
have out-degree of b− 1.

B. Cascaded Balanced Mesh
In a balanced mesh, the total number of nodes must

be of the form (bi − 1)/(b − 1) where i, b ∈ 0, 1, .... We
now describe an algorithm for constructing a mesh with an
arbitrary number of nodes that still preserves high throughput
efficiency, low delay, and small out-degree. The main idea
of the algorithm is to cascade a series of balanced meshes
in order to accommodate an arbitrary number of nodes. The
crucial observation is that the rightmost leaf node of each
group has only b − 1 out-connections, which results in a
total of C kbps unused capacity. Thus, we can construct a
new balanced mesh with the new root connected to all the
b rightmost leaf nodes of the existing balanced mesh. The
data is then sent from these nodes to the new root at the
rate of C/b kbps each, or a total rate of C kbps. The new
root then disseminates data to all the destination nodes in
the same manner as that of the previous balanced mesh. To
accommodate arbitrary sized networks, we can cascade a
number of balanced meshes of different sizes. Figure 2(b)
shows an example of cascaded 2-balanced mesh consisting
of 23 nodes. Notice that the two nodes 10 and 14 of the top
balanced mesh have spare capacity to send their data to the
root node of the middle balanced mesh. Similarly, the nodes
19 and 21 of the middle mesh send the data to the last node
22. It is implied that the rest of the nodes in group 2 behave
in a similar manner to the nodes of group 1 with regards to
delivering data.

Algorithm for constructing a cascaded b-balanced
mesh

1: while N <> 0 do
2: Construct a b-balanced mesh of depth i = blog((b −

1)N + b)c − 1.
{The above statement will create the deepest b balanced
mesh without exceeding N }

3: if there exists a previous b-balanced mesh then
4: Connect the b rightmost nodes to the root of the

newly created balanced mesh

5: end if
6: N ← N − (bi+1 − 1)/(b− 1)
7: end while
Since the construction of the cascaded balanced mesh is

based on that of a balanced mesh, the properties of the
cascaded balanced mesh are similar. We have the following
proposition.

Proposition 3.2: For a b-cascaded balanced mesh, the
following properties hold.
(a) E = 1.
(b) The delay is O((logbN)2).

Proof: (a) This holds true since each cascaded mesh is
a b-balanced mesh where the root receives data at a rate of C
kbps. We proved this property for balanced meshes earlier.
(b) At each iteration of the algorithm, we construct the deepest
b-balanced mesh without exceeding the number of nodes.
Therefore, the remaining number of nodes after constructing
a b-balanced mesh of maximum depth i cannot be greater
than bi+1. Otherwise, we can construct a b-balanced mesh of
depth i + 1 which contradicts the maximum possible i. Next,
since the number of nodes in a b-balanced mesh of depth i
is (bi+1 − 1)/(b − 1), the maximum number of meshes of
depth i that can cover the remaining nodes without exceeding
the number of possible nodes is bi+1(b − 1)/(bi+1 − 1) ≤ b.
Therefore, we can construct at most b meshes of depth i
before moving to the meshes of depth j < i. Hence, after
the algorithm terminates, we have at most bi meshes with i
being the depth of the first mesh. Since each mesh has depth
of O(i), the total delay is therefore O(i2), or equivalently
O((logbN)2).

C. b-Unbalanced Mesh
There are two drawbacks with the cascaded balanced mesh.

First, the delay is rather large, i.e., on the order of (logb N)2.
Second, if nodes enter and leave incrementally, a large portion
of the mesh may have to be rebuilt. In this section, we
introduce a new construction that reduces the delay and
enables nodes to join and leave incrementally with a minimal
effect on the mesh.

The new algorithm is based on the cascaded balanced mesh
algorithm. For convenience, we denote the mesh containing
the source node as the primary mesh and the other meshes
connected to the primary mesh as the secondary meshes. The
idea to achieve low delay is to keep only a small number
of secondary meshes by limiting the total number of nodes
in the secondary meshes to a small number b2− 1. This node
limitation allows quick reconstruction of the secondary meshes
to accommodate nodes joining and leaving the topology. When
the number of nodes in the secondary meshes equals to b2, they
are destroyed and the secondary mesh nodes are then attached
to the primary mesh at appropriate places to achieve high
throughput efficiency and low delay. The reason for destroying
the secondary meshes when the number of nodes reaches b2 is
that this is the smallest number of nodes that can be attached
to the right places in the primary mesh as such to maintain
the throughput efficiency of 1.
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Fig. 3. (a) The topologies after one node joins; (b) 2 nodes join; (c)
3 nodes joins; (d) 4 node joins, resulting in the secondary mesh is
destroyed, and its nodes are attached to the primary mesh.

