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Abstract

Simulated annealing (SA) algorithms can be modeled as time-inhomogeneous

Markov chains. Much work on the convergence rate of simulated annealing

algorithms has been well-studied. In this paper, we propose an adiabatic

framework for studying simulated annealing algorithm behavior. Specifically,

we focus on the problem of simulated annealing algorithms that start from an

initial temperature T0 and evolve to Tfinal which are pre-specified, and remain

at the final temperature so that the solution will be adaptive to the dynamical

changes of the system.

Keywords: Distributed optimization, distributed graph partitioning, simulated

annealing, adiabatic time analysis.

1. Introduction

Proposed by Kirkpatrick , Gelatt and Vecchi [1], Simulated annealing (SA) is a

probabilistic optimization method [2, 1, 3]. Initially, starting at a random state at a

high temperature, SA process changes to a neighbor state which has lower energy, to

higher energy neighbors or with Boltzmann’s law of probability. Temperature often

decreases over time such that when the algorithm reaches a low enough temperature,
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the system is frozen at an expected distribution so that the system will remain at the

lowest energy states with the highest probabilities. The Markov chain associated with

an SA algorithm is actually in-homogeneous during the period that temperature is

decreasing. At a fixed temperature, i.e frozen at a (low) temperature, SA exhibits as

a time-homogeneous Markov chain.

The homogeneous Markov chain convergence property has been well investigated in

[4]. The mixing time, the soonest time that the homogeneous Markov chains converge

to a unique stationary distribution, was well studied in [5, 6]. However, adiabatic

time or the time taken to converge, of in-homogeneous Markov chains, i.e Simulated

annealing algorithm, has not been deeply analyzed. In [7], the authors proposed an

analysis framework for Simulated Annealing algorithms which exhibits ergodic property

focusing on the distance to the optimal distribution. On the other hand, our work

focuses on the distance to stationary distribution at a specified target temperature.

There are some applications of simulated annealing algorithm that stops decreasing

temperature but continue running so that the system can continue to optimize and

adapt to the dynamical changes.

Adiabatic analysis frameworks for continuous time-inhomogenous Markov Chain

have been proposed in several works [8, 9, 10]. However, author in these works focused

on the family of in-homogeneous Markov Chain that evolve with the following rule:

P (t) = ϕ(t)P (0) + (1− ϕ(t))P (Tf ) (1.1)

where P (0), P (Tf ) are initial and final transition matrices respectively; ϕ(t) : [0,∞)→

[0, 1] is the evolution function and monotonically decreasing. On the other hand, the

transition matrices associated with Simulated Annealing algorithms do not exhibit

such evolution property. In fact, evolution of each element in the transition matrix of

a Simulated Annealing algorithm is exponential with its own parameter.

Adiabatic time characterizes the in-homogeneous Markov chain convergence which

is an analog to the mixing time of the time-homogeneous Markov chain. It measures

the time taken to converge, i.e the total variance distance of the distribution to the final

stationary distribution. In this paper, we concentrate on the convergence properties

of SA algorithm based on Ergodic Coefficient with application to the Client-Server
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assignment problems. Specifically, we will evaluate the adiabatic time of SA algorithms

with decreasing temperatures to a specified final temperature.

The structure of the paper is organized as follows: Section 2 lists the background

related to Markov chain and general Simulated annealing algorithms. Section 3 concen-

trates on analyzing the adiabatic time of the SA algorithms. Section 4 formulates the

Client-Server assignment problem and proposes a simulated annealing based algorithm

as well as derives the adiabatic bounds for different cooling schemes based on the

framework presented in Section 3. Section 5 shows some simulation results. Finally,

section 6 concludes the paper.

2. Preliminaries

This section introduces a general simulated annealing algorithm and summarizes

some Markov chain properties that are needed for the main focus of the paper.

2.1. Simulated Annealing algorithm

Given a finite set of states Ω and a real-valued cost function F defined on Ω and a

transition matrix Q (Qij ≥ 0 and
∑

j Qij = 1). Each state i ∈ Ω has a set of neighbor

states N (i), i.e Qij > 0,∀j ∈ N (i) and Qij = 0 otherwise. The simulated annealing

algorithm is listed in algorithm 1.

Algorithm 1 Simulated annealing

1: Set Tb = T0 - an initial temperature

2: Set X = X0 - an initial state

3: repeat

4: Select Y ∈ N (X)

5: if F (Y ) < F (X) then

6: Set X ← Y

7: else

8: Set X ← Y with probability exp[−F (Y )−F (X)
Tb ]

9: end if

10: Decrease Tb

11: until Freeze
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The kernel of simulated annealing algorithms is the probabilistic transition from one

state to another which is controlled by a parameter (Tb) (a metaphor of controlling

temperature). Initially, simulated annealing will choose an initial (normally arbitrary)

state, and an initial temperature which is chosen empirically depending on problems.

At each iteration, a neighbor state is selected to be considered whether or not being

accepted as the new state. The transition probability depends on the different energy

(cost function value) at the current state F . If the selected state has lower energy,

the transition is surely taken; otherwise, the transition will happen with a probability

of exp(−∆F
Tb

). The temperature Tb will decrease over time and the system will freeze

when Tb is small enough.

At each specific value of temperature Tb, there is an associated transition matrix

which exhibits as a homogeneous Markov Chain. When Tb decreases over time, tran-

sition matrices will evolve toward the final transition matrix corresponding to the

frozen states of the algorithm. This transition exhibits properties of an in-homogeneous

Markov Chain.

2.2. Markov Chain properties

A finite Markov chain is a process which changes its internal state (configurations)

within a set of finite states with a fixed probability distribution and the transition

probabilities depend only on the current state [5]. Let Xt ∈ Ω, t = 0, 1, 2, .... be a chain

of states at time t and P be the transition matrix; the Markov chain can be represented

by the following Markov property:

P{Xt+1 = yt+1|Xt = yt, Xt−1 = yt−1, .., X0 = y0} = P{Xt+1 = yt+1|Xt = yt} (2.1)

where yi ∈ Ω and t is discrete time.

If pij = P{Xt+1 = i|Xt = j} is independent of t, the Markov chain is said to be

time-homogeneous. A matrix P whose elements are pij is the transition matrix.

Definition 2.1. (Stationary distribution.)

If there exist a distribution π over state space Ω such that

πT = πTP (2.2)

then π is called a stationary distribution.
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Definition 2.2. (Total variance distance.)

Let µ and ν be any two distributions over state space Ω, the total variance distance

between µ and ν is defined as:

||µ− ν||TV = sup
A⊂Ω
|µ(A)− ν(A)| = 1

2

∑
x∈Ω

|µ(x)− ν(x)| (2.3)

In other words, the total variance distance quantifies the difference between two prob-

ability distributions over the same state space.

Definition 2.3. Separation [4](p.219)

The separation of µ from ν, denoted by s(µ; ν), is defined by

s(µ; ν) = max
i∈Ω

(
1− µ(i)

ν(i)

)
(2.4)

Observation 2.1. [4]

0 ≤ s(µ; ν) ≤ 1 (2.5)

Proposition 2.1. [4]

||µ− ν||TV ≤ s(µ; ν) (2.6)

Definition 2.4. The Ergodic Coefficient [4]

Let P be a stochastic matrix indexed by Ω×Ω. Its Dobrushin’s ergodic coeefficient

τ(P ) is defined by:

τ(P ) =
1

2
sup
i,j∈Ω

∑
k∈Ω

|pik − pjk| = sup
i,j∈Ω

||pi − pj ||TV

The ergodic coefficient characterizes the long-term behavior of dynamical systems.

Observation 2.2. [4]

0 ≤ τ(P ) = 1− inf
i,j∈Ω

∑
k∈Ω

min{pik, pjk} ≤ 1

Proposition 2.2. [4]

τ(P1P2) ≤ τ(P1)τ(P2) (2.7)

Proposition 2.3. [4] Let P be a stochastic matrix indexed by E, and let µ and ν be

two probability distributions on E, then

||µPn − νPn||TV ≤ τ(P )n||µ− ν||TV (2.8)
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3. Analysis Framework for Simulated annealing

Definition 3.1. (Cooling scheme.) A sequence of temperatures {Tk > 0}, k = [0, 1, 2, ..)

is called a cooling scheme if it is strictly decreasing and goes to 0. Mathematically, Tk > Tk+1 > 0

lim
k→∞

Tk = 0

Definition 3.2. (Transition Matrix Evolution.) Given an initial temperature T0, a

target temperature Tfinal and a slow cooling scheme as defined in Definition 3.1

consisting of K steps such that TK ≤ Tfinal < TK−1 are used as parameters of a

simulated annealing algorithm. Let Pk be the transition matrix of the corresponding

Markov chain at time k. The sequence of matrices {Pk}, 0 ≤ k ≤ K is the evolution of

the in-homogeneous Markov chain’s transition matrix.

Definition 3.3. (Adiabatic time.)

The existence of stationary distribution πk of the corresponding Markov chain at

time step k has been proved [7]. Given ϵ > 0, the adiabatic time of the in-homogeneous

Markov chain is defined as follows:

K(ϵ) = inf
{
K : max

ν
||νP0P1...PK − πK ||TV ≤ ϵ

}
(3.1)

with ν is any initial probability distribution over Ω and Pt is the corresponding

transition matrix evolution defined in Definition 3.2.

The adiabatic time presents how gradually the transition matrix of a in-homogeneous

Markov chain evolves from ν0 (initial distribution) to νK (final distribution) such that

the final distribution is close to the stationary distribution of the final transition matrix.

In simulated annealing optimization problem, the adiabatic timeK(ϵ) always converges

since the transition matrices converge to the final transition matrix.