We first begin with a simple example on how to construct
a 2-unbalanced mesh. Without loss of generalities, assume
initially the network is a balanced mesh consisting of 15 nodes.
When the first node joins, the secondary mesh is formed, and
it consists of only the one node as shown in Figure 3(a). When
the second node joins, another secondary mesh with only one
node is created. These two secondary meshes form a chain as
shown in Figure 3(b). Figure 3(c) shows the network topology
after three new nodes join. These three configurations are
the direct results from applying the cascaded balanced mesh
algorithm on the secondary meshes as described in Section
III-B.

When the fourth node joins, the number of nodes in the
secondary meshes equals to b2(4), hence these meshes are
destroyed, and their nodes are attached to the leaf nodes
in the primary mesh as shown in Figure 3(d). In particular,
nodes 15 and 16 are attached to node 7, nodes 17 and
18 to node 11. Nodes 15, 16, 17, and 18 form the new
leaf nodes in the primary mesh, and they are connected as
described in Section refsubsec:cascaded balanced mesh. Now,
to accommodate the new connections at nodes 15 and 17, these
nodes must disconnect their old connections. In particular,
nodes 7 and 11 will be disconnected from each other, and also
from their ancestors. In order for these two nodes and their
ancestors (nodes 3 and 5) to receive the complete data, node
15 forwards data to node 7, node 16 forwards data to node
3. Similarly, node 17 forwards data to node 11, and node 18
forwards data to node 5. Thus, all the nodes receive complete
data. This process repeats until no more leaf nodes in the
primary mesh can be attached to. In this case, the primary
mesh becomes a balanced mesh with the depth increased by
1.
Alg. for rebuilding a b-unbalanced mesh when a node
joins

1: Function Construct b unbalanced mesh
2: if sec mesh node count == 0 then
3: Set it as the root of the secondary mesh.
4: sec mesh node count← sec mesh node count + 1

5: return
6: end if
7: if sec mesh node count < b2 − 1 then
8: Add the node to the secondary mesh using the b-

balanced mesh alg.
9: sec mesh node count← sec mesh node count + 1

10: return
11: end if
{The following steps are executed if adding the new
node results in b2 nodes in the secondary mesh, and the
secondary meshes are destroyed.}

12: for i = 0 to i ≤ b− 1 do
13: Connect b nodes of secondary mesh to the leftmost node

in group i.
14: end for
15: for each leftmost node P of a group do
16: Disconnect P s connection to b − 1 nodes of the other

b− 1 groups.
17: Disconnect P s connection back to its parent.
18: end for
19: for each group of newly attached b nodes do
20: Establish their cross links with other groups.
21: Connect all nodes but the rightmost node to their parent

P .
22: Connect the rightmost node to the highest ancestor

without b incoming connections.
23: end for
24: sec mesh node count← 0
25: return
26: End Function Construct b unbalanced mesh

Similarly, if the departing node belongs to the primary mesh,
perform one of following steps

1) If there exists a secondary mesh, pick a node from the
secondary mesh to replace the departed node. This step
maintains the same structure for the primary mesh. Next,
rebuild the secondary mesh(es).

2) If there is no secondary mesh and the departed node s
not of the largest depth, pick a leaf node in the primary
mesh with the largest depth to replace the departed
node. Next, construct a secondary mesh consisting
of the b2 − 1 nodes. These b2 − 1 nodes are the the
siblings of the chosen replacement node, i.e., the nodes
in other groups that connect directly to the chosen
node, and their siblings. If the departed node is of the
largest depth, node replacement is not necessary and
a secondary mesh consisting b2 − 1 nodes associated
with the departed node is constructed.

3) If the departing node belongs to a secondary mesh,
rebuild the secondary mesh.

The figures for node depature can be viewed as 3 in reverse
order with the node swapping at the beginning. The following
algorithm can be used to rebuild the topology.