Proposition 3.1. For any cooling scheme, ∀k1, k2 such that 0 < k1 < k2 ≤ K and

FL, FU are lower bound and upper bound of the cost function, the total variant distance

between two corresponding stationary distributions is bounded by:

||πk1 − πk2 ||TV ≤ ∆F (
1

Tk+1
− 1

Tk
) (3.2)
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Proof.

||πk1 − πk2 ||TV ≤ s(πk1 , πk2)

, max
i

{
1− πk1(i)

πk2(i)

}
= 1−min

i

(πk1(i)

πk2(i)

)
= 1− πk1(i

∗)

πk2
(i∗)
≤ ϵ1 (3.3)

where

i∗ = argmini F (i) (3.4)

We also have

πk1(i
∗)

πk2(i
∗)

=
Ck2

Ck1

× e−F (i∗)/Tk1

e−F (i∗)/Tk2

≥
∑

i e
−FU/Tk2∑

i e
−FU/Tk1

× e−FL/Tk1

e−FL/Tk2

= e
(FL−FU )( 1

Tk2
− 1

Tk1
)

(3.5)

hence

||πk1 − πk2 ||TV ≤ 1− e
−∆F ( 1

Tk2
− 1

Tk1
)

which finishes the proof (by Taylor expansion of the exponential function).

Proposition 3.2. Denote PL(l) =
l∏

k=l−L+1

P (k), l ≥ 1. If the graph associated with

the Markov Chain at a given temperature Tk is a connected graph, there exists L0 such

that

τ(PL(l)) = 1 if L < L0

And τ(PL(l)) < 1− γl
L if L ≥ L0 (3.6)

Where γl
L = 1

(max
i∈Ω
|N (i)|)L

e
−L∆F

Tl and ∆F = FU − FL, N (i) is the set of state i’s

neighboring states.

Proof. Since the graph associated with the Markov Chain at a given temperature

Tk is not a fully connected graph, there exists a state s0 such that there is no direct

transition from all other states into s0. Hence from Observation 2.2 we have τ(P ) = 1.
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Let L0 be the diameter of the Markov Chain graph at a given temperature Tk, i.e

L0 = min
x,y∈Ω

max |γxy|. ∀L ≥ L0 we have:

τ(PL(l)) = 1− inf
i,j

∑
k

min{PL(l)[i,k], PL(l)[j,k]} (3.7)

≤ 1−
l∏

k=l−L+1

min
i,j∈Ω

Pij(k) (3.8)

≤ 1−
l∏

k=l−L+1

1

max
i∈Ω
|N (i)|

e−∆F/Tk (3.9)

≤ 1− 1

(max
i∈Ω
|N (i)|)L

l∏
k=l−L+1

e−∆F/Tk (3.10)

≤ 1− 1

(max
i∈Ω
|N (i)|)L

e−L∆F/Tl (3.11)

= 1− γl
L (3.12)

Where (3.7) follows from Definition of PL(l) and Observation 2.2, (3.8) follows from

expanding PL(l), (3.9) follows from how to select transition probability in Simulated

Annealing, (3.10) is trivial.

Note: If L is chosen such that the aggregation matrix PL(l) has all positive columns

we can obtain the following value of γL(l):

γl
L =

|Ω|
(max
i∈Ω
|N (i)|)L

e
−L∆F

Tl (3.13)

Corollary 3.1. For any 0 < L < L0, l ≥ 0

||πlPl..Pl+L−1 − πl+L||TV ≤
l+L−1∑
k=l

||πk − πk+1||TV (3.14)

Positive column has all positive elements [11]
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Proof.

||πlPl..Pl+L−1 − πl+L||TV ≤ ||πlPl..Pl+L−1 − πL−1||TV

+||πl+L−1 − πl+L||TV (3.15)

≤ ||πlPl..Pl+L−2 − πL−1||TV τ(Pl+L−1)

+||πl+L−1 − πl+L||TV (3.16)

≤ ||πlPl..Pl+L−2 − πL−1||TV

+||πl+L−1 − πl+L||TV (3.17)

≤
l+L−1∑
k=l

||πk − πk+1||TV (3.18)

Where (3.15) follows from triangle inequality, (3.16) and (3.17) follow from Proposition

2.3, and (3.18) follows from expending (3.17) recursively.

Corollary 3.2. For any cooling scheme, and 0 < L < K we have:

K−1∑
l=K−L

||πl − πl+1||TV ≤ ∆F
( 1

Tl+L
− 1

Tl

)
(3.19)

Proof. The Corollary follows directly Corollary 3.1 and Proposition 3.1.