Alg. for rebuilding the mesh when a node
leaves

1: if node is in primary mesh then
2: if secondary mesh exists then
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3: Swap leaving node with node in the secondary mesh.
4: Reconstruct the secondary mesh.
5: else
6: if node is internal node then
7: Swap the node with a leaf node in the primary tree.
8: Construct a secondary mesh with b2 − 1 nodes.

{These b2 − 1 nodes are the siblings of the node
chosen for replacement.}

9: else
10: Construct a secondary mesh with the remaining

b2 − 1 nodes.
11: end if
12: end if

{node is in secondary mesh}
13: else
14: Reconstruct the secondary mesh with one fewer node.
15: end if

Proposition 3.3: For a b-unbalanced mesh having N
destination nodes, the following properties hold.
(a) E = 1.
(b) The delay D is at most blogb(N + 1)c+ 3b− 4.
(c) Node insertion and deletion can affect at most b2 + 2b
and b2 + 4b + 2 nodes, respectively.

Proof: (a) The proof is based on three separate cases:
Case 1: When the primary mesh is balanced, E = 1 as

proved in Proposition 3.1.
Case 2: When there exists a secondary mesh, its construction

is based on the algorithm for the cascaded balanced mesh, thus
E = 1 as proved in Proposition 3.2.

Case 3: When the number of nodes in the secondary mesh
equals to b2, the secondary meshes are destroyed, and these
nodes are connected to the primary mesh. By construction,
when the primary mesh is not yet balanced, each of these
nodes have b − 1 out-connections to other b − 1 leaf nodes,
and one connection to its ancestor. Therefore, these nodes are
fully active. In addition, the b rightmost nodes in each group in
the primary mesh are untouched by the addition and deletion
of nodes, and therefore, they still send data to b−1 leaf nodes
as before. As a result, there is exactly a total of C kbps of
unused bandwidth in the system. Thus E = 1.

(b) The delay from the source to the root node in the first
secondary mesh is blogb(N +1)c+1. This is because the root
node of the first secondary mesh receives b different partitions
from each of the b rightmost leaf nodes in the primary mesh.
These partitions take blogb(N + 1)c hops to arrive at the
rightmost leaf nodes from the source node, and one more hop
to the secondary mesh’s root node. Now, the secondary meshes
consist of many balanced meshes cascaded together. Each of
these balanced meshes has at most one level since a balanced
mesh with two levels would result in the number of nodes
being equal to (b3−1)/(b−1) > b2−1, which is not possible
by design. The largest delay then occurs when the number of
nodes in the secondary meshes is b2 − 2 since, in that case,
the secondary meshes must consist of b− 2 balanced meshes,
each mesh with b + 1 nodes, followed by a chain of b nodes.
Since there are two hops from the root of one balanced mesh
to the other and b − 1 hops connecting the chain of b nodes,

the largest delay equals 2(b− 2) + b− 1 = 3b− 5 hops. The
proof is obtained by summing this delay and the delay of the
root of the first secondary mesh.

(c) The largest number of nodes are affected for a node
insertion when there is a destruction of secondary meshes. In
this case, at most b2 nodes belonging to the secondary meshes
are affected. In addition, there are b nodes in the primary mesh
that these b2 nodes are attached after the destruction of the
secondary meshes. Furthermore, there are also b ancestors,
one from each branch that need to receive data from the new
b nodes (e.g. node 3 in Figure 3(b)). Thus, the number of
affected nodes is b2 + 2b. Similarly, for a node deletion, an
additional 2(b + 1) nodes are affected due to the swapping of
an internal node to the leaf node before the destruction of the
secondary meshes. Thus, a maximum of b2+4b+2 nodes are
affected for a node deletion.

IV. Hybrid P2P System Architecture

In this section, we describe a hybrid P2P system architecture
that implements the proposed b-unbalanced mesh topology
for actual multimedia delivery over the Internet. Although
the proposed b-unbalanced mesh can be built as a pure P2P
system, we believe that a hybrid P2P architecture offers both
scalable data dissemination among the nodes and security
due to its centralized management. We now briefly discuss
our hybrid system architecture. In our proposed hybrid P2P
network, a node is classified either as a Supernode or a Peer.