Theorem 3.1. Let νK , πK be the distribution of the in-homogeneous Markov chain

and the stationary distribution at time K respectively. Given T0, TK , and a cooling

scheme, i.e T0 ≥ Tk > Tk+1 ≥ TK , 0 ≤ k < K, if there exists two non-increasing

functions α1(k), α2(k) satisfying 0 < α1(K) < γK
L ; 0 < α2(K) < 1 and

K−1∑
l=K−L

||πl −

πl+1||TV ≤ α1(K)α2(K), specifically α2(K) is strictly decreasing, the total variance

distance between νK and πK is bounded by:

||νK − πK ||TV ≤ max
{ K−K0

L∏
k=1

(1− γkM
L + α1(K))||νK0 − πK0 ||TV ;α2(K)(1 + α1(K))

}

where K0 is any reference time step such that K −K0 ≡ 0(mod L).
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Proof.

||νK − πK ||TV ≤ ||νk−LPk−L+1...PK − πK−LPK−L+1...PK ||TV

+||πK−LPK−L+1...PK − πK ||TV (3.20)

≤ τ(PL(K))||νK−L − πK−L||TV

+

K−1∑
l=K−L

||πl − πl+1||TV (3.21)

≤
(
1− γK

L

)
||νK−L − πK−L||TV

+

K−1∑
l=K−L

||πl − πl+1||TV (3.22)

The theorem is finished by plugging the following cases into (3.22).

Case 1: ||νK−L − πK−L||TV > α2(K), we have

K−1∑
l=K−L

||πl − πl+1||TV ≤ α1(K)||νK−L − πK−L||TV

Plugging into (3.22) we obtain,

||νK − πK ||TV ≤
(
1− γK

L + α1(K)
)
||νK−L − πK−L||TV

Continuing recursively we obtain the 1st term of the Theorem.

Case 2: ||νK−L−πK−L||TV ≤ α2(K). Plugging into (3.22) we obtain the 2nd term

of the Theorem.

||νK − πK ||TV ≤ (1− γK
L )α2(K) +

K−1∑
l=K−L

||πl − πl+1||TV (3.23)

≤ α2(K) + α1(K)α2(K) (3.24)

= α2(K)(1 + α1(K)) (3.25)

Corollary 3.3. The adiabatic time can be bounded by deriving from the above The-

orem depending on which cooling scheme is chosen.

KA(ϵ) ≤ max{K1(ϵ),K2(ϵ)}

where

K1(ϵ) = inf{K :

K−K0
L∏

k=1

(1− γkM
L + α1(K))||νK0 − πK0 ||TV ≤ ϵ}
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and

K2(ϵ) = inf{K : α2(K)(1 + α1(K)) ≤ ϵ}

Proof. This Corollary comes directly from letting the upper bound in Theorem 3.1

be smaller or equal to a small positive number ϵ.

Note: The quality of the upper bound on the adiabatic time depends on how the

two parameters α1 and α2 are chosen and bounded.

Theorem 3.2. (Convergence rate at fixed temperature TK .) Let ϵ be an upper bound

of ||νK − πK ||TV . and let δ be a positive number such that 0 < δ < ϵ, and τBL be

an upper bound of τ(PL). The time when the Markov Chain corresponding to the

Simulated Annealing at a fixed temperature TK converges, i.e ||νKPKM − νK ||TV ≤ δ,

is bounded by:

KM (ϵ, δ) ≤ L
logδ − logϵ

logτBL
(3.26)

Proof. Without loss of generality, assume that KM ≡ 0(mod L)

||νK − π||TV ≤ τ(PL)||νK − πK ||TV (3.27)

≤ τ(PL)KM/L||νK − πK ||TV (3.28)

≤ ϵ(τBL )KM/L (3.29)

≤ δ (3.30)

The theorem follows.

4. Application to Client-Server Assignment

4.1. Problem formulation

In this section, we will formulate the Client-Server assignment problem mathemat-

ically. Assume that there are M users needing to be assigned to N servers. The

communication pattern of users is represented by a graph G = (V,E) where V denotes

the set of M users (|V | = M) and E denotes the friendship among users. If two

users have messages exchanged, it will form an edge in the graph G. Let matrix A

be the adjacent matrix corresponding to the user graph G. Elements in A depict the

friendship between users having strictly positive values, otherwise their values are 0.
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The processing load at servers as well as the inter-server communication load incurred

by messages sent from one user to another and vice versa are identical, hence A is

symmetric. Now we define a matrix X to represent a valid assignment scheme. Each

user will associate to a row in X with columns’ values representing which server is the

primary server of that user. Specifically, X[u, i] = 1 if server i is the primary server of

user u and 0 otherwise. We also assume that each user must have exactly one primary

server, i.e
∑N

i=1 X[u, i] = 1, ∀0 ≤ u ≤M, 0 ≤ i ≤ N .

The global total system load S(X) for an assignment X is computed as follow:

S(X) = ||XTAX||1 −
1

2
Tr(XTAX) (4.1)

where ||.||1 denotes the entry-wise l1-matrix norm, i.e., the sum of all the entries in

the matrix.

For the purpose of evaluating servers’ imbalance, we first define the average load of

all the servers as:

S(X) =
S(X)

N
=
||XTAX||1 − 1

2Tr(X
TAX)

N
(4.2)

The load imbalance at server i is defined as :

∆Si(X) ≡ Si(X)− S(X), (4.3)

where Si(X) denotes the total load at server i.

We now propose the global objective function depending on the global total load

and the maximum server’s imbalance:

F (X) = αS(X) + βmax
i

∆Si(X), (4.4)

where α and β are pre-specified weighted positive coefficients.

The Client-Server assignment problem can be stated as the following optimization

problem:

Minimize: F (X)

Subject to: Xui ∈ {0, 1}∑
i Xui = 1

u ∈ {1, 2, ..,M}

i ∈ {1, 2, .., N}



Convergence of MCMC and application 13

Figure 1: Temperature decreasing scheme for simulated annealing based algorithm

We note that minimizing F (X) implies minimizing the total load and the load

imbalance. However, as previously discussed, to obtain the lowest total load (putting

all the users in one server), it is necessary that the load imbalance increase. Therefore,

tuning coefficients α and β allow for a trade-off between the total load and the load

balance. At one extremity, setting α = 0 implies minimizing the load balance regardless

of the total load, while setting β = 0 implies minimizing the total load regardless of

the load balance. Details on the Client-Server assignment problem can be found at

[12].

4.2. Simulated Annealing based Algorithm

Based on computations above, we propose an algorithm for assigning users to servers

appropriately based on simulated annealing as shown in Algorithm 2.

Initially, an arbitrary assignment scheme (state) is selected at time step k = 0

with corresponding temperature T0. At each iteration, select a neighbor of current

assignment scheme with uniform probability. If the selected state has lower objective

function’s value, accept immediately; otherwise accept with probability of exp(−∆F
Tk

).

Increment k and decrease Tk (if Tk > Tfinal). Continue with a new iteration. We keep

the system running forever at temperature Tk so that the dynamic changes, which are

reflected in changes of F (X), can be taken into account.

4.2.1. in-homogeneous Markov chain

1. Sate space: Let Ω be the set of all possible assignment schemes. |Ω| = NM .

An assignment scheme is called a neighbor of another scheme if their matrices

different in exactly 1 row. There are NM assignment schemes.
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Algorithm 2 Simulated annealing based algorithm

1: Initialize Tb

2: while true do

3: Select an user u

4: Select a new server {s : X[u, s] = 0} with probability 1
N−1

5: Calculate future objective function’s value Fnew

6: if Fnew < F then

7: Switch user u to new server s

8: else

9: Switch user u to new server s

10: with probability exp(−F−Fnew

Tb )

11: end if

12: if Tb > TK then

13: Decrease Tb

14: end if

15: end while

2. Neighboring state: Given an assignment scheme X, a new scheme is selected

by choosing a user and changing its server. There are M users and N − 1 new

servers, hence each assignment scheme has M(N − 1) neighbors. Consequently,

the probability of selecting a neighbor is pXY = 1
M(N−1) .

Claim 4.1. At a fixed temperature Tk, the stationary distribution πk of the

corresponding Markov chain exists.

Proof. The acceptance probability is min{1, exp(−F (Y )−F (X)
Tk

)}, hence the

transition matrix Pk of the corresponding Markov chain at time Tk can be

described as follows:

Pk(X,Y ) =



1
M(N−1) if Y ∈ N (X) ∧ F (Y ) ≤ F (X)

1
M(N−1) exp(−

F (Y )−F (X)
Tk

) if Y ∈ N (X) ∧ F (Y ) > F (X)

1−
∑

j∈N (X) Pk(X, j) if X ≡ Y

0 o.w



Convergence of MCMC and application 15

Let πk be an distribution defined by:

πk(X) = Ck exp(−
F (X)

Tk
)

where Ck =
∑

x∈Ω exp(−F (x)
Tk

) For any two solution X,Y , without loss of gener-

ality assuming that F (X) ≤ F (Y ), we have

πk(X)Pk(X,Y ) = Ckexp(−
F (X)

Tk
)pXY exp(−

F (Y )− F (X)

Tk
) (4.5)

= Ckexp(−
F (Y )

Tk
)pXY (4.6)

= πk(Y )Pk(Y,X) (4.7)

hence the detailed balance equation satisfies and πk is the stationary distribution

of the corresponding Markov chain at time k.

Claim 4.2. (All positive columns.) The aggregation matrix duringM time steps

has all positive columns. In other words, after M time steps any assignment

scheme can be changed into any other new assignment scheme.

Proof. Let X,Y be two arbitrary distinct assignment schemes. Let X(i, :) and

Y (i, :) be the ith row in X and Y respectively. A neighbor of X can be selected

by changing one of its row, i.e change the column that has the value of 1 in one

row.