A supernode is the controller of the system. It is a special
node which handles all requests from other nodes for joining
or leaving a session. Its task is to maintain an accurate global
view of a session topology. A supernode can handle multiple
sessions, i.e., multiple topologies. It sends out messages to
other peers to instruct them with appropriate actions. A peer
is a node that is part of a session hosted by a supernode. A
peer is connected to other peers to form the topology. A peer
gets information about its neighbors from a supernode when
it joins a session hosted by that supernode. The supernode is
responsible for updating the neighbors about the addition or
deletion of new nodes by sending out the control messages. It
is important to note that when a peer joins or leaves the system,
all the peers will continue to receive data from the current
topology until it successfully connects to the new peers. This
process is similar to the soft hand-over in the wireless cellular
network to reduce the number of possible interruptions.

The soft hand-over is possible when the leaving peer collab-
orates. Since a peer may leave the network without informing
the supernode, our system implements a heartbeat feature.
All the participating peers in a session periodically send out
heartbeats to their neighbors. If a peer does not receive a
heartbeat from its neighbor for a stipulated period of time, it
sends out a node fail message to the supernode which invokes
a new topology. A node failure might cause an insignificant
amount of data loss as the detection is done very early.

So far, we made an assumption that the upload desired
capacities of all participating peers are identical in order to
be fair. In many settings, some peers may want to contribute
more bandwidth, thus we have implemented an optimized
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version of our system for this purpose. An optimal version of
our system classifies the peers based on their upload desired
capacities. Peers are swapped dynamically so that the small
capacity/unreliable peers are placed near the bottom of the
topology in order to minimize the number of peers that can
be affected by these unreliable peers.

There are a number of advantages associated with having
a hybrid P2P system design. The first advantage is security.
Authentication and authorization would be easier to implement
in a centralized manner by the supernode. The second advan-
tage is the flexibility in terms of management and upgrades.
Suppose that we wish to upgrade the algorithms, to change the
network topology or to add more security/controlling features,
we just need to change the algorithms at the supernode. The
rest of the system can remain almost the same. This is because
(a) the supernode communicates with the peers via standard
messages and (b) the peers simply follow the instructions
contained in the standard messages.

One drawback of the hybrid architecture is that the su-
pernode can be a centralized point of failure for the system.
However, by ensuring that we have multiple supernodes and
that the session information is replicated appropriately, this
bottleneck can be overcome.

V. Performance Evaluation
A. Performance Comparison

Before presenting the details of our findings, we would
like to point out that it is very hard to make a meaningful
quantitative comparison between our system and the existing
systems due to the fundamental differences in the assumptions
of how each system works. First, most existing systems
[13][14][15] do not model the underlying network as a source
constraint network. Second, the topologies in many of these
systems are not incorporated into the designs. As a result,
the throughput efficiencies of these systems are lower than
our approach due to the lack of bandwidth contributions from
some of the leaf nodes. However, the approaches in [13] and
[14] are more scalable as a node partitions and sends packets
randomly to its neighbors, thus no state information is kept
at each node. Other related work is SplitStream [16] which
uses multiple Scribe based multicast trees with the property
that an internal node in one tree is a leaf node in others. This
property enables a leaf node to contribute its bandwidth to the
system. Also, the SplitStream topology can be constructed in
a distributed manner. On other hand, our proposed meshes
are designed for somewhat synchronous transmission with
centralized topology construction, however unlike SplitStream,
can be proved theoretically optimal.

Because of the different assumptions and goals of these
systems, instead of showing their quantitative performance, we
present a qualitative summary of a few representative systems.
Furthermore, we will show that our system achieves near opti-
mal throughput efficiency, thus any comparable system to ours
in terms of throughput efficiency, must achieve this bound.
Table V-A shows the properties of three systems: Informed
Content Delivery Across Adaptive Overlay Networks by Byers
et al. [13], SplitStream by Castro et al. [16], and the proposed
system.

Properties Byers et al. SplitStream Proposed
Fixed topology No Yes Yes

Streaming No Yes Yes
Asynchronous download Yes No No

Bandwidth fairness No No Yes
Optimal bandwidth No No Yes

Delay * O(logN) O(logN)
Heterogeneous capacity High High Medium

Management method Distributed Distributed Centralized
Transmission method P2P P2P P2P

TABLE I
QUALITATIVE COMPARISONS FOR DIFFERENT SYSTEMS

Remarks on the qualitative comparison. Our system is
designed for bandwidth fairness, meaning that each node sends
and receives at the same bit rate, much like Bittorrent tit-for-tat
scheme. Although a peer can have much higher transmission
rate, it can use its bandwidth for some other applications. If a
peer wants to share additional bandwidth, it has the option to
do so as described in the optimized version of our system in
Section IV. On the other hand, SplitStream is designed to max-
imize the bandwidth so the higher bandwidth peer may send
data at a higher rate. This also results in bandwidth unfairness
for some peers. We also note that the algorithm to construct the
SplitStream topology does not guarantee a success, although
the chance of the failure is unlikely when there is enough
sparse capacity. On the other hand, our topology can always
be constructed with provable bandwidth optimality. We now
provide the quantitative performance results for our system.