Define D(X,Y ) = {i : X(i, :) ̸= Y (i, :)}, |D(X,Y )| is the Hamming distance

between two assignment schemes, i.e the necessary number of users in X need to

be reassigned to achieve Y . We have 0 ≤ |D(X,Y )| ≤M .

Corollary 4.1. Define ∆F = maxX∈Ω maxY ∈N (X) |F (X)− F (Y )|.

τ(PM (l)) ≤ 1− (
N

M(N − 1)
)M exp(−M∆F

Tl
)

Or

γl
M = (

N

M(N − 1)
)M exp(−M∆F

Tl
)

Proof. Apply Proposition 3.2 and Claim 4.2.

Observation: γK
M = ( N

M(N−1) )
M exp(−M∆F

Tfinal
) is independent of K.
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4.2.2. Adiabatic time

1. Logarithmic cooling schemes

Tk =
c

k + d

with c > 0, d > 1 are chosen such that T0 = c/log(d) and Tfinal = c/log(K + d).

The question here is how to choose K which is large enough so that the final

distribution is close to the stationary distribution corresponding to a predefined

final temperature.

Claim 4.3. Define K∗ = inf{k : ∆F
logk < 1 ∧ K − k ≡ 0(modM)} and K∗∗ =

inf{K : log(K−M)
log(K) > 1− TK

∆F ( N
M(N−1) )

M exp(−M∆F
Tfinal

)}. WithK > max{K∗,K∗∗},

there exist two strictly decreasing functions α1(k), α2(k) such that α1(K) < γK
M ,

0 < α2(K) < 1 and ∆F ( 1
TK
− 1

TK−M
) ≤ α1(K)α2(K)

Proof.
log(K −M)

log(K)
> 1− TK

∆F
γK
M

∆F

TK
(1− log(K −M)

log(K)
) < γK

M

Let α1(K) = ∆F
logK γK

M .

and α2(K) = 1
TKγK

M

log K
K−M

We have:

∆F (
1

TK
− 1

TK−M
) =

∆F

TK
(1− log(K + d−M)

log(K + d)
) (4.8)

<
∆F

TK
(1− log(K −M)

logK
) (4.9)

= α1(K)α2(K) (4.10)

Theorem 1. With K ≥ max{K∗,K∗∗}, the total variance distance at time K

is bounded by:

||νK − πK ||TV ≤ max


[
1− (1− ∆F

log(K∗) )γ
K
M

]K−K∗
M ||νK∗ − πK∗ ||TV ;

1
TKγK

M

log( K
K−M ) + ∆F

TK
(1− log(K−M)

log(K) )





Convergence of MCMC and application 17

Proof. Without loss of generality, K is chosen such that K ≡ 0(mod M). The

theorem is proved by applying Theorem 3.1 and choosing α1(K), α2(K) as in

Claim 4.3.

Corollary 4.2. The adiabatic time is bounded by:

KA(ϵ) ≤ max



K∗∗;

K∗ +M logϵ−log||νK∗−πK∗ ||TV

log[1−(1− ∆F
logK∗ )γK

M ]
;

M exp(ϵ/2TKγK
M )

exp(ϵ/2TKγK
M )−1

;

2∆FM
ϵTK


Proof. Let the first elements in the ’max’ operator of Theorem 1 be less than

or equal to ϵ and each term of the second element less than or equal to ϵ/2, then

the Corollary follows.

2. Exponential cooling schemes.

Tk = T0(
Tfinal

T0
)k/K

Claim 4.4. Define K∗∗ = ⌈ Mlog(Tfinal/T0))

log[1−( N
M(N−1)

)M exp(− M∆F
Tfinal

)(
TK
T0

)M
TK
∆F ]
⌉. With K >

K∗∗, there exist two non-increasing functions α1(k), α2(k) such that α1(K) <

γK
M , 0 < α2(K) < 1 and ∆F ( 1

TK
− 1

TK−M
) = α1(K)α2(K)

Proof.

γK
M = (

N

M(N − 1)
)K exp(−M∆F

TK
)

Let

α1(K) = (
TK

T0
)(

N

M(N − 1)
)M exp(−M∆F

TK
)

and

α2(K) = (
M(N − 1)

N
)M exp(

M∆F

TK
)(

T0

TK
)
∆F

TK
[1− (

TK

T0
)M/K ]

We have:

∆F (
1

TK
− 1

TK−M
) =

∆F

TK

[
1− (

TK

T0
)M/K

]
(4.11)

= γK
M (

TK

T0
)
1

γK
M

(
T0

TK
)
∆F

TK

[
1− (

TK

T0
)M/K

]
(4.12)

= α1(K)α2(K) (4.13)
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Apparently, α1(K) < γK
M since TK ≤ Tfinal < T0; and withK > K∗∗, α2(K) < 1.