B. Small Scale Deployment over PlanetLab

We have performed extensive evaluation of our hybrid P2P
system on PlanetLab [17] - an overlay network of computers
available as a testbed for computer networking and distributed
systems research.

1) System Throughput Evaluation: In the first set of ex-
periments, we compared the performance between vanilla
multicast and our proposed system. In order to get as fair
a result as possible, we ensured that the runs were conducted
on the same set of machines with the peers occupying the
same logical position in our mesh as well as in the multicast
tree. Our system supports both UDP and TCP protocol, but
all the experiments are done using TCP. Also, in all the
PlanetLab experiments, 34 peers including the sources are
used. To simulate the DSL upload bandwidth bottleneck,
upload bandwidth of each peer was artificially limited to 30
KBps. We calculated the average upload and download speeds
after recording those values for all the peers.

Figure 4 shows the performance comparison between the
vanilla multicast and our system for three different out-
degrees: b = 2, 3 and 4. As shown in Figure 4(a), our
system outperforms the vanilla multicast in each of the runs
in terms of the average downspeed. As b increases, our
system’s performance is consistent while the performance of
the vanilla multicast degrades significantly. This consistency
can be attributed to the upload contribution of the leaf peers
in our system which is not present in a multicast tree. The
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Fig. 4. (a) Average download speed for different values of out-degree;
(b) Average upload speed for different values of out-degree.

average upload speed is shown in Figure 4(b). Regardless of
out-degree, our system achieves an efficiency close to 1 as
expected.

2) Packet Delay and Jitter Evaluation: We measure the
average time taken by a peer to receive all the disparate
data partitions from other groups. Figure 5(a) shows that the
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Fig. 5. (a) Average packet delay for different values of out-degree;
(b) Number of pauses as a function of video length.

minimum, average, and maximum packet delay as a function
of out-degree b. As seen, the average packet delay decreases
as b increases. This can be attributed to the fact that, as b
increases, the average depth of a mesh decreases for a given
number of nodes. As shown theoretically, the delay for our
proposed topology increases only as O(logb(N)) where N and
b are the number of nodes and the out-degree, respectively. For
a 1000 node topology, the round trip delay is only 1 second,
assuming that the average round trip time between any two
nodes is 100 msec, and b = 2 is used. This delay is still
acceptable for video p2p broadcasting.

Next, Figure 5(b) shows the number of pauses per node as
a function of the video length for out-degree b = 2. Again, we
artificially limit the outgoing bandwidth of a node to 300 kbps
and use TCP for streaming. The initial size of the streaming
buffer is set to 2 seconds. A pause occurs when there is no
data in the stream buffer at a time of its playback. When this
happens, a node waits an additional of 1 second worth of data
before attempting to playback. However, it relays the packets
immediately to its neighbors upon receiving any packet. The
average number of pauses for each value of video length is
calculated as the sum of all the pauses for all the nodes divided
by the number of nodes. These average number of pauses are
further averaged over 10 runs for each of the video length.
As seen, one can stream a video for 10 minutes with minimal
number of pauses.

3) Peer Join Evaluation: Next, we compare the join times
and the mesh management overhead. The join time is largely
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Fig. 6. (a) Average join times at different points in the algorithm;
(b) Mesh management overhead for join requests for different values
of out-degree.

determined by the state of the network which falls into one of
the following four categories.

1) Peer is chained: In this case, the incoming peer is
connected to only the last peer in the mesh. The number
of affected nodes is equal to 1.

2) Chain is broken to form span: In this case, the incoming
peer makes the peer count b +1 in the secondary mesh,
which results in the change from a chain to a span
topology. Hence, b + 1 nodes are affected.