Theorem 4.1.

||νK − πK ||TV ≤ max


||ν0 − π0||TV

K/M∏
l=1

[
1− (1− (

TK

T0
))γlM

M

]
;

α2(K)(1 + α1(K))


Where α1(K), α2(K) are defined in Claim 4.4

Proof. By choosing α1(K) and α1(K) as in Claim 4.4 and applying Theorem

3.1, the Theorem follows.

Corollary 4.3. The bound on adiabatic time of the simulated annealing algo-

rithms using exponential cooling schemes is:

KA(ϵ) ≤ max


K∗∗;

M logϵ−log(||ν0−π0||TV )

log(1−(1−TK
T0

)γK
M )

;

Mlog(TK/T0)

log(1−
ϵT2

K
γK
M

∆FT0(1+
TK
T0

γK
M

)
)


Proof.

3. Logarithmic cooling schemes with pre-specified parameters

Tk =
c

ln(k + d)
(4.14)

Where c, d satisfy T0 = c
ln(d) , c > 0, d > 1.

In this type of cooling scheme, we fix parameter c, d so that T0 = c/log(d) and

decide the upper bound of the adiabatic time. In other words, we will decide the

final temperature TK at which the total variance distance between the resulting

distribution and the stationary distribution is small enough, i.e ||νK−πK ||TV < ϵ.

Claim 4.5. The in-homogeneous Markov chain is ergdic if c > M∆F

Proof. Replacing Tk in Proposition 3.2 with the temperature decreasing rule

in (4.14), we have:

τ(PM (l0M)) ≤ 1−
( N

M(N − 1)

)M
(k + d)−

M∆F
c (4.15)
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With c > M∆F or equivalently M∆F/c < 1 , we have:

∞∑
l=l0

(1− τ(PM (l0M))) =∞ (4.16)

which finishes the proof according to [4].

Proposition 4.1. There exists a temperature T ∗ such that ∀k ≥ k∗ where Tk∗ =

T ∗,

||πk − πk+1||TV > ||πk+1 − πk+2||TV

In other words, the total variance distance between stationary distributions of

two consecutive time steps is decreasing.

Proof. Let S∗ be the set of states with global minimum objective values, i.e

F (j) < F (i) ∀i ∈ S∗ ∧ ∀j ∈ S \ S∗. There exist k0 > 0 such that πk(i) is

monotonically decreasing ∀i /∈ S∗ and πk(i) is monotonically increasing if i ∈ S∗

[7]. For ∀k > k0 we have

||πk − πk+1||TV =
1

2

∑
i∈S∗

[πk+1(i)− πk(i)] +
1

2

∑
j∈S\S∗

[πk(j)− πk+1(j)] (4.17)

Therefore,
∞∑

k=k0

||πk − πk+1||TV ≤ 1

Additionally, since πk(j) is monotonically decreasing ∀j /∈ S \ S∗, the 2nd term

in (4.17) goes to 0 which finishes the proof.

Theorem 4.2. Let νK be the distribution evolved from an initial distribution

ν0 at the final time step, and πK be the stationary distribution. The bound on

the total variance distance between the two distributions is:

||νK − πK ||TV ≤ max
{
||νK0 − πK0 ||TV

K−K0
M∏
l=1

[
1− (1− ∆F

c
)

(
N

M(N−1)

)M
(K0 + lM + d)M∆F/c

]
;

MM (N − 1)M

NM (K + d)1−M∆F/c
+

∆F

c

[ 1

K −M + d

]}
where K0 = inf{k : c

log(k+d) ≤ T ∗ ∧ K − k ≡ 0(mod M)}, T ∗ is defined in

Proposition 4.1.
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Proof. Let α1 =
(

N
M(N−2)

)M ∆F
c

1
(K+d)M∆F/c and α2 =

(M(N−1)
N

)M K+d)M∆F/c

(K−M+d) .

Applying Theorem3.1 we obtain the following results:

Case 1: For ||νK−L − πK−L|| ≥ α2

⇒
K−1∑

l=K−M

||πl − πl+1||TV ≤
∆F

c

1

(K −M + d)
< α1||νK−L − πK−L||, Plugging

into Theorem 3.1:

||νK−πK ||TV ≤
[
1−(1−∆F

c
)
( N

M(N − 1)

)M 1

(K + d)M∆F/c

]
||νK−L−πK−L||TV

Expand the bound recursively until K0, we have

||νK−πK ||TV ≤

K−K0
M∏
l=1

[
1−(1−∆F

c
)
( N

M(N − 1)

)M 1

(K0 + lM + d)M∆F/c

]
||νK0−πK0 ||TV

Case 2: For ||νK−L − πK−L|| < α2, Plugging into Theorem 3.1:

||νK − πK ||TV ≤ (1− γK
M )

MM (N − 1)M

NM

(K + d)M∆F/c

K −M + d
+

∆F

c

[ 1

K −M + d

]
Corollary 4.4. The upper bound on the adiabatic time of the simulated anneal-

ing algorithm with the logarithmic cooling scheme is

KA(ϵ) < max
{
K1(ϵ),K2(ϵ)

}
where

K1(ϵ) =
[ ||νK0 − πK0 ||TV

ϵ

](1−∆F/c))−1 MM (N−1)M

NM − d

end

K2(ϵ) =
MM (N − 1)M )

ϵNM
+

∆F

ϵc
+M − d

Proof. This theorem is obtained directly from Theorem 4.2 by letting each

term be less than or equal to ϵ.