3) Peer becomes secondary mesh root: In this case, there
is a balanced primary/secondary mesh and the new peer
becomes the secondary mesh root. Hence, b + 1 nodes
are affected.

4) Secondary meshes break: In this case, the incoming
peer results in b2 peers in the secondary mesh and the
secondary mesh breaks resulting in b2+ 2b nodes being
affected.

Figure 6(a) shows the join time for peers at different logical
points in the algorithm. It can be seen that the join time at
point 4 is greater than for 1, 2 or 3 due to the larger number of
affected nodes. The values for points 2 and 3 are similar while
that for point 1 is much smaller as only 1 node is affected.
Also, as b increases, the number of nodes affected increases
and hence join time at points 2, 3 and 4 increases.

The average join time depends on the number of nodes
joining at various logical positions. For b = 4 several nodes are
chained, thus the average join time is low until the last node
joins. When this happens, the secondary meshes are broken
and thus causes a spike. We emphasize that the join time does
not depends on the number of nodes, but only on the out-
degree b.

Next, we define mesh management overhead as the amount
of data flowing in the network in the form of control mes-
sages. Figure 6(b) shows the mesh management overhead
at the supernode in response to join requests. As seen, the
overhead increases with out-degree b as b is proportional to
the number of affected peers for a join. The minimum and
maximum overhead is incurred when a peer is chained and
when the secondary meshes are broken, respectively. Since
this experiment was run for small number of peers, for b = 3
and b = 4, the secondary mesh was broken only once. Hence,
the maximum overhead contributes significantly to the total
data flow for b = 3 and b = 4. However, the system will scale
up well in the presence of more peers as maximum data flow
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Fig. 7. (a) Average time to repair a node for different values of
out-degree; (b) Mesh management overhead at supernode for leave
requests for different values of out-degree.

remains constant due to the constant number of affected peers.
4) Peer Leave Evaluation: In this experiment, we measure

the average time it takes to repair the network when a peer
leaves. Figure 7(a) shows that, on average, it takes 1 to 2.5
seconds to repair the network. This repair time does not
depend on the number of destination nodes N but on the out-
degree b. Also, the average and maximum repair time increases
as b increases due to the decreasing height of the mesh. On
the other hand, the minimum repair time remains relatively
the same. This is due to the fact that removal of a single
node in chain affects only one other node, leading to fewer
messages processed and sent out by the supernode. Figure
7(b) shows the mesh management overhead at the supernode
when a peer leaves the mesh. Similar to the join overhead, the
average overhead increases with an increase in b. Again, the
minimum overhead is incurred when a chained peer leaves.
When a chained peer leaves, only its parent is affected and
hence the overhead is constant for different values of b. The
maximum overhead occurs when an internal (non leaf) peer
leaves a perfectly balanced mesh. In that case, first a leaf peer
is swapped with the internal node and, then, a secondary mesh
is formed with the remaining lowermost b2 − 1 peers. As a
result, more messages are generated by the supernode. On
average, when a peer leaves, the number of peers affected
increases with b, and hence, the average overhead in response
to leave requests increases with b.

5) Performance Evaluation of an Optimized Mesh: We have
implemented an optimized version of the system as described
in Section IV. In this experiment, we assume that peers join
incrementally. The first three peers in the mesh have low
upload capacities (DSL) while subsequent peers have higher
capacities (T1). As a result, low capacity peers end up in the
top part of the mesh. Thus, the large capacity peers below the
low capacity peers will not be able to send data at their full
capacities, resulting in a lower throughput efficiency. In an
optimized system, the supernode generates messages to swap
the lower capacity peers with the higher capacity peers so that
the former are moved to the bottom part of the mesh. Figure
8 shows the improvement of an optimized system over a non-
optimized system.

An optimized system does incur additional overhead when
a peer joins or leaves due to the peer swapping. Figure 9(a)
shows the overhead generated at the supernode to implement
the swapping when a peer joins. Figure 9(b) shows an increase
in the average join time of peers. However, the management
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Fig. 8. (a) Average download speed for different values of out-degree;
(b) Average upload speed for different values of out-degree.
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Fig. 9. (a) Mesh management overhead as a function of out-degree;
(b) Average join time as a function of out-degree.

overhead and increased join time are small enough to warrant
the use of an optimized version of the system.

C. Large Scale Simulation

We now present the large scale simulation results for our
proposed P2P system.

1) Throughput Efficiency: In this simulation, we use 3000
nodes with the capacities uniformly generated between C(1+
v) and C(1− v) where C is the mean capacity. Figure 10(a)
shows the throughput efficiency for our unbalanced mesh vs.
the maximum variation on capacity v. As seen, the efficiency
reduces as the capacity variation increases since an internal
node may have small capacity which creates a bandwidth
bottleneck for all its children. However, even when v = 0.25,
the throughput efficiency is still 0.8%. Similar results are
obtained when node capacity is normally distributed.

Figure 10(b) shows the throughput efficiency vs. the out-
degree for three different schemes: a traditional multicast tree,
an unoptimized mesh, and an optimized mesh. We observe a
throughput efficiency of 98% for optimized mesh and of 92%
for a non-optimized one. For the multicast tree, the throughput
efficiency is small and decreases as the out-degree increases
since the number of inactive nodes (leaf nodes) increases in
this topology.

D. Failure Evaluation

The following simulations aims to quantify the effect of
node failure on the proposed hybrid system. All simulations
were done using NS [18]. We used BRITE [19] to generate
an Albert-Barabasi topology consisting of 1500 routers. Next,
we randomly generate an additional 1000 overlay nodes and
connect them to the existing 1500 routers. Thus all the
nodes were logically connected through agents and physically
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Fig. 10. (a) Efficiency vs. capacity variation; (b) Efficiency vs. out-
degree for different topologies.

connected through the BRITE nodes. These overlay nodes
form a unbalanced mesh.

There are two important factors that determine how failure
of a node affects others in the topology. The first factor is the
position of a failed node. If a node is near the source, then its
failure will affect a large number of other nodes. On the other
hand, if a node is near the bottom, e.g. leaf node, its failure
will affect a smaller number of nodes. The second factor is
the out-degree b. The out-degree determines how many nodes
a particular node is connected and hence provides data to.
Hence, the larger it is, the more nodes are affected for a given
failed node.

Suppose FEC or multiple description coding technique is
used to disseminate the data [15][20], and as such a node
does not need to receive the complete data. Thus, a node is
considered a failed node if it fails to receive more than a certain
number of partitions K. Figure 11 shows the percentage of
failed nodes as a function of percentage of simultaneous
failed nodes for different K with b = 4. As expected, the
number of affected nodes decreases as more packet loss is
allowed. The reduction in percentage of affected nodes is
significant. This is because the data received at a node is
coming from different parts of the topology and so it will
require more failed nodes to completely deprive a node of
any data. It is important to emphasize that these failures are
only temporary as the topology can heal itself as described in
Section III-C. Figure 11(a) depicts the system performance as
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Fig. 11. (a) Percentage of affected nodes as a function of node
failure’s percentage; (b)Uptime percentage as a function of the failure
interval.

a function of the percentages of nodes failing simultaneously.
In practice, nodes failing simultaneously implies that during
the time that the topology is repaired due to a failure (leaving),
one or more other nodes fail. Furthermore, it would be more
detrimental to the video quality if two simultaneous failed
nodes belong to two different branches of the mesh rather

than the same one. If MDC-based video is used, in the former
case, none of the description of a video frame would be
received, while in the latter case, one description is received,
assuming that the each video description is sent on a different
branch. Thus, higher number of simultaneous failed nodes
belonging different branches results in lower video quality.
Clearly, this number depends on the failure rate and the time
to repair a failed node. To study the performance, we model the
interarrival time as a Poisson process. Figure 11(b) shows the
uptime-K performance of our proposed system as a function
of interarrival times between failures for b = 4. Uptime-K is
defined as the percentage of time that a node not receiving
K distinct partitions or less. As seen in Figure 11(b), uptime-
1 is almost 100% when the average failure interval is larger
than 5 seconds. In other words, using b = 4, if the video is
channel coded with RS(4, 3) (3 data packets and 1 redundant
packet) and each of the 4 packets is sent on a distinct branch,
then the video will be play back smoothly since most of the
time, the node only loses one partition, and can recover this
partition using FEC. Also, note that the uptime-3 is only 63%
for average failure interval of 2 seconds. This is due to the fact
that the average repair time for our system is approximately
equal to the average failure interval of 2 seconds, which results
in many more simultaneous failed nodes.