Note: The upper bound on adiabatic time depends on ∆F - the highest difference

in cost function of two neighboring states. This quantity depends on the communica-

tion pattern or the structure of user graphs. Additionally, the quality of the bound

also depends on the total variance distance bound of stationary distributions of two

consecutive time steps.
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4.2.3. Convergence rate at the final temperature: At the fixed temperature TK , the

Simulated Annealing based algorithm can be viewed as a time homogeneous Markov

Chain.

Theorem 4.3. Given the bound on total variance distance between the distribution

and the stationary distribution at time K is ϵ. The temperature from time K will

remain constant. Let δ be a positive number such that δ < ϵ. The time of the

homogeneous Markov chain corresponding to the simulated annealing algorithm at

temperature TK to converge is bounded by:

KM (ϵ, δ) ≤M
logδ − logϵ

log(1−
[

N
M(N−1)

]M 1
(K+d)M∆F/c )

(4.18)

Proof. First note that from Proposition 3.2, if we choose L = M , the product PM
K

is an all-positive column matrix. Hence the upper bound on the value of τ(PM ) is:

τ(PM ) ≤ 1−
[ N

M(N − 1)

]M 1

(K + d)M∆F/c

Apply Theorem 3.2 to finish the proof.

5. Simulation

In this section, we show the simulation results of a small user-server assignment

problem. There are M = 4 users with a communication pattern depicted in Figure 2a

needed to be assigned into N = 2 servers appropriately. The parameters α and β in

4.4 are chosen equally, i.e. α = β = 0.5 The state space has 24 = 16 states in total;

each state has 4 neighboring states. Figure 2b shows an example of a state (a feasible

assignment scheme). The initial temperate is set at T0 = 5.

A =


0 0.4183 0.0892 0

0.4183 0 0 0.4924

0.0892 0 0 0

0 0.4924 0 0


(a) Adjacent matrix

X =


0 1

1 0

1 0

0 1


(b) State example

Figure 2: Sample assignment problem
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Tfinal Log. Exp.

0.1 4.8517e+08 3.0370e+13

0.25 2.9795e+03 2.2861e+07

0.5 53 8.0454e+04

0.75 12 7.7624e+03

1.0 6 1.8995e+03

(b) Lower bound on adiabatic time

Figure 3: Cooling schemes and bounds on adiabatic times for different final Tfinal

Table in Figure 3b shows the lower bound (the minimum number of time steps)

that satisfies Claim 4.3 and Claim 4.4. It is necessary to choose K greater than the

proposed lower bound.

We set the final temperature Tfinal = 0.5 and select randomly an initial assignment

scheme. The cooling schemes are chosen such that temperature at each time step Tk

is strictly decreasing and at the Kth time steps, the temperature TK = Tfinal.

Figure 4 (resp. 5) shows the simulation results of the simulated annealing algorithm

with logarithmic (resp. exponential) cooling schemes corresponding to Section 4.2.2-

1 (resp. 4.2.2-2). From simulation results, we can see that simulated annealing

algorithms with exponential cooling schemes converge much more slowly than ones with

logarithmic cooling schemes. This observation can be explained by the temperature

decreasing speed of the two cooling scheme families. Temperature of the logarithmic

cooling schemes decrease quickly in the early time steps and extremely slow most

of the remaining time steps (Figure 3a). If K is sufficiently large, the temperature

difference can be infinitesimal. On the other hand, the temperature in exponential

cooling schemes decrease evenly until reaching the final temperature.

Figure 6 shows the simulation results for the case that parameters of a logarithmic

cooling scheme, i.e c, d, are pre-specified. We would like to know how long it takes

for the simulated annealing algorithm to converge as described in Section 4.2.2(3). In

other words, we will determine the final temperature at which the simulated annealing

algorithms converge, i.e the distance between the final distribution and the stationary
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Figure 4: Logarithmic cooling scheme
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Figure 5: Exponential cooling scheme

distribution is bounded by a small value.

6. Conclusion

In this paper, we proposed a framework for analyzing convergence rates of simulated

annealing based algorithms. We verified our framework by applying in the Client-Server

assignment problem which appears in many large scale distributed settings such as

social network applications. The quality of the bounds on adiabatic time depends

on the optimization problems. Some specific problems for which we can derive a good

bound on the stationary distributions of the two consecutive time steps, we will achieve

a good bound on adiabatic time.
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Figure 6: Logarithmic cooling scheme with specified parameters
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