VI. Related Work
Our proposed topology is most similar to the file swarming

system FOX proposed by Levin et al. [21] 1. In fact, the
FOX topology is identical with our proposed balanced mesh, a
special case in which, the number of nodes fills a perfect k-ary
tree. On the other hand, our cascaded and unbalanced mesh
topologies can handle arbitrary number of nodes. In addition,
FOX is designed and analyzed in the context of incentives for
peers to exchange data fairly, while the focus of our proposed
topology is on bandwidth efficiency, delay, and the dynamic
of node joining and leaving.

Other similar approach is that of Byers et al. [13] in which,
the authors propose to partition data and make use of peers
to increase the throughput of the system. In this approach,
each node randomly sends different partitions on different
links. Data reconciliation techniques [22] are then used to
reduce data redundancy sent between nodes. To address the
transient and asynchrony issues of nodes joining and leaving
the network, the paper advocates a Forward Error Correction
(FEC) approach in which a node can successfully recover the
entire file using a fraction of the received packets. Similar
work has also been done by Kostic et al. [14] where the
goal is to distribute data to a set of nodes in an overlay
multicast tree in such a way that it results in approximately
disjoint data sets at these nodes. These individual nodes
can then establish concurrent connections to other nodes in
order to increase the download speed. Data reconciliation
techniques similar to [13] are used to reduce overlapped data.
Both the aforementioned contributions focus on protocols and
techniques for dynamically exchanging information between

1Levin et al. independently proposed the same balanced mesh topology six
months after our first publication [11]
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the nodes. On the other hand, our work focuses on constructing
a topology with the emphasis on achieving high throughput,
reducing node delay, minimizing disruption due to joining
and leaving of nodes and bandwidth fairness. In addition,
unlike the randomized data partition approaches in [13] and
[14], our data partition algorithm is simple, deterministic and
uses only a small number of partitions. Therefore, no data
reconciliation is needed. Padmanabhan et al. [15] use multiple
overlay multicast trees to stream multiple descriptions of the
video to the clients . Each multicast tree contains a description
of the video. When a large number of descriptions are received,
higher video quality can be achieved. Unlike our paper this
focuses on video data dissemination. Most similar to our work
is SplitStream [16]. In [16], Castro et al. propose to construct
multiple multicast trees with the property that an internal node
of one tree has to be a leaf node in the others to improve
reliability. Data is then partitioned and sent on to different
multicast trees. Unlike our work, SplitStream relies on Scribe
[23] and Pastry [24] infrastructure for tree construction without
considering the constraints on the out-degree and constraints
in sending rate of each node. Recently, Li et al. proposed
MutualCast [25] which focuses on throughput improvement
for data dissemination in P2P network. Similar to our work,
MutualCast employs partitioning techniques and a fully con-
nected topology to ensure that the upload bandwidth of all
the nodes is fully utilized. This can be achieved only if there
is no constraint on the out-degree of a node and therefore,
a MutualCast network is basically a fully connected graph.
Thus, affected nodes during joining and leaving of a node is
the total number of nodes in the MutualCast network. On the
other hand, our P2P system puts a constraint on the out-degree
of a node in order to reduce the number of affected nodes due
to a node joining or leaving. Thus, the process of repairing
the topology is fast, regardless of the number of nodes in
the network. Other similar works include the system in [26]
which proposes a protocol for cooperative bulk data transfer.
Many other related works also propose to off-load a server’s
bandwidth to peers when the number of destination nodes
is large, resulting in a highly bandwidth scalable network.
For example, the scheme in [27] makes use of P2P overlay
networks formed by the clients themselves to alleviate the
traffic burden on the content servers. The capacity modeling
of P2P file sharing systems have also been studied in [28][29].

VII. Conclusion

In this paper, we have presented a P2P system designed
for real time and non-real time data dissemination from a
single source node to multiple receivers in a source con-
straint network. The contributions of this paper include (a)
a quantitative measure of throughput efficiency of any data
dissemination in any source constraint network, (b) a set of
topologies suitable for data dissemination in P2P networks,
and (c) an architecture and implementation of a P2P system
based on the proposed optimal topologies. We have presented
the experimental results of our P2P system consisting of
PlanetLab nodes which demonstrate that our approach outper-
forms a traditional overlay multicast tree, and achieves near-

optimal throughput while providing scalability, low delay, and
bandwidth fairness.
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